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ABSTRACT In this paper, the passive event-triggered control problem for networked control systems with
actuator faults is of concern. A sufficient condition is proposed by a Lyapunov-Krasovskii functional, under
which such type continuous-time Networked control systems with actuator faults are asymptotically stable
and passive. The designing method of controller is developed by using Wirtinger inequality and linear
matrix inequalities (LMIs). The given strategy can reduce the number of transmissions, thus saving the
communication resources. Finally, two numerical examples are provided to demonstrate the effectiveness of
the proposed method.

INDEX TERMS Passive fault-tolerant control, event-triggered approach, networked control systems, linear
matrix inequalities (LMIs).

I. INTRODUCTION
With the development of the network, the plant, the sen-
sor, the controller, and actuator usually located in differ-
ent places. Consequently, the signals should be transmitted
from one place to another. Therefore, networked control
systems(NCSs), where the components are connected over
networks, have been intensively studied in recent decades [1],
[2], [3].

The time-triggering scheme and event-triggering scheme
are the mainstream control strategies for NCSs [4], [5]. Theo-
ries and experiments have proved the event-triggered scheme
can reduce the number of transmitted data and improve
the utilization efficiency of limited network bandwidth to
a large extent without degrading the desired system per-
formance [6], [7]. When the network resource is limited,
the time-trigger technique is inefficient. An important focus
of NCSs’ signal transmission and control is cost. Com-
pared with the traditional time-triggered scheme, the event-
triggered scheme allows a considerable reduction of the
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network resource occupancy while maintaining the control
performance [8], [9], [11], [28]. In NCSs, there are schemes,
such as event-triggered control based on time-delay method
in [12]. It should be pointed out that the event-triggered
control problems for NCSs are much more complicated.
Therefore, investigating the analysis and design of NCSs is
of fundamental importance in order to realize the functions
of the real world.

On the other hand, actuator faults are also the distinguish-
ing feature that can not be neglected in analysis and designing
of NCSs. Because actuator faults can also lead to poor perfor-
mance of the closed-loop systems and sometimes destabilizes
the systems [13], [14]. Recently, a host of characters have
paid attention to the study of various control problem ofNCSs
with actuator faults [14], [15], [16].

The event-triggered control design problem of NCSs with
dynamic quantisation and fault is studied in [15], and stochas-
tic actuator fault, which is modelled by the Bernoulli dis-
tributed white sequence is considered in this situation, and
a robust feedback controller is designed. Reference [16]
focuses on two novel event-triggered fault-tolerant control
strategies for a class of stochastic systems with state delays.
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Passivity is closely related to bounded realness, which has
been used in control problems to deal with robust stability
problems for complex uncertain dynamic systems with dis-
turbances. A passive system utilizes the product of input and
output as the energy provision and embodies the energy atten-
uation character, which often links the stability problems.
The key point of passivity theory is that a passive system
can keep itself internally stable. In fact, many applications
based on passivity theory can be found in lots of areas,
such as signal processing, chaos control [17], [18]. In recent
years, researches on passive control of dynamic systems have
achieved remarkable results [19], [20], [28]. The passive
control problem for semi-Markov jump Takagi-Sugeno fuzzy
systems based on an event-triggeredmechanism is considered
in [22]. Reference [23] proposed the asynchronous passive
controller design for singular Markov jump systems.

Up to now, to the best of authors’s knowledge, there are
few results on the passive event-triggered control problem for
NCSs with actuator faults and remains to be important and
challenging. However, it is often required to reduce the trans-
mission cost in practical engineering. Therefore, it becomes
important to investigate the event-triggered controller design
problems of continuous-time NCSs with actuator faults.

Motivated by the aforementioned considerations, in this
paper, our attention is devoted to design the passive event-
triggered controller for NCSs with actuator faults. The con-
tributions of this paper are as follows:

• A class of more general control strategy is investigated,
where we take actuator faults, event-triggered controller
into consideration at the same time. The event-triggering
scheme gives a unified framework that can include exist-
ing results for time-triggering scheme as special cases
for NCSs. In addition, the criteria obtained in this paper
are suitable for NCSs without actuator faults.

• Based on the Lyapunov-Krasovskii functional approach,
a sufficient condition given in this paper makes NCSs
with actuator faults and event-triggering scheme asymp-
totically stable and passive. Moreover, the designing
method of controller is developed by using linear matrix
inequalities (LMIs).

