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ABSTRACT The Internet of Things (IoT) has paved the way to a highly connected society where all things
are interconnected and exchanging information has become more accessible through the internet. With the
use of IoT devices, the threat of malware has increased rapidly. The increased number of existing and new
malware variants has made protecting IoT devices and networks challenging. The malware can hide in the
systems and disables its activity when there are attempts to discover and detect them. With technological
advances, there are various emerging techniques to address this problem. However, they still encounter issues
concerning the privacy and security of the user’s data and suffer from a single point of failure. To address this
issue, there are recent research developments conducted to use Federated Learning (FL). FL is a decentralized
technique that trains the user’s data on-device and exchanges the parameters without sharing the user’s data.
FL is implemented to secure the user’s data, provide safe and accurate models, and prevent the single point of
failure in the centralized models. This paper provides an overview of different approaches that integrate FL
with IoT. Finally, we discuss the applications of FL, the research challenges, and future research directions.

INDEX TERMS Artificial intelligence, deep learning, federated learning, Internet of Things, machine
learning, malware analysis.

I. INTRODUCTION
The Internet of Things (IoT) is an emerging technology
rapidly evolving communication. IoT permits exchanging of
meaningful information and knowledge across IoT devices
and systems to create value for humans [1]. IoT involves bil-
lions of various devices connected, generating vast amounts
of data [2]. These devices may include sensors, smartphones,
computers, or home appliances. These devices are connected
to the internet and each other through heterogeneous access
networks [2]. It can be described as connecting devices or
things across the internet to send or receive data [3]. IoT
devices are used in several industries and have proven helpful
for remote health monitoring, early diagnosis, and elderly
care for the healthcare sector [4] and reducing the necessity to
meet with doctors in person [5]. The research on agriculture
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using IoT has also risen in the last two decades around crop,
soil, and microclimate monitoring [6]. In addition, several
industries utilize IoT devices, including the finance sector [7],
retail [8], vehicle monitoring systems [9] and the manufactur-
ing industry [10].

A. MOTIVATION
Today there are various industries reliant on IoT devices, and
there is an increase in security issues faced by the indus-
tries. With the design complexity and lack of security due to
outdated firmware and weak authentication, IoT devices are
targeted by cybercriminals, and malware compromises IoT
devices [11]. Therefore, it is critical to improve the security
and privacy aspects of IoT devices and protect them against
malware.Many types of research and studies are conducted to
protect IoT devices against malware, and one such method is
to use centralized techniques such as Machine Learning [1],
[12] and Deep Learning [13], [14]. However, these central-
ized learning techniques share the user’s private data with a
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TABLE 1. Inclusion and Exclusion Criteria.

centralized server to train the models. Therefore, these tech-
niques affect the user’s privacy. Recent advancements using
Federated Learning (FL) to protect the user’s data and provide
a secure system are on the rise. The main idea behind FL is to
train the user data on-device without sharing its private data to
a central server, as present in centralized learning techniques.
In this paper, we discuss the applications of FL and provide an
overview of different approaches to integrate FL and IoT for
malware analysis. The inclusion and exclusion criteria for the
paper used for analysis and comparisons are given in Table 1.

B. ORGANIZATION
In this paper, we discuss in detail and provide an overview
of integrating the different approaches of FL with IoT.
The remainder of this paper is organized as follows. First,
section II discusses the overview of existing studies on Fed-
erated Learning and IoT. Then, in section III, we present a
detailed discussion on IoT malware along with their taxon-
omy and nature of IoT malware and types of IoT malware
analysis. Later, in section IV, we discuss the recent advances
in IoT malware. Next, section V provides a detailed descrip-
tion of malware analysis for Federated Learning. Finally,
in section VI, we discuss the research challenges and future
research directions, and in sectionVII, we conclude the paper.

II. OVERVIEW OF EXISTING STUDIES ON FEDERATED
LEARNING AND IoT
Numerous research works are focusing on FL and IoT. For
example, the authors of [15] presented a survey focusing
on security to protect the vulnerable IoT environment using
FL. They also discuss several approaches to address the
performance issues, such as accuracy, latency, and resource
constraint associated with FL. Similarly, the authors of [16]
survey other literature related to the application of FL in
healthcare, smart transportation, Unmanned Aerial Vehicles
(UAVs), and smart cities. Finally, the paper provides a taxon-
omy of the FL-IoT services.

