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ABSTRACT The dynamic hand skeleton data have become increasingly attractive to widely studied for the
recognition of hand gestures that contain 3D coordinates of hand joints. Many researchers have been working
to develop skeleton-based hand gesture recognition systems using various discriminative spatial-temporal
attention features by calculating the dependencies between the joints. However, these methods may face
difficulties in achieving high performance and generalizability due to their inefficient features. To overcome
these challenges, we proposed a Multi-branch attention-based graph and a general deep-learning model to
recognize hand gestures by extracting all possible types of skeleton-based features.We used two graph-based
neural network channels in our multi-branch architectures and one general neural network channel. In graph-
based neural network channels, one channel first uses the spatial attention module and then the temporal
attention module to produce the spatial-temporal features. In contrast, we produced temporal-spatial features
in the second channel using the reverse sequence of the first branch. The last branch extracts general deep
learning-based features using a general deep neural networkmodule. The final feature vector was constructed
by concatenating the spatial-temporal, temporal-spatial, and general features and feeding them into the fully
connected layer. We included position embedding and mask operation for both spatial and temporal attention
modules to track the node’s sequence and reduce the system’s computational complexity. Ourmodel achieved
94.12%, 92.00%, and 97.01% accuracy after evaluation with MSRA, DHG, and SHREC’17 benchmark
datasets, respectively. The high-performance accuracy and low computational cost proved that the proposed
method outperformed the existing state-of-the-art methods.

INDEX TERMS Dynamic hand gesture recognition, machine learning, spatial-temporal attention, hand
skeleton points, temporal-spatial attention, deep learning.

I. INTRODUCTION
Research on hand gesture recognition has been increas-
ing daily since many real-life applications like human-
computer interaction, nonverbal communication, controlling
a wheelchair, abnormal behaviour monitoring, and sign
language recognition [1], [2], [3], [4], [5], [6]. Previous
work on hand gesture recognition has been divided into two
categories based on the data collection procedure: vision-
based and sensor-based systems. Since the sensor-based
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system is difficult because of the carrying sensor, researchers
focus on the vision-based system because it only uses a
camera, and that is easy to carry. Based on the input data
modality, vision-based research work can be divided into
two categories: image-based research, which uses full image
pixels, and skeleton-based research, which uses only joint
information. RGBor RGB-D images are common input for an
image-based method for extracting the recognition features.
In comparison, skeleton-based methods predict hand gestures
based on 2D or 3D coordinates of hand joints. The skeleton
sequence is not affected by the limitations of the RGB
video and does not consist of color information. Moreover,
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Johansson et al. have proved that key joints of the gesture
carry highly potential information about human motion [7].
Furthermore, each skeleton joint represents a point of the
human body in three dimensions coordinates. Among the
significant reasons this dataset is valuable to researchers
is that it contains higher-level semantic information with
a small amount of memory and adapts easily to dynamic
systems [8], [9], [10]. Currently, many low-cost depth
cameras are available in the market, like Intel RealSense,
and Oak-D, which are easy to use for collecting skeleton
gesture information and made great progress in gesture
recognition research [11], [12]. Based on the skeleton-
based dataset, many researchers proposed conventional
methods for designing a powerful feature descriptors model
for recognizing hand gestures [13], [14], [15]. The main
problems of the conventional approach are less performance
accuracy and limitations of capabilities for generalization.
Researchers applied deep learning techniques to overcome
the challenges and improve performance accuracy by directly
converting joint coordinates into tensors that feed neural
networks [16], [17], [18]. They first produced the feature with
the neural network, which is learned by the deep learning
network for training. Some other researchers transformed
their input skeleton into a meaningful format like a graph,
a point sequence or a pseudo image using graph topologies
or traversal rules. Then this data format is directly fed
into the deep learning method such as CNN, GCN, RNN,
or LSTM to extract effective features for improving the
network architecture performance [8], [19], [20].

Moreover, until now, there is some uncertainty about
whether the hand-crafted extracted features and rules are
the optimal choice of joint global dependencies for the
model. However, learning global agencies transformer has
produced success in the natural language processing (NLP)
field, which mainly includes the self-attention mechanism
[21], [22], [23]. They reported that better parallelizability
and global dependency could be learned with minimum
computational complexity among the element. In addition,
the attention-based model does not require information
about the intrinsic relationship among the joints. Another
suitability of the attention model is that there is a limited
number of joints in the hand gesture dataset. With minimum
computational cost, it is possible to discover useful patterns
from the hand skeleton dataset. The main drawback of
these models nevertheless considers the spatial and temporal
structure of the sequential hand skeleton dataset. Recently,
many researchers applied a graph-based spatial-temporal
attention model to recognize skeleton-based hand gestures
[9], [24], [25], [26], [27], [28]. Although they achieved good
performance, the main drawback is the lack of flexibility and
sub-optimal performance because of the fixed graph struc-
ture, which may be difficult to capture variance and dynamics
across different actions. To overcome the challenges, more
recently, researchers have worked to develop a dynamic
hand-skeleton dynamic graph-based spatial-temporal model
to recognize hand gestures [24], [29], [30].

Although they overcome the optimality problem with
their model, their performance accuracy is not satisfactory.
Moreover, their model may be faced difficulties in achieving
satisfactory performance or the same performance all the
time because of the inefficiency of the extracted feature.
In addition, they only extracted spatial features and then
temporal features, and there is no explanation about the vice
versa features or if the combination of the other general
deep learning features. To overcome the challenges, we are
inspired to extract all possible kinds of features from the
hand skeleton dataset with the dynamic graph-based attention
model, including spatial, temporal attention and general deep
learning information. To do this study, we proposed Multi-
Branch Attention Based Graph and General Deep Learning
model for hand gesture recognition using a skeleton dataset
to overcome the mentioned challenges. We developed the
architecture by following the dynamic graph-based attention-
based mechanism, including spatial, temporal and deep
learning information. To convert from original nonsequential
skeleton information to sequential information, we used
a general neural network, considered the initial feature.
Then we employed three branches to extract all possible
features with spatial-temporal, temporal-spatial and general
deep neural network branches. We considered the spatial-
temporal, temporal-spatial branch as a graph-based deep
neural network branch that used a position embedding
technique to generate the unique markers for every point
before each attention block, which helped the attention model
feed data sequentially. We utilized a masking operation in
each attention block to reduce the computational complexity
because two individual pieces of information would decrease
the efficiency of the system. The main purpose of the third
layer is to recover the missing feature value and solve
inefficient signal propagation in the fully connected layer.
As we fused the three kinds of features, which combined all
possible kinds of features of the hand skeleton, it became an
efficient and quicker process compared to the existing system.
The significant contribution of this study is as follows:

• Weproposed aMulti-BranchAttention BasedGraph and
General Deep Learning Model to recognize dynamic
skeleton-based hand gestures.

• We used several principles in designing spatial-
temporal, temporal-spatial and general deep neural
network models. The first branch produces spatial-
temporal features based on spatial attention through
a temporal attention block, and the second produces
temporal-spatial features based on temporal attention
through a spatial attention block. The third branch
carries the general deep learning network features, and
finally, we fused three features vector to generate the
effective final feature vector.

• Finally, we conducted a comprehensive validation of
our system with the three-dynamic skeleton-based hand
gesture dataset and achieved superior performance over
the state-of-art method considerably within minimum
time. The models and code of the proposed model
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were uploaded into GitHub to make it public, which is
available at https://www.github.com/musaru/Graph-
and-
General-DNN.

This paper we organized as follows, relevant literature
review provided in Section II. Section III is described the
benchmark dataset of hand skeletons used to develop this
work. The proposed multi-branch spatial-temporal attention
model is described in Section IV. Section V described
the experimental results and different evaluation scenarios.
Section VI concludes the paper, including some future work.