• The Wirtinger inequality is more tighter than Jensen
inequality, and be used in the derivation of the sufficient
criterion. In addition, the free weight matrix approach is
also adopted in the criterion derivation process.

The outline of this paper is given as follows. In section II,
the problem formulation and some preliminaries are pre-
sented. The controllers are given in section III. Section IV
presents the numerical examples to demonstrate the proposed
methodology. Conclusions are drawn in section V.
Notations: V > 0 means that V is positive definite;

V T and V−1 denote the transpose and the inverse of any
square matrix V ; ∥V∥ means the spectral norm of the
matrix V ; diag{V1,V2, . . . ,VN } represents a block-diagonal
matrix with diagonal elements V1,V2, . . . ,VN . Rn denote the
n-dimensional Euclidean space, Rn×m is the set of n×m real

matrices; I is the identity matrix of appropriate dimensions.
For asymmetric matrix ∗ denotes the matrix entries implied
by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the NCSs subject to actuator faults with the follow-
ing dynamics:{

ẋ (t) = Ax (t)+ BuF (t)+ Bωω (t)
z (t) = Cx (t)+ Dωω (t)

(1)

where x (t) ∈ Rn is the system state, uF (t) ∈ Rm is the
fault control input described in (2) below. ω (t) ∈ Rq is the
disturbance input which belongs to∫ T

0
ωT (t)ω (t) dt ≤ δ0, δ0 ≥ 0.

A, B, Bω, C and Dω are known constant matrices with appro-
priate dimensions.

uF (t) = Fu (t) (2)

where F = diag {f1, f2, · · · , fm}, and 0 ≤ f −

l ≤ fl ≤ f +

l ≤

1,∀l ∈ {1, 2, · · · ,m}.

Let f middlel =
f +

l +f −

l
2 , f dl =

f +

l −f −

l
f +

l +f −

l
, f sl =

fl−f middlel
f middlel

, then
we can obtain that

F = Fmiddle
(
I + F s

)
,

∥∥F s∥∥ ≤ Fd ≤ I

where

Fmiddle = diag
{
f middle1 , f middle2 , · · · , f middlem

}
,

F s = diag
{
f s1 , f

s
2 , · · · , f

s
m
}
,

Fd = diag
{
f d1 , f

d
2 , · · · , f

d
m

}
.

Then the control input can be described as

uF (t) = Fmiddle
(
I + F s

)
u (t) . (3)

There is an event generator in the network systems, which
is constructed between sensor and controller, which is visu-
alized in Fig 1. The event generator can determine which
sampled signal should be sent out or not by utilizing the
following judgement algorithm (4).

ti+1 = inf
{
t : t > ti + τ, eT (t)2e (t) ≥ δxT (t)2x (t)

}
(4)

where

e (t) = x (t)− x (ti) .

The event-triggered instant is denoted as {ti}∞i=0 with 0 = t0 <
t1 < t2 = · · · .2 is a positive-definite matrix. ti+1− ti > τ >

0, and 0 ≤ δ < 1.
In this paper, we consider an event-triggered controller as

u (t) = Kx (ti) (5)

where K is the matrix to be sought.
Denote τ (t) = t − ti, t ∈ [ti, ti + τ) with 0 < τ (t) < τ .
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FIGURE 1. The structure of an event-triggered NCSs.

Then, the closed-loop system can be described as

ẋ (t) =


Ax (t)+ BFmiddle (I + F s)Kx (t − τ (t))

+Bωω (t) , when t ∈ [ti, ti + τ)

Āx (t)− BFmiddle (I + F s)Ke (t)
+Bωω (t) , when t ∈ [ti + τ, ti+1)

(6)

where

Ā = A+ BFmiddle
(
I + F s

)
K .

Remark 1: According to the above description of actuator
failure, the following three special cases can be drawn, and
the conclusions obtained in this paper are applicable to the
following three special cases, which illustrates the universal-
ity of the model in this paper.

• When fl− = fl+ = 0, the actuator fails completely.
• When 0 < fl− ≤ fl+ < 1, the actuator partially fails;.
• When fl− = fl+ = 1, the actuator has not failed.
Fault tolerant control in this paper means that the NCSs

with actuator faults can still remain asymptotically stable, and
can meet the performance indicator of passive. We are ready
to state the passive fault-tolerant event-triggered control prob-
lem for system (1).
Definition 1: A linear control law of the form (5) is passive

fault-tolerant event-triggered control for the NCSs (1) with
the actuator faults represented by (2) and the event-triggering
scheme (4), if the following two requirements are satisfied.