Meanwhile, the study in [17] discusses the applications
of FL on resource-constrained IoT devices and explores
distributed implementations highlighting the drawbacks
and their future research directions. The authors of [18]
explore and discuss in detail the recent research work on
FL-IoT based on criteria such as scalability, robustness,
sparsification, security, and privacy. In [19], the authors
present a comprehensive survey on Vehicular IoT systems,
such as cooperative autonomous driving and intelligent trans-
port systems, with many devices and privacy-sensitive data.
The authors of [20] present a literature review on intrusion
detection in IoT. They discuss the IoT ecosystem in commu-
nication, fog computing, and cloud computing layers. They
provide a taxonomy of the potential attacks based on the
layers targeted by the attackers.

Several research works have combined FL and blockchain
technology to prevent privacy leakage by assigning training
tasks to multiple clients. This method separates the central
server from the local devices [21]. Another work in [22]
presented a comprehensive survey on FL, blockchain, and
IoT. It discusses the privacy issues related to blockchain and
FL-enabled IoT and possible techniques to tackle threats. The
applications of FL also extend to the Industrial Internet of
Things (IIoT), where [23] the authors discuss the aspects
of IIoT and FL for privacy, resource constraints, and data
management. In addition, there are also personalized FL tech-
niques to tackle the device, data, andmodel heterogeneities in
IoT environments [24]. The comparison of the related works
is combined and presented in Table 2.

III. IoT MALWARE
Most of the malware families are designed to target personal
computers running on Microsoft Windows, the most pop-
ular operating system. IoT devices are built upon different
CPU architectures and have become an attractive target for
attackers. The IoT malware performs brute-force attacks to
gain access to the devices. The Linux.Hydra was the first
DDoS-capable IoT malware that appeared in 2008 [11].
The IoT malware developers developed several variants of
Linux.Hydra, including Psybot, Chuck Norris, and Tsunami,
emerged in the upcoming years. The Tsunami is the ancestor
of Bashlite, and from Bashlite, the Mirai malware inherited
and evolved more and more complex in 2016 [11]. In this
paper, we discuss in detail the conducive environments for
IoT malware execution, the types and nature of IoT mal-
ware, and the types of malware analysis in the following
sub-sections.

A. CONDUCIVE ENVIRONMENT FOR THE EXECUTION OF
IoT MALWARE
IoT devices are prone to different attacks, including phys-
ical attacks, network-layer attacks, and application-layer
attacks. The attacker exploits the vulnerabilities present in
the targeted system. There are several reasons for the exe-
cution of malware: outdated firmware, weak authentication,
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TABLE 2. Comparison of Existing Techniques for IoT Malware Detection and Contribution of the Paper.

connectivity, and resource-constrained devices. We will be
discussing the outlined reasons in detail.

• Outdated Firmware - Firmware updates the functionality
and features of a device. Usually, outdated firmware
does not have security patches if new vulnerabilities
are found [25]. Therefore, the attackers can exploit this
vulnerability and gain access to the rest of the system.

• Weak Authentication - IoT devices usually have an easy
installation procedure for the people to use the devices.
The majority of the users either reuse their credentials
or do not change the default credentials, which becomes
an easy target for attackers [26].

• Connectivity - Many IoT devices are connected to the
internet almost always. This creates open ports which
attract attackers easily. In addition, most IoT devices are
resource-constraint and have fewer security policies.

• Resource-constrained - Most IoT devices, such as
smart watches, CCTV cameras, and Bluetooth-operated
devices, are resource constrained and heterogeneous,
making it easier for attackers to target the system [27].

B. NATURE OF IoT MALWARE
The different types of malware have different modes and
natures of exploiting the vulnerabilities of the targeted
system. For example, the malware can exploit network-
based vulnerabilities or use operational business functional-
ity through available network shares [28]. Incident response
and malware eradication efforts are challenging when the
malware propagates utilizing the infrastructure. Earlier in
the section, we discussed the evolution of certain mal-
ware. To know more about the nature of the malware
and their methods of propagation, in this section, we will
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discuss in detail one of the most popular IoT botnet,
Mirai.

The Mirai botnet consists of five major components [29],
and all of these work independently to compromise vul-
nerable devices and launch massive DDoS attacks. In addi-
tion, all these components are distributed geographically,
which makes them difficult to track [29]. The following are
each of the components explained in detail, along with their
functionalities.

1. Bot - A bot is a malicious component in the network;
a bot could be any IoT device connected to the network.
It is a slave node and acts on the attackers’ behalf, taking
instructions from the attackers and executing them in the
network. Each bot scans for the nearby vulnerable device and
reports it to the report server. The bots attempt brute-force
attacks using default usernames and passwords.