II. RELATED WORK
Hand joint skeleton information-based hand gesture recog-
nition has recently been widely used in the computer vision
domain but is still considered a challenging task. The
traditional approach, like machine learning and traditional
feature extraction method, mainly focuses on developing
effective feature descriptors [15], [31], [32], [33], [34]. Ohn-
Bar et al. l. proposed a set of feature generators from
a skeleton dataset by including a histogram of oriented
gradients (HOG) algorithm with the descriptor and employed
linear SVM after converting the feature to a 2D array using
HOG again [15]. Many other feature extractors have also
been proposed by researchers, like the covariance matrix
for skeleton joint location [34], joint location, joint angles,
3D geometric relationships between [35], and intraclass
variance [36]. Hand geometric configuration for capturing
hand shape variation was proposed by Smedt et al., which
is used to extract spatial-temporal motion features of hand
parts from the whole Euclidean space [37]. They achieved
82.50% and 80.11% accuracy for the 14 and 28 gestures of
the DHG dataset after applying SVMmachine learning on the
Riemannian-based trajectory features. Smedt et al. extracted
features based on the fisher vectors and skeleton-based
geometric technique, then applied SVM to the concatenated
features, and achieved 83.00% and 80.00% accuracy for DHG
dataset 14 gesture and 28 gesture sequentially [13]. They
extracted three features, namely the shape of connected joints
(SoCJ), histogram of hand directions (HoHD), and histogram
of wrist rotations (HoWR) and combined them to make the
final feature vector. Smedt et al. also applied the fisher vector
and shaped the connected feature for the SHREC’17 dataset
with the SVM classifier and achieved 88.24% and 81.90% for
14 gestures and 28 gestures sequentially [14]. The advantage
of the work is that they demonstrated the superiority of
3D skeleton information over depth-based approaches, but
the drawback is they did not consider the amplitude of
the gesture and temporal pyramid representation may lose
some information. Chen et al. proposed a motion feature
extractor by combining articulated movement of the finger
andmotion feature from global handmovement for extracting
bone angle and applying RNN for classification. They
evaluated their model with the DHG dataset and achieved
84.68% and 80.32% accuracy for the 14 and 28 classes,
respectively [16]. Also, some researchers employed deep

neural networks like CNN on the hand joints skeleton data
for recognizing hand gestures and significantly improved
[14], [16], [18], [23], [27], [32]. Many researchers used
other networks with CNN, like an RNN-based approach
that transforms the skeleton data into sequential data using
traversal rules and feeds into LSTM for training and
prediction [9], [17], [18], [38], [39]. Lin C et al. developed
a fusion model by combining skeleton LSTM and Res-
C3D network for recognizing abnormal hand gestures [39].
Lai et al. incorporated a CNN and an RNN deep learning
model for recognizing skeleton-based hand gestures and
achieved 85.61% for the DHG 14 gesture dataset [40].

Ma et al. employed an unscented kalman filter (UKF) to
reduce the noise and include LSTM for classification [25].
They focused on the noisy dataset by revising the noise in
the hand skeleton data and achieved 85.92% and 80.44%
accuracy for the 14 and 28 gestures of the DHG dataset
sequentially. Nunez et al. proposed a combination of CNN
and LSTM models for recognizing a temporal 3D pose,
and they achieved 85.46% and 81.10% accuracy for the
14 and 28 gestures of the DHG dataset, respectively [17].
Chen et al. employed an augmented network based on motion
(MFA-Net) for recognizing hand gestures, and they achieved
85.75% and 81.10% for the DHG dataset and 91.31% and
86.55% accuracy for the 14 and 28 gestures of the SHREC’17
dataset respectively [26]. They extracted features using a
variations auto-encoder from finger and global motion and
then fed them into 3 RNNs. Ma et al. proposed a modi-
fied memory-augmented neural al network, namely gesture
recognition using an enhanced network (GREN) and LSTM
architecture, to recognize hand gestures as a short learning
algorithm that aims to improve the system’s efficiency [23].
They achieved 82.29% and 82.03% for the DHGD dataset
and 79.17% for the MSRA dataset. Handwriting-inspired
features (Hif3d) are proposed by Boulahia et al. for a 3D
skeleton-based gesture classification and achieved 90.48%
for 14 gestures and 80.48% accuracy for the 28 gestures of
the DHG dataset [28]. Recently, researchers have focused
on utilizing self-attention mechanisms to increase the effi-
ciency and performance accuracy of the vision-based hand
gesture recognition task by reducing the long-range distance
[41], [42]. Vaswani et al. first applied a self-attention network
to establish a semantic relationship among words [21].

Query, Key andValues, whichmultiply the Querywith Key
in the first stage, divide by the key’s dimension and finally
apply the SoftMax function to produce the weight vector
[22], [30]. After that, it is also employed for detection,
semantic segmentation, and relational modelling research
work [43], [44], [45]. Currently day, many researchers
combined spatial-temporal attention with various architec-
tures like CNN [39], [46], [47], [48], [49], RNN and soft-
attention instead of hidden RNN [50], and memory attention
networks (MANS) [31]. Song et al. applied a spatial-temporal
attention mechanism through RNN and LSTM, where
they used individual joints as the main information [51].
Hou et al. employed spatial-temporal attention by combining
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with residual connection and temporal convolutional neural
network (STA-Res-TCN) to recognize skeleton-based human
gestures [27]. They extracted features from the different
levels of attentionmechanism and applied CNN for individual
time steps and finally achieved 89.20% and 85.00% for
14 and 28 gestures of the DHG dataset, respectively. They
also evaluated the model SHREC17 dataset and achieved
93.60% and 90.70% accuracy for 14 and 28 gestures
sequentially. Recently, a graph convolutional neural net-
work (GCNN) was used by many researchers for gesture
recognition [8], [9], [29], [32]. Also, the existing system
produced a good performance in some cases but still faced
some generalisation problems and sometimes difficulties in
achieving high performance for more datasets. To overcome
the challenges, we employed here a Multi-Branch Attention
Based Graph and General Deep Learning model to recognize
hand gestures. We first employed a deep neural network
and then employed a spatial-temporal and temporal-spatial
branch to produce node and edge features for spatial and
temporal domains. To increase the system’s generalization,
we extracted general deep learning features and concatenated
the three extracted features to produce the final feature vector.
To reduce the computational cost, we used a spatial-temporal
mask and achieved 94.12% accuracy for the MSRA dataset,
then 92.00% and 88.78% accuracy for the DHG dataset.
In the same way, they achieved 97.01% and 92.78% accuracy
for the 14 and 28 gestures sequentially for the SHREC’17
dataset. Our study is more efficient in general, as it does not
require hand-crafted transformation rules, and it produced
high performance compared to the existing method by a
significant margin.

III. DATASET DESCRIPTION
We studied nine open sources of skeleton-based datasets
to evaluate the proposed model, namely: MSRA [52],
DHG [13], SHREC17 [14], Florence 3-D action [53],
UTKinetic [54], UCF-Kinetic [55], NTU [56], NYU [57],
ICVL [58], NVGesture [59] which are considered as the
benchmark dataset. Among them, Florence 3-D action,
UTKinetic, UCF-Kinetic, and NTU datasets are human
action datasets. NYU datasets are collected only for binary
data, and NVGesture and ICVL contain only RGB and Depth
information. Since our objective of the proposed model is to
recognize skeleton-based hand gestures, we selected the most
recently used skeleton-based hand gesture datasets namely:
MSRA, DHG and SHREC17, which have almost similar
characteristics in terms of the hand skeleton key points and
the number of samples. The details of the uses skeleton
dataset are given below [5].

3D Skelton data sequence can be defined as a vector by
following Equation (1).

S = (P1,P2,P3, . . . ,Pn)T (1)

Here, S represent the skeleton data sequence, Pj represents
a multivariate time sequence, T represent the transpose
of a matrix and each component of the sequence we

FIGURE 1. Twenty-one joints of MSRA dataset with right-hand skeleton.

can be written as Pj =
(
Pj (t)

)
t∈N which contained

three univariate sequence components like the following
Equation (2).

Pj =

(
X (j),Y (j),Z (j)

)
(2)

Here, x, y, and z coordinates are represented by X, Y, and
Z for j-th joint, respectively. In addition, Pj(t) represents the
position of the j-the skeletal joint. Every joint contains a
precise or distinct articulation of the hand of the physical
world. From each t time frame, 21 joints for the MSRA
dataset and 22 joints for the DHG and SHREC’17 dataset are
collected in 3D space by Intel Creative Interactive Camera
with their position Pi = (Xi,Yi,Zi) ∈ R3, ∀i ∈ [1;N ], where
N=21 and 22.