• The system (6) with ω (t) = 0 is asymptotically stable.
• if there exists β > 0, such that

2
∫ T0

0
ωT (t) z (t) dt ≥ −β

∫ T0

0
ωT (t) ω (t) dt,

∀T0 > 0,

holds for all trajectories with zero initial condition.
Lemma 1 [24]: For given constants r1, r2 (0 ≤ r1 < r2)

and an n × n real matrix Q = QT > 0, a scalar continuous
function r(t) satisfying r1r(t)r2 and a vector-valued function

ẋ : [t − r2, t − r1] → Rn such that the integrations concerned
below are well defined, then the following inequality is true
for any matrices Zj ∈ Rmj×mj and Sj ∈ Rmj×n satisfying[
Zj Sj
∗ Q

]
≥ 0 and any vectors cj ∈ Rmj , j = 1, 2, 3, 4.

− (r2 − r1)
∫ t−r1

t−r2
ẋT (s)Qẋ (s) ds

≤

4∑
j=1

2cTj Siϑi (t)+ β
(
cT1 Z1c1 + cT3 Z3c3

)
+ (1 − β)

(
cT2 Z2c2 + cT4 Z4c4

)
where β = (r2 − r (t))

/
(r2 − r1) and

ϑ1 (t) = x (t − r (t))− x (t − r2) ,

ϑ2 (t) = x (t − r1)− x (t − r (t)) ,

ϑ3 (t) =
π

2
(x (t − r (t))+ x (t − r2)− 2υ1) ,

ϑ4 (t) =
π

2
(x (t − r1)+ x (t − r (t))− 2υ2) ,

υ1 =
1

r2 − r (t)

∫ t−r(t)

t−r2
x (s) ds,

υ2 =
1

r (t)− r1

∫ t−r1

t−r(t)
x (s) ds.

Lemma 2 [25]: Assume61, 62 andϒ are constant matri-
ces. Then, for any l (t) ∈ [lm, lM ],

(l (t)− lm)61 + (lM − l (t))62 + ϒ < 0

is true if and only if

(lM − lm)61 + ϒ < 0, (lM − lm)62 + ϒ < 0.

Lemma 3 [26]: Let M ,F,N and P be real matrices of
appropriate dimensions with P > 0, FTF ≤ I and a scalar
η > 0. Then

MFN + NTFTMT
≤ ηMP−1MT

+
1
η
NTFTPFN .

Lemma 4 [27]: For a matrix R > 0 and a differentiable
signal x in [α, β] → Rn,the following inequality holds:

− (β − α)

∫ β

α

xT (s)Rx (s) ds

≤ −

(∫ β

α

x (s) ds
)T

R
(∫ β

α

x (s) ds
)

− 3ϖ0
TRϖ0,

where

ϖ0 =

∫ β

α

x (s) ds−
2

β − α

∫ β

α

∫ s

α

x (u) duds.
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III. MAIN RESULTS
In this section, we first give a condition to guarantee the
system (6) with ω (t) = 0 is asymptotically stable.
Theorem 1: For the given scalars τ , a1, and a2, the closed-

loop system (6) with ω (t) = 0 is asymptotically stable,
if there exist symmetric matrices X > 0, P̄0 > 0, Q̄ > 0,
2̄ > 0, and matrices Y , S̄j, Z̄j, such that[

Z̄j S̄j
∗ Q̄

]
≥ 0, (7)

6̄1+3 =

 6̄1
1+3 6̄2 ε16̄

3

∗ −ε1I 0
∗ ∗ −ε1I

 < 0, (8)

6̄2+4 =

 6̄1
2+4 6̄2 ε16̄

3

∗ −ε1I 0
∗ ∗ −ε1I

 < 0, (9)

5̄ =

 5̄1 5̄2 5̄3

∗ −ε2I 0
∗ ∗ −ε2I

 < 0, (10)

where

6̄1
1+3 = 6̄ + S̄ + Z̄1 + Z̄3,

6̄1
2+4 = 6̄ + S̄ + Z̄2 + Z̄4,

6̄ =


6̄11 YB 0 a1XAT 0 0
∗ 0 0 a1Y TB 0 0
∗ ∗ −P̄0 0 0 0
∗ ∗ ∗ τ 2Q̄− 2a1X 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