2. Command and Control Server (C&C) - The C&C server,
as we discussed in the earlier section, is the attacker who
controls the botnets and sends out instructions that are carried
out by the botnets.

3. Report Server - The report server contains information
about the vulnerable nodes and their stolen login credentials.
The bot communicates this information to the report server
when it locates a vulnerable node.

4. Loader - The loader obtains information from the report
server and exploits these vulnerabilities to change the node
into a bot.

5. Webserver - It hosts the precompiled bot binaries for
multiple different architectures. The loader identifies the
appropriate architecture and downloads the corresponding
binary from the web server [29].

C. TYPES OF IoT MALWARE ANALYSIS
Malware Analysis is the study of a malware sample’s impact,
functionalities, origin, and potential. It helps understand the
behaviour and purpose of a suspicious file, reduces the false
positives, and helps determines how extensive is a malware
incident. There are three types of malware analysis: dynamic,
static, and hybrid. Each of the techniques has its strengths
and weakness compared to the others. The dynamic anal-
ysis uses a behaviour-based approach. Compared to static
analysis, dynamic analysis is effective against all types of
malware. Static analysis is ineffective against sophisticated
malware but, compared to dynamic analysis, is cost and time
efficient. The static analysis involves file fingerprinting and
virus scanning, and it searches the body of the malware for
strings [30]. The limitations of static and dynamic analysis
inspired researchers to develop a hybrid analysis that involves
the benefits of both static and dynamic analysis [31]. This
section discusses each technique in detail and provides a
taxonomy and its features.

1) STATIC ANALYSIS
The static approach analyzes and detects malicious files with-
out executing them. In static analysis, the analysts reverse the

executable files into assembly code to better understand the
malware activities. The significant advantage of using static
analysis is that it can observe the malware’s structure and
scalability. Observing the malware’s structure helps explore
all the possible execution paths in the malware sample and
makes the static approach effective in solving heterogeneous
issues in IoT devices. Themajor drawback of static analysis is
that it cannot detect complex and polymorphic malware [15].
The static analysis relies on extracting certain characteristics:
Control Flow Graph (CFG), Function Call Graph (FCG),
opcodes, strings, and file headers. Then, the assembly code
is disassembled [32] using tools like Radare2 [33] and IDA
Pro [34]. These characteristic features can be categorized as
graph-based features and non-graph-based features. The two
types of features are discussed in detail below:

• Graph-based features: The Control Flow Graph (CFG)
is the most popular feature in graph-based features. CFG
is a directed graph representing all the possible execu-
tion paths in a program where each vertex represents a
basic block, and each directed edge is the control flow
between the blocks [11]. The experimental results in [35]
have shown that the IoT malware contains fewer nodes
and edges than android malware. The authors of the
paper [36] build a detection mechanism for IoT malware
using CFGs. The paper shows that the IoT malware has
a more significant number of edges despite the smaller
number of nodes. In [37], the authors propose preserving
the malware’s integrity by extracting the CFG of mal-
ware as feature information. Here, a packed malware’s
control flow graph consists of unpacked and local CFG.
The paper [38] proposes a new algorithm in the CFG
feature based on dynamic programming to efficiently
detect the malware with fast processing time.
The next type of graph-based feature is the Function
Call Graph (FCG). The FCG is also a directed graph
constructed from programs where the vertices spec-
ify the functions and the edges define the caller-callee
relationship between functions [39]. In the paper [11],
there is another type of graph-based feature: the opcode
sequence graph. The opcode sequence graph is a graph
representation of an executable file as the opcodes have
a suitable structure to be represented as a graph [40].
Representing an executable file as a graph allows graph-
based implementation methods like graph compression
and embedding to distinguish between malware and
benign files.

• Non-graph-based features:There are several non-graph-
based static features, such as opcodes, ELF headers [41],
and strings. One of the functionalities most IoT mal-
ware supports is the Command & Control server con-
nection [42]. Therefore, there is a high chance that the
C&C server and IP address might be available in print-
able strings of IoT malware binary. In the paper [43],
the authors have obtained the statistical, structural,
and string features. The statistical features have been
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obtained using course-grained clustering, the structural
features are obtained using fine-grained clustering, and
the string features are obtained using N-grams. In one
of the survey papers [11], the authors mentioned that
the string features that include information such as the
IP addresses and URL connect take the least time for
feature extraction. For the opcodes, the malware file is
decompiled to extract opcodes and utilized for malware
classification [42]. The authors in [44] extracted opcode
features for malware and benignware using the objdump
tool. In the paper [45], the authors have extracted the
opcode sequences using fuzzy and fast fuzzy pattern
trees.