A. MSRA DATASET
One of the hand joint skeleton-based gesture datasets
is the MSRA, which is the most challenging publicly
available sequence data [52]. This dataset was recorded from
9 participants based on 17 right-hand gestures using Intel
Creative Interactive Camera. Each gesture is manually chosen
by following the American sign language gesture focusing
on the figure articulation’s span as much as possible. The
dataset contains 490 to 500 frames for each gesture, and
for 17 gestures, it is composed of 76500 frames. There are
21 joints as 3D world space or skeleton information in each
frame and also collected 2d depth images as well. Among
the 21 joints, each finger consists of four joints and one in
the palm for the MSRA dataset. The name of the 21 joints
is shown in Figure 1. This dataset is considered challenging
because of the viewpoint variation.
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FIGURE 2. Twenty-two joints for the DHG and SHREC’17 dataset from the
right-hand skeleton.

B. DHG DATASET
DHG is a publicly available dynamic and one of the
challenging datasets for hand gestures, which contains a
sequence of 14 right-hand gestures with various finger
configurations [13]. For each gesture, the dataset was
collected using Intel Real sense SDK and five times from
20 participants in two ways of finger configuration. By fol-
lowing the procedure, they collected a total of 2800 video
sequences, and the length of each video contains 20 to
70 frames. Each frame is considered a 3D world space and
a full hand skeleton formed with 22 skeleton joints. Figure 2
shows the name and position of the 22-hand skeleton. Some
gestures consist of hand movements called coarse gestures,
and some other gestures are composed of the shape of a
hand, called fine gestures. Among the 14 gestures, nine coarse
and five fine-grained gestures are reported. Also, the DHG
dataset contains depth image skeleton information, but in our
experiment, we used only the skeleton information for gesture
recognition. Table 1 shows the name and types of the gestures.

C. SHREC’17 DATASET
Another challenging skeleton-based hand gesture dataset
name is the SHREC’17 dataset [14]. This dataset is the
same as the DHG dataset, and the Intel Reals Sense SDK
was also used and collected from 27 participants. Data
were collected 1 to 10 times from each participant in a
2-finger configuration, with a total of 2800 video sequences.
Depending on the number of fingers, labels from this dataset
are categorized as 14 labels or 28 labels. In addition, among
the gestures, some gesture consists of only one finger, and

TABLE 1. Name of the 14 gestures for the DHG and SHREC’17 dataset.

some gesture is composed of a whole hand. For each gesture,
a 2D and 3D hand representation was also collected with the
depth image for each scene and each time step. Although
this dataset contains 2D depth images and 3D hand skeleton
information, we used only 3D hand skeleton information in
this study. The 22 hands skeleton points name of this dataset
is shown in Figure 2 and the name shown in Table 1.

IV. PROPOSED METHODOLOGY
The main goal of the demonstrated MSRA, DHG and
SHREC’17 dataset was (1) full hand skeleton and depth
information-based dynamic hand gesture recognition, (2)
evaluating the efficiency of the hand gesture recognizer
based on the number of the finger in the gesture [29].
However, the main objective of our study is not the same
as theirs because our study is to achieve high performance
in hand gesture recognition with minimum time and cost
using only 3D hand skeleton information comparing the still
image and video-related hand gesture recognizer. Another
objective of our study is to extract all possible features,
including a small deep neural network as a skip connection.
The purpose of the NN2 is to resolve the missing value
problem and improve the performance and efficiency of
the model by combining general features with others. Our
proposed study is demonstrated in Figure 3(a). We designed
a Multi-Branch Attention Based Graph and General Deep
Learning Model to recognize dynamic skeleton-based hand
gestures. We used two graph-based neural network channels
in our multi-branch architectures and one general neural
network channel. In graph-based neural network channels,
one channel first uses the spatial attention module and
then the temporal attention module. On the other hand, the
second channel of the graph-based neural network section
first used the temporal attention module and then the spatial
attention module. The graph-based network branches can
be defined with the spatial-temporal and temporal-spatial
branches. All three branches took input from the output
of an NN1, shown in Figure 3(b). Firstly, NN1 takes the
skeleton data points as input for each node and projects the
input hand joints 3D coordinate into an initial feature node
F1 that is 128 dimensions. All three branches took F1 as
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input, where the first and second branches embedded the
output of NN1 with the corresponding spatial and temporal
position to track the sequence correctly. The first branch
produces the spatial features with 256 dimensions as a node
feature and is projected into a 128-dimension using the neural
network NN1, then embedded with temporal position and
fed into the temporal attention model, which produces the
spatial-temporal feature with 256 dimensions. After that,
we projected the 256-dimensional node feature into 128 using
NN1 and denoted by FST . Figure 4(a) shows the spatial-
temporal FST feature extraction mechanism. In the second
branch, we follow the reverse sequence of the first branch,
where we first fed the initial feature F1 into the temporal
attention model and then fed the temporal feature into the
spatial attention model and produced the temporal-spatial
feature vector after projecting in the NN1 which is denoted
by FTS .

Figure 4(b) shows the temporal-spatial FTS feature
extraction mechanism. The 3rd branch also took the F1
as an input, and after applying the general deep neural
network NN2, which is shown in Figure 3(c), it produced a
general feature FG. After that, we concatenated the spatial-
temporal, temporal-spatial and general features according to
Equation (3) and produced the final feature vector of the
proposed architecture FFinal . Lastly, we fed the average pool
feature vector of the concatenated node features into the fully
connected layer for classification.

FFinal = concate[FST ,FTS ,FR] (3)

A. GRAPH-BASED DEEP NEURAL NETWORK BRANCH
We considered two among the three branches as the graph-
based deep neural network branch because we used the
attention-based mechanism for computing the representation
of every joint node of the hand skeleton as a graph node
by following its neighbours. The self-attention approach
helps us learn an adaptive and dynamic local summary of
the neighbour node to improve the prediction, then change
to multi-head attention by repeating itself. Extracting a
spatial-temporal [29] and temporal-spatial domain feature
is the primary purpose of these two branches to build
a long sequence for learning the most important part of
the hand skeleton. To modify the unified graph, we need
to extract spatial and temporal domain features which are
dynamically optimized by the different actions. Both graph-
based branches took input from the output of NN1 and
produced the spatial-temporal and temporal-spatial features
after encoding with the spatial and temporal attention model.
In both branches, we employed position embedding and
masking operations for each attention at spatial and temporal
domains to improve performance accuracy and efficiency.

1) SKELETON-BASED GRAPH INITIALIZATION
The structure of the hand skeleton data naturally looks like
a graph when we consider it a graph. A hand gesture video

sequence containing T frames to represent the hand skeleton
and the total N number of 3D hand skeleton joints can
be recorded from each of the frames. We assumed a fully
connected graph is constructed from the sequence of hand
skeleton joints of a frame which is considered asG = (V ,E).
Let the set of the node denoted by the V = {v(t,i)|t =

1, . . . ,T , i = 1, . . . ,N } of the graph and i-th hand joints of
the time steps t is contained by the node v(t,i). The feature
of the node v(t,i) is contained by the f(t,i) and feature of all
nodes are written by F = {f(t,i)|t = 1, . . . ,T , i = 1, . . . ,N }.
The main concept of the feature extraction procedure from
the 3D coordinate is that each node connects with other nodes
and itself, where we considered three kinds of edges: spatial,
temporal, and self-connected edge [27]. We explained the
mathematical concept for a set of edges E as follows:

• The connection of two different nodes at the same time
step is known as a spatial edge which is defined by
v(t, i) → v(t, j)(i ̸= j).

• The connection of two different nodes at different
time steps, known as the temporal edge, is defined by
v(t, i) → v(k, j)(t ̸= k).

• The same node is connected with itself, known as a
self-connected edge which is defined by v(t, i) →

v(t, i)(t, i).
Here, the frame sequence is represented by t and k; the joint
skeleton sequence is represented by i and j, respectively.

2) POSITION EMBEDDING
The recurrent network like GRUs and LSTM sequentially
process the input, whereas our architecture is one kind
of transformer that will not process the skeleton joint
sequentially. We used positional embedding here to maintain
the sequence of the joint information since there is no built-
in notion of the sequence in the transfer. Each skeleton joint
of the hand gesture is composed of a tensor for feeding the
deep neural networks. For each node, there are no pre-defined
structures or orders for showing the node’s identity, and it’s
impossible to identify the corresponding node’s hand gesture
name. We need to provide unique markers or identifiers for
every node to identify the gesture name of the corresponding
node. We propose a spatial, temporal position encoding
technique to generate the gesture information according to
joint information. We use the sine and cosine functions by
following [30], [31], [63], and [64] with various frequencies
to encode the position number for each node as the encoding
functions:

PE (p, 2i) = sin
(
p/10002i/Cin

)
PE (p, 2i+ 1) = cos

(
p/10002i/Cin

)
(4)

Here, PE (p, 2i) represents the sin function position encoding
for the even index, PE (p, 2i + 1) represent the cos function
position encoding for the odd index, the position encoding
vector dimension is represented by i, and p denotes the
position of each element. According to [63] and [64], the
input hand skeleton contains space and time information,
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FIGURE 3. Proposed working flow architecture.