 ,
6̄11 = AX + XAT + P̄0,

YB = BFmiddleY ,

6̄2
=

[ (
BFmiddle

)T 0 0 a1
(
BFmiddle

)T 0 0
]T
,

6̄3
=

[
0 FdY 0 0 0 0

]T
,

5̄1
=


5̄11 −2Q̄ 5̄13 YB 6Q̄
∗ −P̄0 − 4Q̄ 0 0 6Q̄
∗ ∗ τ 2Q̄− 2a2X a2YB 0
∗ ∗ ∗ −2̄ 0
∗ ∗ ∗ ∗ −12Q̄

 ,
5̄11 = AX + XAT + YB + YBT + P̄0 − 4Q̄+ δ 2̄,

5̄13 = a2
(
XAT + YBT

)
,

5̄2
=

[ (
BFmiddle

)T 0 a2
(
BFmiddle

)T 0 0
]T
,

5̄3
=

[
FdY 0 0 FdY 0

]T
,

S̄ = S̄1 (e2 − e3)+ (e2 − e3)T S̄T1
+ S̄2 (e1 − e2)+ (e1 − e2)T S̄T2

+
π

2
S̄3 (e2 + e3 − 2e5)+

π

2
(e2 + e3 − 2e5)T S̄T3

+
π

2
S̄4 (e1 + e2 − 2e6)+

π

2
(e1 + e2 − 2e6)T S̄T4 ,

and

e1 =
[
1 0 0 0 0 0

]
,

· · ·

e6 =
[
0 0 0 0 0 1

]
,

and the controller gain is taken as K = YX−1.
Proof: First we choose a Lyapunov−Krasovskii func-

tional candidate as

V (x (t) , t) = xT (t)Px (t)+

∫ t

t−τ
xT (s)P0x (s) ds

+ τ

∫ 0

−τ

∫ t

t+µ
ẋT (s)Qẋ (s) dsdµ.

(11)

Taking the time derivative along with the trajectory of the
system (6), it yields

V̇ (x (t) , t) = 2xT (t)Pẋ (t)

+ xT (t)P0x (t)− xT (t − τ)P0x (t − τ)

+ τ 2ẋT (t)Qẋ (t)− τ

∫ t

t−τ
ẋT (s)Qẋ (s) ds.

To prove V̇ (x (t) , t) < 0, ∀t ∈ [ti, ti+1), we now consider
the following two cases:

• Case 1 t ∈ [ti, ti + τ)

V̇ (x (t) , t)

= 2xT (t)PAx (t)

+ 2xT (t)P
[
BFmiddle

(
I + F s

)
Kx (t − τ (t))

]
+ xT (t)P0x (t)− xT (t − τ)P0x (t − τ)

+ τ 2ẋT (t)Qẋ (t)− τ

∫ t

t−τ
ẋT (s)Qẋ (s) ds. (12)

Consider the relaxation factor as follows

2a1ẋT (t)P [Ax (t)+ BFKx (t − τ (t))− ẋ (t)] = 0.

(13)

Apply Lemma 1 to get the fact that

− τ

∫ t

t−τ
ẋT (s)Qẋ (s) ds

≤ ζ T (t)
(
S+

τ−τ (t)
τ

(Z1+Z3)+
τ (t)
τ

(Z2+Z4)
)
ζ (t) ,

(14)

where

S = S1 (e2 − e3)+(e2 − e3)T S1T

+ S2 (e1−e2)+(e1−e2)T S2T

+
π

2
S3 (e2+e3−2e5)+

π

2
(e2+e3−2e5)T S3T

+
π

2
S4 (e1+e2−2e6)+

π

2
(e1+e2−2e6)T S4T,

ζ T (t) =

[
xT (t) , xT (t − τ (t)) , xT (t − τ) , ẋT (t)
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×
1

τ − τ (t)

∫ t−τ(t)

t−τ
xT (s) ds,

1
τ (t)

∫ t

t−τ(t)
xT (s) ds

]
.