2) DYNAMIC ANALYSIS
The dynamic approach monitors the executables during the
run-time period and detects abnormal behaviour. It observes
behaviour information such as network activities, system
calls, file operations, and registry modification records [46].
The dynamic analysis monitors the execution process and is
resource-intensive, time-consuming, and expensive for con-
structing a virtual environment. In some cases, the malware
could infect real environments. Although they are resource
intensive, the dynamic analysis is effective against all types of
malware. The main advantage is that it analyses the run-time
behaviour of a programwhich is hard to obfuscate [47]. Some
examples of the features in the dynamic analysis include
memory, network, system call sequences, process ID, and
parent process ID [46].

In [48], the authors design and implement an automatic,
virtual machine-based profiling system to collect IoT mal-
ware behaviour, such as API calls and system calls. The
method converts multiple sequential data into a family
behaviour graph for analysis. The paper [49] proposes a
dynamic analysis methodology by preparing an analysis tool
and running the malicious samples in a controlled environ-
ment to investigate them. Meanwhile, the authors of [50] pro-
pose a method for malware classification based on analyzing
the sequences of system calls and using an attention-based
LSTM model for malware classification. In [51], the paper
discusses the techniques performed by malware to evade
detection in a dynamic analysis environment.

3) HYBRID ANALYSIS
The hybrid malware analysis integrates both static and
dynamic features. In the paper [47], the authors have com-
bined the static and dynamic features to utilize the ben-
efits of both techniques. It utilizes the string features for
the static analysis and uses API call sequence extraction
for the dynamic analysis. The combination of both fea-
tures improved detection accuracy compared to the stand-
alone techniques. In the paper [32], the authors have used
hybrid analysis using an entropy-based method to differen-
tiate packed malware samples from non-packed ones. The
authors of [52] use two-stage hybrid malware detection to

protect IoT devices from obfuscated malware. The method
consists of two stages where after extracting opcode features
using static analysis, the benign files are detected using a bidi-
rectional long short-term memory model. In [53], the authors
propose to use bidirectional long short-memory (Bi-LSTM)
along with a spatial pyramid pooling network (SPP-Net) for
smart IoT. The advantage of hybrid analysis is that certain
actions that may be hidden in the run-time might be detected
while unpacking the binary files or viewing them as assembly
code. The detailed taxonomy of the IoT malware analysis can
be seen in Figure 1.

IV. RECENT ADVANCES IN IoT MALWARE ANALYSIS
Researchers have studied IoT Malware Analysis and con-
tributed using several state-of-the-art machine learning and
deep learning techniques to detect and classify IoT malware.
In this section, we first discuss the research works focussing
on machine learning for IoT malware analysis and classifica-
tion. The authors of the paper [54] have proposed a method
for IoT botnet detection usingmachine learning. In this paper,
the authors have integrated static and dynamic features to
distinguish IoT botnet samples from benign samples. The
proposed method used a Support Vector Machine (SVM) as
the machine learning classifier. The authors of the paper [55]
proposed a new framework model and a hybrid algorithm
for selecting the effective machine learning algorithm among
the various algorithms available for effectively detecting IoT
malware. The algorithms considered in the paper for the
model selection are Bayes Net, Naive Bayes, Random Forest,
and Random Tree. Among the other algorithms considered,
the Naive Bayes algorithm gave the best results in terms of
accuracy.

In the paper [56], the authors have provided a detailed
survey of various technological advancements in Machine
Learning and their applications for resolving several security
issues in IoT. They have also discussed the different potential
future research directions. In [57], the authors have proposed
a distributed modular solution for IoT malware detection
using machine learning. The authors have extracted four dif-
ferent features, including unique IP addresses and minimum,
mean and maximum number of packets per destination IP
address. The proposed method uses KNN (K nearest neigh-
bours) for classification and obtains an accuracy of 94%.

Meanwhile, the authors in [58] use several machine learn-
ing algorithms such as Random Forest (RF), Decision Tree
(DT), and KNN to predict attacks and anomalies in IoT
network traffic. The system achieved an accuracy of 99%.
In [59], the paper’s authors attempt to detect unknown mal-
ware families using several machine learning techniques such
as Naive Bayes, DT, and RF and achieve an accuracy of 98%.