FIGURE 4. Spatial-Temporal and Temporal-Spatial feature extraction working procedure.

and one of the important strategies of the position embedded
important strategies is to unify the spatial and temporal infor-
mation and encode them sequentially. The spatial position
embedding comprises the N vectors, where each individual
vector consists of a hand joint. We applied spatial position
encoding by joining all joints in a single frame by encoding
sequentially. On the other hand, temporal position embedding
is composed of individual vectors, and each vector represents
the corresponding node’s hand skeleton graph. We encoded
them by encoding the same joints in different frames. Lastly,
we added the position information with the output of the NN1
network, which is considered an initial feature of a specific
node and fed into the proposed architecture after being
embedded with the associated position vector. We added the
feature vector with the embedding position, which is shown
in the following Equation (5) and (6):

f̄ST (t,i) = AT
(
PTt,i + AS

(
f(t,i) + PS(t,i)

))
(5)

f̄TS(t,i) = AS
(
PSt,i + AT

(
f(t,i) + PT(t,i)

))
(6)

Here, spatial-temporal and temporal-spatial feature is rep-
resented by f̄ST (t,i), and f̄TS(t,i) for a specific node v(t,i),
respectively. In the equation, f(t,i) represents the initial
feature, AT represent the output of temporal attention, AS
represent the output of spatial attention. The i-th hand joint
of the t frame is represented by PS(t,i) and PT(t,i) where the
embedding dimension is the same as the input f(t,i) dimension.

3) SPATIAL-TEMPORAL ATTENTION MODULE
The proposed approach consists of spatial-temporal,
temporal-spatial attention and general deep neural network
branches. Attention-based branches comprise the two-
attention model with spatial embedding and two attention
models with temporal embedding. In the first branch, the
spatial attention block took the input from the output node of
NN1 and updated them with the encoding spatial information
with the spatial attention block; then, it is fed into temporal
attention for updating with the temporal attention block and
produced the spatial-temporal feature. In the same way, the
second branch produced the temporal-spatial feature by the
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reverse procedure of the first branch. In all cases, we applied
a multi-head attention mechanism [21], [29], [30], which is
visualised in Figure 5. Consider f(t,i) is the initial feature of a
node v(t,i) of a hand skeleton, which is used as the input value
of an attention layer. There are multi-heads in the attention
mechanism, and let m-th attention head first apply the fully-
connected layer for mapping query, key and value vectors
with the f(t,i) input features. The mapping procedure was
performed using the following formulas:

Qm(t,i) = Wm
Q f(t,i),K

m
(t,i) = Wm

K f(t,i),V
m
(t,i) = Wm

V f(t,i) (7)

Here query, key and value nodes are represented by Qm(t,i),
Km
(t,i), and V

m
(t,i) respectively. The weight metrics of the fully

connected layer for the m-th spatial or temporal attention
model are denoted by Wm

Q , W
m
K and Wm

V for query, key and
value respectively. The spatial, temporal, and self-connected
edge weights are calculated in two stages. In the first stage,
simultaneously calculates the dot-product between the query
and the key vectors [21], [29], [30]. Using a SoftMax
activation function normalize the output of the dot product in
the second stage. The following formulas in the Equation (8)
is execute the above two steps:

um(t,i)→(t,j) =
⟨Qm(t,i),K

m
(t,i)⟩

√
d

αm(t,i)→(t,j) =

exp
(
um(t,i)→(t,j)

)
∑N

n=1 exp
(
um(t,i)→(t,n)

) (8)

where d represents the dimension of the key vectors
and scaled dot products between v (t, i) and v (t, j) nodes
are represented by um(t,i)→(t,j); inner product operation is
represented by < ·>, and attention operation is represented
by αm(t,i)→(t,j), which is extracted effective information from
v (t, i) to v (t, j) node. In this stage, we can determine whether
the attention will be considered spatial or temporal using
masking operations by assigning a value of edges. We block
the temporal domain information passing by assigning
0 weights for all temporal edges to consider spatial attention
and vice versa. Consequently, a weighted skeleton graph is
produced by the spatial attention block by considering a
hand joint for the same time frame, and the attention head
calculates from the node V(t,i) using Equation (9):

f̄ m(t,i) =

N∑
j=1

(
αm(t,i)→(t,j).V

m
t,j

)
(9)

Here, αm(t,i)→(t,j), and f̄
m
(t,i) represents the attention operation

and the output of the attention. The attention operation
αm(t,i)→(t,j) is worked as either spatial or temporal attention
for the V(t,i) node based on the masking operation. Moreover,
the main idea of spatial attention is to calculate the
relationship between two nodes and information passing
among the nodes within the same time steps. In addition,
according to the learned edge weights, their aggregates
and the received information. Equation (9) repeated itself.

FIGURE 5. Attention map architecture with masking operation.

M times for producing the multi-head attention of spatial
or temporal domain are considered multiple feature vectors.
Finally, all the attention head outputs concatenate according
to Equation (10) and make a single feature vector as f̄(t,i)
which is considered the feature vector for the node V(t,i) and
we considered spatial attention feature AS :

f̄(t,i) = Concat[f̄ 1(t,i), f̄
2
(t,i), f̄

3
(t,i), . . . , f̄

M
t,i ] (10)

Here, spatial or temporal attention features for single-head
and multi-head are represented by f̄ i(t,i) and f̄(t,i) respectively,
and M is the total number of heads in multi-head attention,
which is 8 in our study. In the first branch, the spatial
attention AS model learns the weighted skeleton graphs
and produces node features by encoding multiple types
of structural information. The spatial attention feature is
considered as the input feature for the temporal attention AT
and employed the described multi-head attention procedure
in the temporal domain and produced the spatial-temporal
feature information. In the same way, in the second branch,
the temporal attention AT models learn weighted skeleton
graphs and produce node features by encoding multiple types
of structural information and then feeding it into the spatial
attention AS and employed the described multi-head attention
procedure in the temporal position embedding domain.

4) SPATIAL-TEMPORAL MASK OPERATION
In the proposed architecture, we employed the attention
block’s spatial and temporal masking operation to cut down
the computational cost. In spatial attention, the block mask
operator assigns 1 for the spatial position and 0 for others.
In the same way, the temporal attention block mask operator
contains 1 for temporal value and 0 for other positions.
After performing the mask operation, it reduces the data
block’s size and cuts down the system’s computational cost.
The concept of attention block is first to calculate three
fully connected layers for query, key and values vectors.
Then among the query vector and key vector, it calculated
the dot product and was divided by the dimension of
the key vector. Before the SoftMax activation function,
we employed mask operation for both spatial and temporal
domains to block unnecessary domains’ edges by assigning
0. In Figure 6, we illustrated ourmasking operation [29], [30].
In the previous section, we discussed the attention where we
computed a query matrix Q and K key matrix. Each row of
the Q matrix contained the query vector for each node, and
each row of the K contained the key for each node. Then
we computed the edge weight W matrix using scaled dot
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FIGURE 6. Spatial-temporal masking operation.

products by applying the following Equation (11):

W = Q
⊗

KT (11)

Here,W , T , and
⊗

represent the weight matrix, transpose of
the key matrix and matrix multiplication between the query
and transpose of the key matrix. The edge weights W can
contain a spatial or temporal edge depending on the setting
value in each element of the masking matrix. Here, in the
first stage, we proposed spatial mask operations to set the
value in W that contains the temporal edge to η, where the
value of the η is near zero and keeps other values unchanged.
After applying the spatial mask, we got the output WS that
contained the spatial edge, and WT contained the temporal
edge. The following Equation (12) calculate the spatial edge
and temporal edge:

W̄S = φ (W ⊙MS + (1 −MS) × η) (12)

Here, W̄S , ⊙, φ, and × represent the spatial attention
edges, element-wise dot product, Softmax function and
multiplication operation sequentially. In addition,W ,MS and
η represent weights matrix, spatial mask, and a number close
to negative infinity. The mechanism of the mask operation
with the weight matrix is if the edges are self-connected or
spatial, then it’s 1; otherwise, 0. At this work, we assign
−9 × [10]5 for the η. The SoftMax activation normalizes
the weights based on the spatial edges because the value
of the eta is near zero. Consequently, all temporal edges
are set to 0 at WS . Here, MS represent the spatial mask
containing one if edge represents self-connected or spatial
edge otherwise 0. The edge weight calculation formula in the
spatial domain of Equation (8) is successfully implemented
by Equations (11) and (12). However, masking output WS
a matrix can be applicable for computing the node feature
described in Equation (12) based on the matrix multiplication
with the value vectors matrix. In the same way, we employed
temporal mask operation according to Equation (13) where
we usedMT insteadMS for computing the weight matrixWT
in the temporal domain.