Then, we can obtain that

V̇ (x (t) , t) ≤ ζ T (t)60ζ (t) , (15)

where

60 = 6+S+
τ − τ (t)

τ
(Z1+Z3)+

τ (t)
τ

(Z2 + Z4) ,

6 =


611 612 0 a1ATP 0 0
∗ 0 0 a1612

T 0 0
∗ ∗ −P0 0 0 0
∗ ∗ ∗ τ 2Q− 2a1P 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

 ,
611 = PA+ ATP+ P0,

612 = PBFmiddle
(
I + F s

)
K .

Then, pre-and post multiply inequality 60 by XO =

diag {X ,X ,X ,X ,X ,X} and its transposition. Let X =

P−1,Y = KX , P̄0 = XP0X , Q̄ = XQX , 2̄ = X2X ,
S̄ = XOSXO,Zj = XOZjXO (j = 1, 2, 3, 4). considering
the fact

XO6XO = 6̄ + 6̄2F s6̄3T
+ 6̄3F s6̄2T ,

and ∥∥F s∥∥ ≤ Fd .

By Lemma 2 and 3, the LMIs (7),(8) and (9) mean
V̇ (x (t) , t) < 0,∀t ∈ [ti, ti + τ).

• Case 2 t ∈ [ti + τ, ti+1)

V̇ (x (t) , t)

= 2xT (t)P
[
Āx (t)− BFKe (t)

]
+ xT (t)P0x (t)− xT (t − τ)P0x (t − τ)

+ τ 2ẋT (t)Qẋ (t)− τ

∫ t

t−τ
ẋT (s)Qẋ (s) ds. (16)

We also consider the relaxation factor as follows

2a2ẋT (t)P
[
Āx (t)− BFKe (t)− ẋ (t)

]
= 0. (17)

Apply Lemma 4 to get the fact that

−τ

∫ t

t−τ
ẋT (s)Qẋ (s) ds ≤ ψT (t)5Qψ (t) , (18)

where

5Q =

 −4Q −2Q 6Q
∗ −4Q 6Q
∗ ∗ −12Q

 ,
ψT (t) =

[
xT (t) , xT (t − τ) ,

1
τ

∫ t

t−τ
xT (s) ds

]
,

Considering the event-triggered condition, we can get

V̇ (x (t) , t) ≤ ξT (t)51ξ (t) , (19)

where

51
=


511 −2Q a2ĀTP 612 6Q
∗ −P0 − 4Q 0 0 6Q
∗ ∗ 533 a2612 0
∗ ∗ ∗ −2 0
∗ ∗ ∗ ∗ −12Q

 ,
511 = PĀ+ ĀTP+ P0 − 4Q+ δ2,

533 = τ 2Q− 2a2P,

ξT (t) =

[
xT (t) , xT (t − τ) , ẋT (t) , eT (t) ,

×
1
τ

∫ t

t−τ
xT (s) ds

]
.

Then, pre-and post multiply inequality 51 by X0
O =

diag {X ,X ,X ,X ,X} and its transposition, considering
the fact

X0
O5

1X0
O = 5̄+ 5̄2F s5̄3T

+ 5̄3F s5̄2T .

By Lemma 3, the condition (10) means V̇ (x (t) , t) <
0,∀t ∈ [ti + τ, ti+1).
Still now, this completes the proof.
Remark: The event-triggering scheme in this paper can

avoid the Zeno phenomenon. In the special case δ = 0,
it comes into a time-triggering method.
Next, a sufficient condition is provided to guarantee

asymptotical stability and passivity of system (1).
Theorem 2: For the given scalars τ , a1, and a2, the system

(1) is asymptotically stable and passive, if there exist sym-
metric matrices X > 0, P̄0 > 0, Q̄ > 0, 2̄ > 0, and matrices
Y , S̄ th2j , Z̄ th2j , such that [

Z̄ th2j S̄ th2j
∗ Q̄

]
≥ 0, (20)

6̄th2
1+3 =

 6̄1th2
1+3 6̄2th2 ε16̄

3th2

∗ −ε1I 0
∗ ∗ −ε1I

 < 0, (21)

6̄th2
2+4 =

 6̄1th2
2+4 6̄2th2 ε16̄

3th2

∗ −ε1I 0
∗ ∗ −ε1I

 < 0, (22)