The researchers have also focused on several Deep Learn-
ing techniques for IoT malware analysis and classification,
such as in [60], [61], [62], and [63]. For example, the authors
of [64] propose an approach for Linux IoT botnet detection
based on a combination of PSI graphs and a Convolutional
Neural Network (CNN). The DGCNN extracts the vertice’s
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FIGURE 1. Taxonomy of IoT Malware Analysis.

local substructure features and defines a vertex ordering.
Furthermore, the authors of the paper [65] have compared
three Convolutional Neural Network (CNN) approaches for
IoT malware detection. In [14], the authors used CNN to
detect and classify unknown malware and obtained an accu-
racy of 99%. Deep Learning has also been used along with
visual representation techniques [66] for faster detection and
classification of IoT malware. The proposed method in [66]
used visual transformation with Binvis and achieved an accu-
racy of 94.5%. Finally, the paper [67] presents an end-to-end
malware detection technique to reduce the time and effort
for malware analysts to build static and dynamic features.
The method uses CNN and achieves an accuracy of 95.5%.
The list of studies using machine learning and deep learning,
along with their techniques used and accuracies, have been
presented in detail in Table 3.

V. MALWARE ANALYSIS USING FEDERATED LEARNING
A massive amount of data is generated from the billions of
IoT devices connected and used today. Unfortunately, the
exponential growth of IoT devices has also attracted several
attackers, and the user data’s security and privacy are at risk.
Several research works focus on state-of-the-art techniques
to detect and classify IoT malware, as discussed in the previ-
ous sections. However, all these techniques are centralized,
sending the user’s data to a centralized server. To protect

the user’s privacy and security, recent research focuses on
decentralized techniques such as Federated Learning (FL),
where the user’s private data remains on the device, and only
the model parameters are shared. In this section, we will
focus on the applications of FL for IoT malware analysis and
discuss them in detail.

A. DEFINITION OF FEDERATED LEARNING
FL is a new branch of AI where the Machine Learning (ML)
models are trained locally on the devices such as mobile
phones and other smart devices [23]. The devices present
in the FL setup do not exchange their local data but instead
shares the parameters and gradients of the local model with
a global model maintaining the privacy and security of the
user. The global model resides at a server, and the topology
of Federated learning is shown in Fig. 2. The global model
aggregates all themodel updates obtained from the localmod-
els by averaging the parameters of each individual model, and
by this method, each individual model learns collaboratively
from a global model. The workflow of FL is discussed below:

• Local Model Training: The local model training occurs
in each individual device where the model is fetched
with the local data. After the model is trained with the
respective local data, a local model is generated.
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TABLE 3. Various studies on IoT Malware Analysis and Detection.

• Local Model Updates: After the generation of the local
model, each of the model updates contains the weights
and parameters from each individual device. These
updates are then sent to the aggregator.

• Aggregating the Global model: After receiving these
updates from every local model, the global model aggre-
gates each of the updates received by executing aggrega-
tion algorithms such as Federated Averaging (FedAvg).

• Global Model GenerationAfter the global model is gen-
erated by averaging the local model updates, the global
models are sent back to the local models. In this way, the
individual devices learn collaboratively from a shared
model.
There are various categories of FL based on the ways of
splitting the data. The categories of FL include Horizon-
tal FL, Vertical FL, and Hybrid FL.
– Horizontal FL - The horizontal FL contains differ-

ent data samples but shares the same feature space.

Some examples of Horizontal FL are Next-word
prediction, recommendation systems, and wake-
word detectors [23]. In [68], the authors have pro-
posed an algorithm to achieve fairness and accuracy
to reduce the uneven distribution of data across
horizontal FL.

– Vertical FL - The Vertical FL shares different sam-
ple spaces, but the sample IDs are the same. For
example, a grocery store and a bank in the same area
might have similar customers, but their business
structure (feature space) is different. Since a large
amount of data generated from these systems are
often low quality, in [69], the authors propose an
explainable vertical FL to reduce the computational
complexity.

– Federated Transfer Learning (FTL) - The FTL com-
bines vertical and horizontal FL. In FTL, different
enterprises or institutions can develop personalized
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FIGURE 2. Topology of Federated Learning.

models by learning from each other without shar-
ing their own. FTL is applicable when the data
samples and feature spaces differ in two clients’
datasets [23]. FTL is applied to handle variance in
data samples and feature space while performing
on-device learning. In [70], the authors propose a
semi-supervised FTL to reduce model overfitting
due to insufficient overlapping training samples in
FL scenarios. Here the proposed method uses non-
overlapping samples from all parties to expand the
training set for each party to improve local model
performance. In [71], the authors propose using
FTL for industrial missing data imputations where
the knowledge is indirectly transferred to the target
edge through helper models. In [72], the authors
propose an IoTDefender, an intrusion detection
framework for 5G IoT based on federated transfer
learning. The IoTDefender aggregates data using
federated learning and forms customized detection
models using transfer learning. With it, all IoT net-
works can share information without compromising
privacy.