W̄T = φ (W ⊙MT + (1 −MT ) × η) (13)

Here, W̄T , ⊙, φ, and × represent the temporal attention
edges, element-wise dot product, Softmax function and
multiplication operation sequentially. In addition, W , MT ,
and η represent weights matrix, temporal mask, and a
number close to negative infinity. According to the previous
discussion, this matrix contains if it is temporal or self-
connected edge; otherwise, 0. The main goal of mask
operation is to increase the efficiency of the system by
reducing computational complexity.

B. GENERAL DEEP NEURAL NETWORK BRANCH
In our study, the general deep neural network branch is
used as an alternative path to reach the output of NN2
to concatenate with spatial-temporal and temporal-spatial
features. In the NN1, we first employed a fully connected
layer along with the relu function, then normalised with
layer normalization and dropout layer were used to reduce
the overfitting and produced the initial feature F1. In the
NN2 taken output of NN1 as input with three dimensions
where a fully connected layer produced 256 dimensions
after applying layer normalization, then we employed an
average pooling layer to produce an average vector, and
finally, a padding layer was used for maintaining the output
dimension general feature vector from the NN2. This branch
effectively solves the missing data problems and converges
problems for exploding gradient and vanishing gradient,
which face difficulties in the other branch [62], [63].

V. EXPERIMENTS
We evaluated a comprehensive validation of our system with
the three-dynamic skeleton-based hand gesture dataset here.
Our proposed system has three channels; two are graph-
based neural network channels, and one is a general neural
network channel. In graph-based neural network channels,
one channel first used the spatial attention module and then
the temporal attention module. On the other hand, the second
channel of the graph-based neural network section first used
the temporal attention module and then the spatial attention
module. Finally, we fused them, and after average pooling,
we applied a fully connected layer as the final layer for
classification.

A. EXPERIMENTAL CONFIGURATION OF TRAINING AND
TESTING
We implemented our architecture in the PyTorch platform
in the study’s NVIDIA 8GB GPU machines. We randomly
selected eight frames for each video as the input. First,
we subtract every input frame sequence by the first frame
palm position based on the previous work; then, we employed
some data augmentation techniques by following previous
work like shifting, scaling, time interpolation and adding
noise. In the compiling section, we used Adam optimizer as
an optimizer method with the.001 learning rate for training
the model, where batch size was set to 32 and dropout rate
was set to 0.1 and 0.2 [64].

B. EXPERIMENTAL SETUP AND IMPLEMENTATION
PROTOCOLS
We selected the most recently used three skeleton-based
hand gesture famous datasets, MSRA [52], DHG [13], and
SHREC17 [14] dataset, to evaluate the proposed model.
DHG and SHREC contain 2800 video sequences for 14 and
28 gestures, and 3D coordinates of 22 joints are extracted
from each frame. MSRA dataset is collected for 17 gestures
and 500/600 frames for each of the gestures in 76500 frames,
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TABLE 2. Performance accuracy (%) for MSRA dataset for 17 gesture.

where 21 joints are extracted from each frame. There
were 9, 20 and 27 subjects for MSRA, DHG, and SHREC
datasets, respectively. We used all three datasets to evaluate
our model with a cross-validation procedure: leave-one-
out cross-validation (LOOCV). According to the procedure,
we sequentially selected n-1 subject information for training
for each experiment and the remaining subject for testing.
There are nine subjects in the MSRA dataset; keeping one
subject dataset for testing, we trained the model with the
remaining nine subject datasets. There are 20 subjects in
the DHG dataset; we took one subject for testing and the
remaining 19 for training. In the same way, among 27 subject
datasets for the SHREC’17 dataset, we considered 26 subject
datasets for training, and the remaining one was considered
as a testing dataset. The overall accuracy of all gestures is
reported here.

C. EXPERIMENTAL RESULT
The performance accuracy of the proposed model with three
benchmark datasets is demonstrated in this section. SectionV-
C1 demonstrated the performance for theMSRAdataset; then
Section V-C2 showed the performance for the DHG and the
SHREC’17 datasets.

1) EVALUATION WITH MSRA DATASET
In the first stage, we evaluated our proposed system with
the MSRA dataset, where eight subject datasets were used
for the training and the remaining subjects dataset for the
evaluation. Table 2 shows the performance accuracy of the
MSRA dataset, where we reported nine individual subject
performance accuracy and average accuracy among nine
subjects as well. We got maximum accuracy of 100% for
subject 1, subject five and subject eight, and minimum
accuracy got 82.35% accuracy at subject nine and a 94.12%
average accuracy for the nine subjects.

2) EVALUATION WITH DHG DATASET AND SHREC’17
DATASET
Secondly, to evaluate the proposed model with another
dataset, namely DHG-14/28, we trained the model using
19 subject datasets and tested it using the remaining subject
for each experiment. Accordingly, we repeated it 20 times
and used different subjects for both DHG-14 and DHG-28.
In the same way, for the SHREC’17-14/28 dataset, we trained

TABLE 3. Performance accuracy for DHG and SHREC’17 dataset for
14 and 28 gestures.

using 26 subjects’ information and tested it on the remaining
ones. We repeated it 27 times accordingly for testing different
subjects for both 14 and 28 gestures of the SHREC-17 dataset.
Table 3 demonstrated the performance accuracy of the ten
subjects for both DHG and SHREC’17 datasets for 14 and
28 gestures. For the DHG dataset with 14 gestures, we got
a 97.64% maximum accuracy at subject ten and minimum
accuracy of 83.36% at subject 2. In the same way 28 classes
of the DHG dataset, we got maximum accuracy of 95.05%
at subject ten and minimum accuracy of 75.00% at subject 2.
For the SHREC’17 dataset with 14 classes, we got 99.76%
accuracy in subject 9, whereas minimum accuracy of 94.00%
got in subject 4. For 28 classes of the SHREC’7 dataset,
we got amaximum accuracy of 98.56% at subject 10, whereas
the minimum accuracy was 87.81% at subject 4. The average
accuracy for all 20 and 27 subjects is demonstrated in Table 5
and Table 6 for comparison.

D. COMPARISON WITH STATE-OF-THE-ART METHOD
We compared our evaluation performance with the state-
of-art model for all datasets to prove the superiority of
the proposed system. Since we are using graph-based and
general neural network modules to extract features and
fuse them before feeding them to the classification module,
we are getting good accuracy over the existing state-of-the-
art model. In the Section V-D1, V-D2, and V-D3 showed
the comparison for MSRA, DHG and SHREC17 datasets,
respectively.

1) COMPARISON OF MSRA DATASET
Our model produced good performance accuracy for the
MSRA dataset by comparing the stat-of-the-art model shown
in Table 4. The state-of-the-art model proposed by Ma et al.
employed an enhanced neural al network, GREN and LSTM
architecture to recognize hand gestures using a skeleton
dataset based on the augmented neural network with one
short learning memory [23]. The main goal of their idea
is to improve performance accuracy, minimize prediction
error, and remove unnecessary hyperparameter updating.
Their model aims to design a network that can effectively
combine and share the feature between dissimilar classes and
experiment with their model in different ways. Based on the
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TABLE 4. State-of-the-art comparison of the MSRA dataset for
17 gestures.

skeleton information, they employed an LSTM network that
achieved 72.92% accuracy and achieved 79.17% accuracy
with the green network. On the other side, our proposed study
achieved 94.12% accuracy, which is more than 10.00% of the
existing method.