5̄ =

 5̄1th2 5̄2th2 ε25̄
3th2

∗ −ε2I 0
∗ ∗ −ε2I

 < 0, (23)

where

6̄1+3
1th2

= 6̄th2
+ S̄ th2 + Z̄ th21 + Z̄ th23 ,

6̄2+4
1th2

= 6̄th2
+ S̄ th2 + Z̄ th22 + Z̄ th24 ,

6̄th2
=

[
6̄ 6̄12th2

∗ −βI − Dω − DTω

]
,

6̄12th2
=

[
BTω − CX 0 0 a1BTω 0 0

]T
,

6̄2th2
=

[
6̄2T 0

]T
,

VOLUME 11, 2023 3657



L. Fu et al.: Passive Fault-Tolerant Control for NCSs Using Event-Triggered Approach

6̄3th2
=

[
0 FdY 0 0 0 0 0

]T
,

5̄1th2
=

[
5̄1 512th2
∗ −βI − Dω − DTω

]
,

512th2
=

[
BTω − CX 0 a2BTω 0 0

]T
,

5̄2th2
=

[
5̄2T 0

]T
,

5̄3th2
=

[
FdY 0 0 FdY 0 0

]T
,

S̄ th2 = S̄ th21

(
e2th2 − e3th2

)
+

(
e2th2 − e3th2

)T
S̄ th2 T1

+ S̄ th22

(
e1th2 − e2th2

)
+

(
e1 − e2th2

)T
S̄ th2 T2

+
π

2
S̄ th23

(
e2th2 + e3th2 − 2e5th2

)
+
π

2

(
e2th2 + e3th2 − 2e5th2

)T
S̄ th2 T3

+
π

2
S̄ th24

(
e1th2 + e2th2 − 2e6th2

)
+
π

2

(
e1th2 + e2th2 − 2e6th2

)T
S̄ th2 T4 ,

and

e1th2 =
[
1 0 0 0 0 0 0

]
,

· · ·

e6th2 =
[
0 0 0 0 0 1 0

]
,

and the controller gain is taken as K = YX−1.
Proof: First we also choose the Lyapunov−Krasovskii

functional candidate (11).
• Case 1 t ∈ [ti, ti + τ)

Taking the time derivative along with the trajectory of
the system (6), it yields

V̇ (x (t) , t)

= 2xT (t)PAx (t)+ 2xT (t)PBωω (t)

+ 2xT (t)P [BFKx (t − τ (t))]

+ xT (t)P0x (t)− xT (t − τ)P0x (t − τ)

+ τ 2ẋT (t)Qẋ (t)− τ

∫ t

t−τ
ẋT (s)Qẋ (s) ds.

The relaxation factor is considered as

2a1ẋT (t)P [Ax (t)+ BFKx (t − τ (t))+ Bωω (t)]

= 2a1ẋT (t)Pẋ (t) .

We can get the following condition by Lemma 1,

V̇ (x (t) , t)− 2zT (t) ω (t)− βωT (t) ω (t)

≤ ζ th2T (t)60
th2ζ th2 (t) , (24)

where

ζ th2T (t) =

[
xT (t) , xT (t − τ (t)) , xT (t − τ) , ẋT (t)

×
1

τ − τ (t)

∫ t−τ(t)

t−τ
xT (s) ds,

1
τ (t)

∫ t

t−τ(t)
xT (s) ds, ω (t)

]
,

60
th2

= 6th2
+ S th2 +

τ − τ (t)
τ

(
Z1th2 + Z3th2

)
+
τ (t)
τ

(
Z2th2 + Z4th2

)
,

6th2
=

[
6 612

∗ −βI − Dω − DTω

]
,

612
=

[
BTωP− C 0 0 a1BTωP 0 0

]T
.

By integrating (24) over the time period 0 to T0,∫ T0

0
2zT (t) ω (t)dt + β

∫ T0

0
ωT (t) ω (t)dt

≥ V (x (t) ,T0)− V (x (t) , 0)

Then,∫ T0

0
2zT (t) ω (t)dt + β

∫ T0

0
ωT (t) ω (t)dt ≥ 0

Pre- and post multiply 60
th2 by XOth2 = diag {X ,X ,X ,

X ,X ,X , I } and its transposition. Then, the same proof
process can be obtained for inequalities (20), (21)
and (22).