B. APPLICATIONS OF FEDERATED LEARNING FOR
MALWARE ANALYSIS
As discussed in the previous sections, several state-of-the-art
Machine Learning (ML) and Deep Learning (DL) techniques
detect and classify IoT malware. Recent research studies
focus on Federated Learning as it has significant advantages
over traditional ML and DL models. FL ensures data privacy,
security, reduced latency, lower power consumption, and on-
device training. In addition, FL also delivers personalizedML
models to the users, where the models learn collaboratively
and ensure enhanced user experience.

In [73], the authors used the autoencoder model to use FL
for botnet detection. Here, the IoT network traffic is collected
on an edge device that contains the local model and a virtual

worker. The global model aggregates the local model updates
and sends them back to the virtual worker to train the new
local model with the local data. The method achieved 99%
accuracy in classifying the IoT network traffic as benign or
malicious. The authors of the paper [74] used a Convolutional
Neural Network (CNN) for the asynchronous FL model to
select the heterogenous nodes to participate in the global
model aggregation. In [75], the authors have used attention-
based federated incremental learning for network traffic clas-
sification. The proposed method achieved an accuracy of
96%, reducing network failure risk due to long transmission
distances between the nodes. The application of FL also
extends to IoT healthcare due to the dynamic generation of
a large amount of data.

In [76], the authors have used FL for IoT healthcare data to
secure data collaboration for the IoT environment and reduce
overheads. Furthermore, they have combined blockchain
technology and FL to enable a secure architecture for privacy-
preserving in smart healthcare. In [77], the authors have
used Artificial Neural Network (ANN) as the global model
for federated intrusion detection for IoT healthcare appli-
cations. The proposed method improved the performance
in heterogeneous IoT data and tackled poisoning attacks.
The FL application also extends to agricultural IoT where
in [78], the authors have used three different global models,
including Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN) and Deep Neural Network (DNN)
and evaluated three different datasets for intrusion detection
in IoT using Hierarchical Federated Learning.

FL has also been used in the field of Unmanned Aerial
Vehicles (UAVs). In paper [79], the authors propose to use
FL for UAVs where the UAV coordinates are distributed to
ground devices for shared model training. Using the UAV’s
high altitude and mobility, it can proactively establish short-
distance line-of-sight links with devices and prevent any
device from being a communication straggler. In [80], the
authors use FL for UAVs to form a swarm for distributed
model training. They also explore the impact of the dis-
tance change between the training node of the UAVs and the
parameter server UAV on the training accuracy [80]. In [81],
the authors use decentralized FL for UAV Networks known
as DFL-UN, enabling FL within UAV networks without a
central entity. Finally, in [82], the authors use hierarchical FL
for edge-enabled UAV networks. Here, the edge-aided UAV
network exploits the edge servers located in base stations
as intermediate aggregators by employing commonly shared
data.

Federated Machine Learning has gained much attention
due to how it handles privacy by decentralizing the data
generated at the IoT devices and aggregating the global model
at the centralized server [23]. In addition, Federated Machine
Learning for searching malware [83] has been used to speed
up learning without compromising the data of users. In [84],
proposed a method for malware classification using Feder-
ated Machine Learning. The authors of [85] have reviewed
different research works on Federated Machine Learning
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regarding multi-level classification, reliable client selection,
and resource management. The discussion of research work,
along with their contribution, is discussed in detail in Table 4.

To preserve the privacy of the ML models, several tech-
niques are used in FL, and they include differential pri-
vacy (DP), homomorphic encryption and secure multi-party
computation [23].

1) HOMOMORPHIC ENCRYPTION
The computation and analysis use several encryption tech-
niques, making it difficult for the attacker to decrypt the
user’s original information. In [90], the authors use homo-
morphic encryption in FL for IoT healthcare data to prevent
the adversary from inferring private medical data by vari-
ous attacks, such as model reconstruction attacks or model
inversion attacks. Furthermore, in [91], the authors combine
homomorphic encryption and Verifiable computing to secure
against confidentiality and integrity threats from the aggrega-
tion server. Finally, in [92], the authors develop a method for
multi-party homomorphic aggregation where the central node
only receives an encrypted version of the individual gradients
from the local model.