2) COMPARISON OF DHG DATASET
In Table 5, the proposed study is compared with the
various state-of-the-art method for the DHG dataset for both
14 and 28 gestures. It demonstrated that the proposed study
outperforms most state-of-the-art techniques and achieves
comparable performance accuracy with DG-STA [29] and
STA-GCN [8]. Although some existing methods used depth
and skeleton both information, such as joint angles and
HOG2 (JAHOG) [15] approaches, ASJT [37], SoCJ+HoHD
+ HoWR [13], NIUKF-LSTM [25], CNN+RNN [39], our
study only relies on the only skeleton. Our method generated
an average accuracy of 20 subjects at 92.00% for the
14-gesture, which is higher than the advanced algorithm.
In the case of 28 gestures, it achieved 88.78% average
accuracy for 20 subjects, which is also higher than the
existing performance accuracy. JASHOG [15] applied joint
similarity with [31] and achieved 83.35% and 76.53%
accuracy for 14 and 28 gestures sequentially. In [16], they
employed motion features augmented with RNN (MARNN),
achieving 84.68% and 80.32% for 14 and 28 gestures
sequentially. Smedt et al. also show satisfactory performance
accuracy, but they showed a problem for incorrect joint
locations during closed hands [13]. They combined geometric
features with the multi-level representation of the fisher
vector that the temporal pyramid ensures to achieve the
feature for the SVM classifier. LSTM-based technique,
although achieved better performance compared to the hand-
crafted features such as CNN + LSTM [17], NIUKF-
LSTM [25], Green [23], and MFA-Net [26]. Ma et al.
employed LSTM to handle noisy skeleton data by integrating
a spatial type of Kalman filter namely: nested interval
unscented Kalman filter (NIUKF), then achieved 8.92% and
80.44% accuracy for the 14 and 28 gestures of the DHG
dataset. sequentially [25]. Nunez et al. produced accuracy by
combining CNN and LSTM, where they focused on spatial-
temporal feature extraction from the skeleton features and
achieved higher performance than hand-crafted features [17].
For recognizing hand-gesture using the skeleton hand joint
motion feature augmented network (MFA-Net) model is
proposed by Chen et al. and achieved 85.75% and 81.10%
for the DHG dataset for 14 and 28 gestures sequentially [26].
Another technique employed by Ma et al. based on the
GREN and LSTM architecture to recognize hand gestures

TABLE 5. State-of-the-art comparison of the DHG dataset.

achieved 82.29% and 82.03% for the DHGD skeleton
dataset [23]. Res-TCN, STA-Res-TCN [27], STA-GCN [8]
and DG-STA [29] are applied attention-based architecture
for recognizing hand gestures based on skeleton information.
How et al. employed a spatial-temporal attention-based
neural network: STA-Res-TCN, for extracting features from
different levels of attention block for each time step and
achieved 89.20% and 85.00% for 14 and 28 gestures
sequentially for the DHG skeleton hand gesture dataset [27].
Boulahia et al. extracted Hif3d for gesture classification
and achieved 90.48% for 14 gestures and 80.48% for the
28 gestures of the DHG dataset [28]. Chen et al. employed
the DG-STA approach to improve accuracy and reduce the
computational cost for hand gesture recognition and achieved
91.00% and 88.00% accuracy for the DHG dataset [29].
Unlike existing work, our proposed architecture focuses on
multiple branches for producing multiple feature vectors
generated by the parallel architecture, which also preserves
the dynamic hand gesture properties. Moreover, replacing
some branches of the proposed architecture can easily be
compatible with the existing state-of-the-art system like DG-
STA [29].Moreover, our study’smain focus is to fully explore
prior and future work composition. The table’s contents have
demonstrated that our proposed method’s performance is
higher than the existing method in this factor.

3) COMPARISON OF SHREC’17 DATASET
The comparison Table 6 demonstrated that our model outper-
forms most of the state-of-the-art methods for the SHREC’17
dataset for both 14 and 28 gesture cases and comparable
performancewithDG-STA [29] and STA-GCN [8]. As shown
in Table 6, our study achieved 97.01% for 14 and 92.78%
accuracy for the 28 gestures, which is average for 27 subjects
and outperformed all existing methods for both experiment
settings. Specifically, our method improved the accuracy
of 14 gestures by 3.40% and 2.78% for the 28 gestures
once we compared them with the existing best-performance
DG-STA [29] methods and more than 5.40% with more
recent work by STA-GCN [8]. Although some existing
methods used depth and skeleton, both information among
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TABLE 6. State-of-the-art comparison of the SHREC’17 dataset.

them, a histogram-based method based on depth sequence
(HON4D) [31], shape analysis of motion trajectories on
Riemannian manifold (SMTRM) [32] for hand gesture
classification, SoCJ + HoHD + HoWR [14], while our
study only relies on an only skeleton. In the case of the
SHREC17 dataset, MFA-Net produced 91.31% and 86.55%
accuracy for 14 and 28 gestures sequentially [ 23], [27] . Res-
TCN, STA-Res-TCN [27], STA-GCN [8], and DG-STA [29]
are applied attention-based architecture for recognizing hand
gestures based on skeleton information. Among the attention-
based model, STA-Res-TCN achieved 93.60% and 90.70%
accuracy for 14 and 28 gestures [27] whereas DG-STA [29]
approach to improve accuracy and reduce the computational
cost of hand gesture recognition and achieved 94.40% and
90.00% accuracy for sequentially the 14 and 28 gestures.
Our proposed method mainly focuses on parallelly producing
multiple features from multiple branches of the parallel
architecture, which preserves the properties of dynamic hand
gestures. In addition, the proposed study can be compatible
with the existing attention-based method discarding some
branches and modules [27], [28], [29]. Moreover, our study’s
primary focus is to fully explore prior and future work
composition. The table’s contents have demonstrated that our
proposed method’s performance is higher than the existing
method in this factor.

VI. CONCLUSION
We employed an attention-based Multi-Branch Attention
Based Graph and General Deep Learning approach for
recognizing hand gestures based on the study’s 3D hand
skeleton data points. Our method provided a multi-branch
graph-based deep neural network and general deep neural
network model with masking operation for learning spatial
and temporal domain information and produced a potential
feature vector for classification. We employed two branches
of graph-based neural networks where the first branch took
input from the output of the neural network NN1, and after
encoding with spatial and temporal attention, it produced
the spatial-temporal. In the same way, the second branch
produced a temporal-spatial feature by following the reverse
sequence of the first branch, which is concatenated with the
output of the general deep neural network branch and applied
to the average pooling layer. Finally, a fully connected layer
is applied to learn node and edge weight for classification.

Since we are using graph-based and general neural network
modules to extract features and fuse them before feeding them
to the classification module, our proposed model is getting
good accuracy over the existing state-of-the-art model for all
three datasets. In the table, we demonstrated the experimental
result for three datasets and the effectiveness of our proposed
architecture. In the future, we plan to collect 3D hand skeleton
information from ourselves from more gestures to develop a
sign language-based communication system.

ABBREVIATIONS
NN1 Deep Neural Network-1.
NN2 Deep Neural Network-2.
MSRA Microsoft Research Asia.
DHG Dynamic Hand Gesture.
SHREC A name of the Data Collection Contest.
RGB-D Red, Green Blue with Depth.
CNN Convolutional Neural Network.
SVM Support Vector Machine.
HON4D Histogram-based Method Based on

Depth Sequence.
Res-C3D 3D Convolutional Neural Networks with

Residual Architecture.
MFA-Net Motion Feature Augmented Network.
DHGD Dynamic Hand Gesture Depth.
SHREC2017 3D Shape Retrieval Contest 2017.
MANS Memory Attention Networks.
GCNN Graph Convolutional Neural Network.
DG-STA Dynamic Graph-based Spatial Temporal

Attention.
ASJT Analysing Set-of-Joints Trajectories.
NIUKF-LSTM Nested Interval Unscented Kalman Filter

LSTM.
GCN Graph Convolutional Network.
RNN Recurrent Neural Network.
NLP Natural Language Processing.
OAK-D OpenCV AI Kit with Depth.
RNNG Recurrent Neural Network Grammar.
LSTM Long Short-Term Memory.
HOG Histogram of Oriented Gradients.
JAHOG Joint angle HOG.
STA- GCN Spatial Temporal Attention with Graph

Convolutional Network.
SoCJ Shape of Connected Joints.
HoHD Histogram of Hand Directions.
HoWR Histogram of Wrist Rotations.
UKF Unscented Kalman Filter.
GREEN Gesture Recognition using an Enhanced

Network.
Hif3d Handwriting-inspired Features.
STA-Res-TCN Spatial-Temporal Attention by combin-

ing with Residual Connection and Tem-
poral Convolutional Neural Network.