• Case 2 t ∈ [ti + τ, ti+1)

Based on the condition

V̇ (x (t) , t)

= 2xT (t)P
[
Āx (t)− BFKe (t)+ Bωω (t)

]
+ xT (t)P0x (t)− xT (t − τ)P0x (t − τ)

+ τ 2ẋT (t)Qẋ (t)− τ

∫ t

t−τ
ẋT (s)Qẋ (s) ds,

and

2a2ẋT (t)P
[
Āx (t)− BFKe (t)+ Bωω (t)− ẋ (t)

]
= 0.

The same proof process can be obtained for inequality
(23). This completes the proof.

IV. NUMERICAL EXAMPLE
In this section, we provide two numerical examples to show
the effectiveness of the proposed conditions.
Example 1: Consider the NCSs system withω (t) = 0 and

the following coefficient matrices:

A =

[
−1 0.5
1 −2

]
, B =

[
0.2
−1

]
.

Let ε1 = 0.1, ε2 = 0.2, a1 = 1.5, a2 = 1.5, τ =

0.2, δ = 0.4, the fault function 0.08 sin t + 0.8. Solving the
LMIs (7-10) in Theorem 1, it is obtained that

X =

[
88.7768 29.7882

∗ 82.0759

]
,

Y =
[
31.4391 −38.3420

]
,

2 =

[
70.5113 −1.9400

∗ 74.4384

]
.

Then,

K =
[
0.5817 −0.6783

]
.
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FIGURE 2. The state trajectories of the closed-loop system (Example 1).

FIGURE 3. The trajectory of control input (Example 1).

Now, we assume that the initial condition is
x0 = [0.1 − 1]T .
In the following, we provide some simulation results.

Fig 2, Fig 3, and Fig 4 show the plots of the closed-loop
system state trajectories, control input signal and the trigger-
ing time intervals. And the average release interval can be
calculated as 1.11 s.
Example 2: Consider the NCSs system (1) with ω (t) =

0.2 ∗ e−0.1t
∗ sin (0.5t),and

A =

[
−1.2 0.9
0.1 −0.6

]
, B =

[
2
1

]
, Bω =

[
0
0.1

]
C =

[
1 0

]
, D = [0.1]

Let ε1 = 10, ε2 = 2, a1 = 1.5, a2 = 1.25, τ = 0.2, δ =

0.4, the fault function 0.09 sin t + 0.9. Solving the LMIs (20-
23) in Theorem 2, it is obtained that

X =

[
1.2530 0.6230

∗ 2.6193

]
,

Y =
[
−0.2491 −1.2195

]
,

2 =

[
1.5525 1.7763

∗ 7.3106

]
.

FIGURE 4. The triggering time intervals (Example 1).

FIGURE 5. The state trajectories of the closed-loop system (Example 2).

TABLE 1. The maximum allowable value of τ for different β.

Then, the feedback gain

K =
[
0.0371 −0.4744

]
.

Initial state has been chosen as x0 = [1 − 2]T . Fig 5 shows
the state responses of the closed-loop system, which shows
that the system stability is guaranteed. Fig 6 displays the
trajectory of control input. Based on the judgement algorithm
(4), the release instants and the time intervals between any
two adjacent release instants are presented in Fig 7. The
average release interval can be calculated as 1.25 s. It is easy
to obtain that event-triggered control can efficiently reduce
the number of control task execution. The communication
resources can be saved significantly while retaining satisfac-
tory closed-loop performance.

Table 1 shows the maximum allowable value of τ for
different β.
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FIGURE 6. The trajectory of control input (Example 2).

FIGURE 7. The triggering time intervals (Example 2).

V. CONCLUSION
Stability analysis and passive event-triggered controller
designing method for continuous-time NCSs with actuator
faults are investigated in this paper. A sufficient condition
is proposed by a Lyapunov-Krasovskii functional, which
can guarantee the NCSs with actuator faults are asymptot-
ically stable and passive. The event-triggering scheme has
been used in the designing of the feedback controller. The
effectiveness of the proposed theorem is illustrated by two
numerical examples. The closed-loop systems are modeled as
dynamics with time-varying delay, so event-triggered fault-
tolerant control in this paper can be extended to NCSs with
time delay. In addition, the observer-based event-triggered
fault-tolerant control of NCSs with time-delay is of great
interest and will be studied in the future [28]. Besides, the
event-triggered control for stochastic nonlinear systems can
be considered in future work.
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