2) DIFFERENTIAL PRIVACY (DP)
Differential privacy determines the amount of data available
for third-party analysis. The differential privacy contributes to
the adversarial robustness of a machine learningmodel. In the
paper [88], the authors have added a differential privacy noise
layer to maintain the privacy characteristics of Federated
Learning. In [93], the authors use differential privacy for
hierarchical FL based on Local Differential Privacy (LDP).
The method involves adding the noise to the shared model
parameters before uploading them to edge and cloud servers.
In [94], the authors track the privacy loss by accounting for
the logmoments. Finally, in [95], the authors combine FL and
differential privacy approaches based on update optimiza-
tion of relative-staleness and a semi-synchronous approach
for fast convergence in heterogeneous networks. Some of
the differential privacy framework’s properties are protecting
sensitive personal information, privacy protection and group
privacy [23].

3) SECURE MULTI-PARTY COMPUTATION
A model where multiple parties compute and prevent data
leakage to third parties. In [96], the authors propose using par-
tially encrypted multi-party computation to reduce the com-
munication and computation cost compared to conventional
multi-party computation, and it achieves as high accuracy as
traditional distributed learning.

C. ADVANTAGES OF INTEGRATING FEDERATED LEARNING
AND IoT
There are several benefits to integrating FL for IoT malware
analysis and in the section, we will discuss them in detail.

1) DATA PRIVACY AND SECURITY
To understand the pattern of data, train the data and get
insights, centralized learning techniques such as ML and DL

algorithms are used. In these techniques, the data of different
businesses present in different locations are sent to a central
server where all the data are stored and trained. As the IoT
application’s user data can be sensitive and contain sensitive
user information, the centralized techniques can potentially
expose data to potential attackers and intruders. In Federated
learning, the sensitive user data is not transferred to any
central location for training the algorithm but stays on the IoT
device, and only the parameters of the model are shared with
a central server for collaborative learning.

2) IMPROVED NETWORK PERFORMANCE
IoT devices require a huge network infrastructure to commu-
nicate and handle the data generated from these devices. This
potentially affects the performance of the network. In FL,
since user data is present in the IoT device and not transferred
to a central server the traffic in the network is reduced. This
increases the overall performance of the network.

3) SCALABILITY
The conventional ML algorithms fail to scale to the massive
amount of data being generated from IoT devices. The inte-
gration of FL with IoT enables it to scale the learning as
it is not required to train large volumes of data but focuses
on the aggregation of model parameters. This improves the
scalability of the FL over the other centralized techniques
available.

VI. RESEARCH CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
The IoT devices are heterogeneous and complex in their
design and nature. Although there are several advantages to
combining FL and IoT, there aremany technical difficulties in
implementing and deploying them in real time. In this section,
we will discuss the challenges and future research directions
in detail and provide a summary of challenges and future
directions in Table 5.

1) DEVICE HETEROGENEITY
Millions of IoT devices are connected, and integrating
these multiple heterogeneous devices is a huge challenge.
Their storage, computational capabilities and communication
capacities vary significantly. In some cases, it is possible that
only some devices are active due to power constraints or due
to connectivity issues. So, FL must handle heterogeneous
hardware and be robust to dropped devices. In [100], the
authors propose an adaptive client sampling algorithm to
tackle heterogeneity, and the proposed system significantly
reduces the convergence time compared to several baseline
sampling schemes. In [99], the authors leverage Federated
Reinforcement Learning to accelerate and stabilize the pro-
cess with heterogeneous data. There is active research work
on the linear convergence in FL for heterogeneous data where
the authors in [97] have proposed a method for linear con-
vergence rates under aggressive gradient sparsification and
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TABLE 4. Applications of Federated Learning in IoT.
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TABLE 4. (Continued.) Applications of Federated Learning in IoT.

TABLE 5. Summary of Research Challenges and Future Directions.

quantified the effect of the compression level on the conver-
gence rate.

In [98], the authors used self-attention-based transformers
by replacing CNN to improve FL over heterogeneous data.

Some future research directions to address the device hetero-
geneity should include fault tolerance, active device sampling
and asynchronous communication. First, for fault tolerance,
a potential approach to solve it could consider dropping the
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inactive devices and ignoring device failure, which may also
lead to biased device sampling. Hence it is essential to con-
sider all aspects while solving fault tolerance. Next is active
device sampling; this could be solved by setting a threshold
and certain conditions to the number of devices depending
on their activity status. This approach could select the partic-
ipating devices at each FL round. Finally, for asynchronous
communication, the paper [74] has proposed a lightweight
node selection algorithm to select the nodes to carry out the
task efficiently.