MARNN Motion Features Augmented with RNN.
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SMTRM Shape Analysis of Motion Trajectories
on Riemannian Manifold.

Res-TCN Residual Connection with Temporal
Convolutional Neural Network

REFERENCES
[1] A. S. M. Miah, J. Shin, M. A. M. Hasan, and M. A. Rahim, ‘‘BenSignNet:

Bengali sign language alphabet recognition using concatenated segmenta-
tion and convolutional neural network,’’ Appl. Sci., vol. 12, no. 8, p. 3933,
Apr. 2022.

[2] A. S. M. Miah, J. Shin, M. Al M. Hasan, M. A. Rahim, and
Y. Okuyama, ‘‘Rotation, translation and scale invariant sign word
recognition using deep learning,’’ Comput. Syst. Sci. Eng., vol. 44, no. 3,
pp. 2521–2536, 2023.

[3] M. A. Rahim, A. S. M. Miah, A. Sayeed, and J. Shin, ‘‘Hand
gesture recognition based on optimal segmentation in human-computer
interaction,’’ in Proc. 23rd IEEE Int. Conf. Knowl. Innov. Invention
(ICKII), Aug. 2020, pp. 163–166.

[4] M. A. Khan, M. Mittal, L. M. Goyal, and S. Roy, ‘‘A deep survey
on supervised learning based human detection and activity classification
methods,’’ Multimedia Tools Appl., vol. 80, no. 18, pp. 27867–27923,
Jul. 2021.

[5] G. Devineau, F. Moutarde, W. Xi, and J. Yang, ‘‘Deep learning for hand
gesture recognition on skeletal data,’’ in Proc. 13th IEEE Int. Conf. Autom.
Face Gesture Recognit. (FG), May 2018, pp. 106–113.

[6] S. S. Rautaray and A. Agrawal, ‘‘Vision based hand gesture recognition for
human computer interaction: A survey,’’ Artif. Intell. Rev., vol. 43, no. 1,
pp. 1–54, Jan. 2015.

[7] G. Johansson, ‘‘Visual perception of biological motion and a model for its
analysis,’’ Perception Psychophysi., vol. 14, no. 2, pp. 201–211, 1973.

[8] S. Yan, Y. Xiong, and D. Lin, ‘‘Spatial temporal graph convolutional
networks for skeleton-based action recognition,’’ in Proc. 32nd AAAI Conf.
Artif. Intell., 2018, pp. 7444–7452.

[9] C. Si, Y. Jing, W. Wang, L. Wang, and T. Tan, ‘‘Skeleton-based action
recognition with spatial reasoning and temporal stack learning,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 103–118.

[10] L. Shi, Y. Zhang, J. Cheng, and H. Lu, ‘‘Two-stream adaptive graph
convolutional networks for skeleton-based action recognition,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12026–12035.

[11] M. Oberweger, P. Wohlhart, and V. Lepetit, ‘‘Training a feedback loop
for hand pose estimation,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 3316–3324.

[12] M. Oberweger andV. Lepetit, ‘‘DeepPrior++: Improving fast and accurate
3D hand pose estimation,’’ in Proc. IEEE Int. Conf. Comput. Vis.
Workshops (ICCVW), Oct. 2017, pp. 585–594.

[13] Q.De Smedt, H.Wannous, and J.-P. Vandeborre, ‘‘Skeleton-based dynamic
hand gesture recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2016, pp. 1–9.

[14] Q. D. Smedt, H. Wannous, J.-P. Vandeborre, J. Guerry, B. L. Saux, and
D. Filliat, ‘‘Shrec’17 track: 3d hand gesture recognition using a depth and
skeletal dataset,’’ in Proc. 3DOR-10th Eurographics Workshop 3D Object
Retr., 2017, pp. 1–6.

[15] E. Ohn-Bar and M. M. Trivedi, ‘‘Joint angles similarities and HOG2 for
action recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, Jun. 2013, pp. 465–470.

[16] X. Chen, H. Guo, G. Wang, and L. Zhang, ‘‘Motion feature augmented
recurrent neural network for skeleton-based dynamic hand gesture
recognition,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017,
pp. 2881–2885.

[17] J. C. Nún̄ez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F. Vélez,
‘‘Convolutional neural networks and long short-termmemory for skeleton-
based human activity and hand gesture recognition,’’ Pattern Recognit.,
vol. 76, pp. 80–94, Apr. 2018.

[18] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, ‘‘View
adaptive recurrent neural networks for high performance human action
recognition from skeleton data,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 2117–2126.

[19] Z. Qiu, T. Yao, and T. Mei, ‘‘Learning spatio–temporal representation
with pseudo-3D residual networks,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5533–5541.

[20] Y. Min, Y. Zhang, X. Chai, and X. Chen, ‘‘An efficient PointLSTM
for point clouds based gesture recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5761–5770.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[22] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
‘‘Transformer-XL: Attentive language models beyond a fixed-length
context,’’ 2019, arXiv:1901.02860.

[23] C. Ma, S. Zhang, A. Wang, Y. Qi, and G. Chen, ‘‘Skeleton-based
dynamic hand gesture recognition using an enhanced network with one-
shot learning,’’ Appl. Sci., vol. 10, no. 11, p. 3680, May 2020.

[24] A. Bigalke and M. P. Heinrich, ‘‘Fusing posture and position representa-
tions for point cloud-based hand gesture recognition,’’ in Proc. Int. Conf.
3D Vis. (3DV), Dec. 2021, pp. 617–626.

[25] C. Ma, A. Wang, G. Chen, and C. Xu, ‘‘Hand joints-based gesture
recognition for noisy dataset using nested interval unscented Kalman filter
with LSTM network,’’ Vis. Comput., vol. 34, nos. 6–8, pp. 1053–1063,
Jun. 2018.

[26] X. Chen, G.Wang, H. Guo, C. Zhang, H.Wang, and L. Zhang, ‘‘MFA-Net:
Motion feature augmented network for dynamic hand gesture recognition
from skeletal data,’’ Sensors, vol. 19, no. 2, p. 239, Jan. 2019.

[27] J. Hou, G. Wang, X. Chen, J.-H. Xue, R. Zhu, and H. Yang, ‘‘Spatial–
temporal attention Res-TCN for skeleton-based dynamic hand gesture
recognition,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV) workshops,
Sep. 2018, pp. 1–15.

[28] S. Y. Boulahia, E. Anquetil, F. Multon, and R. Kulpa, ‘‘Dynamic hand
gesture recognition based on 3D pattern assembled trajectories,’’ in Proc.
7th Int. Conf. Image Process. Theory, Tools Appl. (IPTA), Nov. 2017,
pp. 1–6.

[29] Y. Chen, L. Zhao, X. Peng, J. Yuan, and D. N. Metaxas, ‘‘Construct
dynamic graphs for hand gesture recognition via spatial–temporal
attention,’’ 2019, arXiv:1907.08871.

[30] L. Shi, Y. Zhang, J. Cheng, and H. Lu, ‘‘Decoupled spatial–temporal
attention network for skeleton-based action-gesture recognition,’’ in Proc.
Asian Conf. Comput. Vis., Nov. 2020, pp. 1–16.

[31] C. Li, C. Xie, B. Zhang, J. Han, X. Zhen, and J. Chen, ‘‘Memory attention
networks for skeleton-based action recognition,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 33, no. 9, pp. 4800–4814, Sep. 2022.

[32] K. Thakkar and P. J Narayanan, ‘‘Part-based graph convolutional network
for action recognition,’’ 2018, arXiv:1809.04983.

[33] S. Lu, D. Metaxas, D. Samaras, and J. Oliensis, ‘‘Using multiple cues for
hand tracking and model refinement,’’ in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., Jun. 2003, p. 443.

[34] M. E. Hussein, M. Torki, M. A. Gowayyed, and M. El-Saban, ‘‘Human
action recognition using a temporal hierarchy of covariance descriptors
on 3D joint locations,’’ in Proc. 23rd Int. Joint Conf. Artif. Intell., 2013,
pp. 1–7.