2) STATISTICAL HETEROGENEITY
Since there are different types of devices connected to the
network in IoT, the ability of a device to participate in training
more than the other is inevitable. This leads to statistical het-
erogeneity, where the devices collect data in a non-identically
distributed (non-IID) manner across the network. Moreover,
the number of data points across devices may vary signifi-
cantly, and there may be an underlying statistical structure
present that captures the relationship among devices and their
associated distributions [107].

This data-generation paradigm violates frequently used
independent and identically distributed (i.i.d.) assumptions
in distributed optimization and may add complexity in terms
of problem modelling, theoretical analysis, and the empirical
evaluation of solutions. Some of the future challenges to
addressing the statistical heterogeneity are to identify and
include the clients with valuable data and poor communica-
tion capabilities. This type of difference in the data can lead
to complexity in the modelling, analysis and evaluation of the
Federated Learning model. This could be potentially tackled
by using Adaptive Client Sampling [100].

3) EFFICIENT DATA MANAGEMENT
Since there is a massive amount of data being generated from
IoT devices every day, it is crucial to have efficient data man-
agement techniques in place. Themassive amount of gathered
data is raw and needs to be processed before analyzing and
making decisions in real time. After processing, transmitting
it to the required destination in real-time is also necessary.
Hence, it is crucial to have efficient data management policies
to handle and store massive data. In the paper [101], the
authors have proposed techniques to tackle data management
using blockchain technology. In [102], the authors use Deep
Reinforcement Learning (DRL) to analyze the data charac-
teristics of IoT devices. This increased the model aggregation
rate and reduced communication costs.

4) SERVER-SIDE ATTACKS
Preserving the privacy of the data and model is a signif-
icant issue in Federated Learning. There is a high chance
that the model updates can be tampered by the attackers,
and the attacker may try to steal the model updates from
the cloud resulting in inconsistency and noise. Therefore,
it is essential to use homomorphic encryption techniques,

where the computation and analysis use several encryption
techniques, making it difficult for the attacker to decrypt. This
can be tackled by using differential privacy techniques [103],
which improve convergence and protects from attacks.

5) CLIENT-SIDE ATTACKS
Privacy security mechanisms are computationally expensive,
and the various security issues on the client and server sides
remain challenging to address when data communication is
restricted. Similar to the server side, it is essential to pro-
tect the client side using encryption techniques. In addi-
tion, the client-side servers are prone to model-poisoning
attacks and data-poisoning attacks. In a model poisoning
attack, the attacker might upload poisoned updates, leading
to performance degradation and classification errors. In data
poisoning attacks, the attackers infiltrate and entermisleading
information, tampering with the training of the models. In the
paper [104], the authors use blockchain technology, miners,
and ledgers to regularly verify the local model updates.

6) COMMUNICATION OVERHEAD
Federated Learning involves several rounds of communi-
cation, considering the massive number of IoT devices
connected. Therefore, FL methods rely on recursively com-
municating and exchanging model updates throughout the
process. In the paper [105], the authors proposed gradient-
descent FL that involves local updates and global conver-
gence measures using a control algorithm to reduce the loss
function for reduced resource consumption.

7) RESOURCE-CONSTRAINED
Most IoT devices are resource-constrained and may not con-
tain CPU or GPU capabilities to utilize complex ML or
DL models. The IoT device does not have the processing
ability, low bandwidth and power, or limited storage capac-
ity. In [17], the authors review the latest research work and
explore the research directions for FL in resource-constrained
IoT devices. The resource requirements of FL are not met
in certain IoT devices due to weak computation [16]. This
could be tackled using resource-aware training for the neural
network [106].

VII. CONCLUSION
With the increasing number of IoT devices, it is essential
to protect the privacy and security of the user data. Hence,
it is crucial to preserve confidential user data effectively. This
paper presented a comprehensive survey of integrating Feder-
ated Learning for IoT malware analysis and discussed several
associated approaches and techniques in detail. Specifically,
we have discussed the IoT malwares highlighting the differ-
ent types and natures of IoT malwares. We also discussed
the different types of malware analysis and their taxonomy
in depth. Subsequently, the paper addressed the motivation
behind integrating Federated learning and IoT malware anal-
ysis and reviewed and compared the differences between
Federated Learning and centralized learning techniques such
as Machine Learning and Deep Learning. Finally, at the
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end of the paper, we analyzed the research challenges in
integrating Federated Learning with IoT and discussed future
research directions in detail.
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