[35] R. Vemulapalli, F. Arrate, and R. Chellappa, ‘‘Human action recognition
by representing 3D skeletons as points in a lie group,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 588–595.

[36] J. Wang, Z. Liu, Y.Wu, and J. Yuan, ‘‘Mining actionlet ensemble for action
recognition with depth cameras,’’ inProc. IEEEConf. Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 1290–1297.

[37] Q. D. Smedt, H. Wannous, and J.-P. Vandeborre, ‘‘3D hand gesture
recognition by analysing set-of-joints trajectories,’’ in 2nd Int. Workshop
UHA3DS, Springer, 2016, pp. 86–97.

[38] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, ‘‘Independently recurrent
neural network (IndRNN): Building a longer and deeper RNN,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5457–5466.

[39] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, ‘‘An attention
enhanced graph convolutional LSTM network for skeleton-based action
recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1227–1236.

[40] K. Lai and S. N. Yanushkevich, ‘‘CNN+RNN depth and skeleton based
dynamic hand gesture recognition,’’ in Proc. 24th Int. Conf. Pattern
Recognit. (ICPR), Aug. 2018, pp. 3451–3456.

[41] Y. Tian, X. Peng, L. Zhao, S. Zhang, and D. N. Metaxas, ‘‘CR-GAN:
Learning complete representations for multi-view generation,’’ 2018,
arXiv:1806.11191.

VOLUME 11, 2023 4715



A. S. M. Miah et al.: Dynamic Hand Gesture Recognition Using Multi-Branch Attention Based Graph

[42] J. Liu, A. Shahroudy, D. Xu, and G. Wang, ‘‘Spatio–temporal LSTM with
trust gates for 3D human action recognition,’’ in Proc. Eur. Conf. Comput.
Vis. Amsterdam, The Netherlands: Springer, 2016, pp. 816–833.

[43] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. Lillicrap, ‘‘A simple neural network module for
relational reasoning,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30,
2017, pp. 1–10.

[44] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, ‘‘Relation networks for object
detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 3588–3597.

[45] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, ‘‘Dual attention
network for scene segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 3146–3154.

[46] Z. Yang, Y. Li, J. Yang, and J. Luo, ‘‘Action recognition with spatio–
temporal visual attention on skeleton image sequences,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 29, no. 8, pp. 2405–2415, Aug. 2018.

[47] C. Li, Q. Zhong, D. Xie, and S. Pu, ‘‘Skeleton-based action recognition
with convolutional neural networks,’’ in Proc. IEEE Int. Conf. Multimedia
Expo Workshops (ICMEW), Jul. 2017, pp. 597–600.

[48] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, ‘‘A new
representation of skeleton sequences for 3D action recognition,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3288–3297.

[49] C. Li, Q. Zhong, D. Xie, and S. Pu, ‘‘Co-occurrence feature learning
from skeleton data for action recognition and detection with hierarchical
aggregation,’’ 2018, arXiv:1804.06055.

[50] F. Baradel, C. Wolf, and J. Mille, ‘‘Human action recognition: Pose-based
attention draws focus to hands,’’ in Proc. IEEE Int. Conf. Comput. Vis.
Workshops (ICCVW), Oct. 2017, pp. 604–613.

[51] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, ‘‘An end-to-end spatio-
temporal attention model for human action recognition from skeleton
data,’’ in Proc. AAAI Conf. Artif. Intell., vol. 31, 2017, pp. 1–8.

[52] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun, ‘‘Cascaded hand pose
regression,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 824–832.

[53] L. Seidenari, V. Varano, S. Berretti, A. Del Bimbo, and P. Pala,
‘‘Recognizing actions from depth cameras as weakly aligned multi-
part bag-of-poses,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, Jun. 2013, pp. 479–485.

[54] L. Xia, C.-C. Chen, and J. K. Aggarwal, ‘‘View invariant human action
recognition using histograms of 3D joints,’’ in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2012, pp. 20–27.

[55] C. Ellis, S. Z. Masood, M. F. Tappen, J. J. LaViola, and R. Sukthankar,
‘‘Exploring the trade-off between accuracy and observational latency in
action recognition,’’ Int. J. Comput. Vis., vol. 101, no. 3, pp. 420–436,
2013.

[56] A. Shahroudy, J. Liu, T.-T. Ng, and G.Wang, ‘‘NTURGB+D: A large scale
dataset for 3D human activity analysis,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1010–1019.

[57] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, ‘‘Real-time continuous
pose recovery of human hands using convolutional networks,’’ ACMTrans.
Graph., vol. 33, no. 5, pp. 1–10, Sep. 2014.

[58] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim, ‘‘Latent regression forest:
Structured estimation of 3D articulated hand posture,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 3786–3793.

[59] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz, ‘‘Online
detection and classification of dynamic hand gestures with recurrent 3D
convolutional neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 4207–4215.

[60] X. Chen, G. Wang, H. Guo, and C. Zhang, ‘‘Pose guided structured region
ensemble network for cascaded hand pose estimation,’’ Neurocomputing,
vol. 395, pp. 138–149, Jun. 2020.

[61] A. S. M. Miah, M. A. M. Hasan, J. Shin, Y. Okuyama, and Y. Tomioka,
‘‘Multistage spatial attention-based neural network for hand gesture
recognition,’’ Computers, vol. 12, no. 1, p. 13, 2023.

[62] H. Mahmud, M. M. Morshed, and M. Kamrul Hasan, ‘‘A deep learning-
basedmultimodal depth-aware dynamic hand gesture recognition system,’’
2021, arXiv:2107.02543.

[63] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
‘‘Graph attention networks,’’ 2017, arXiv:1710.10903.

[64] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

ABU SALEH MUSA MIAH received the B.Sc.
and M.Sc. degrees in computer science and engi-
neering from the Department of Computer Science
and Engineering, University of Rajshahi, Rajshahi,
Bangladesh, in 2014 and 2015, respectively. He is
currently pursuing the Ph.D. degree with the
School of Computer Science and Engineering,
The University of Aizu, Japan, under a schol-
arship from the Japanese Government (MEXT).
He became a Lecturer and an Assistant Professor

at the Department of Computer Science and Engineering, Bangladesh Army
University of Science and Technology (BAUST), Saidpur, Bangladesh, in
2018 and 2021, respectively. He has authored and coauthored more than
20 publications published in widely cited journals and conferences. His
research interests include CS, ML, DL, HCI, BCI, and neurological disorder
detection.

MD. AL MEHEDI HASAN received the B.Sc.,
M.Sc., and Ph.D. degrees in computer science and
engineering from the Department of Computer
Science and Engineering, University of Rajshahi,
Rajshahi, Bangladesh, in 2005, 2007, and 2017,
respectively. He became a Lecturer, an Assistant
Professor, an Associate Professor, and a Professor
at the Department of Computer Science and
Engineering, Rajshahi University of Engineering
and Technology (RUET), Rajshahi, in 2007, 2010,

2018, and 2019, respectively. He has coauthored more than 100 publications
published in widely cited journals and conferences. His research interests
include bioinformatics, artificial intelligence, pattern recognition, medical
image, signal processing, machine learning, computer vision, data mining,
big data analysis, probabilistic and statistical inference, operating systems,
computer networks, and security.

JUNGPIL SHIN (Senior Member, IEEE) received
the B.Sc. degree in computer science and statis-
tics and the M.Sc. degree in computer science
from Pusan National University, South Korea, in
1990 and 1994, respectively, and the Ph.D. degree
in computer science and communication engi-
neering from Kyushu University, Japan, in 1999,
under a scholarship from the JapaneseGovernment
(MEXT). He was an Associate Professor, a Senior
Associate Professor, and a Full Professor at the

School of Computer Science and Engineering, The University of Aizu,
Japan, in 1999, 2004, and 2019, respectively. He has coauthored more
than 300 published papers for widely cited journals and conferences. His
research interests include pattern recognition, image processing, computer
vision, machine learning, human–computer interaction, non-touch inter-
faces, human gesture recognition, automatic control, Parkinson’s disease
diagnosis, ADHD diagnosis, user authentication, machine intelligence,
as well as handwriting analysis, recognition, and synthesis. He is a member
of ACM, IEICE, IPSJ, KISS, and KIPS. He has served as the program chair
and a program committee member for numerous international conferences.
He serves as an Editor for IEEE journals and SENSORS (MDPI) and a reviewer
for several major IEEE and SCI journals.

4716 VOLUME 11, 2023


