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ABSTRACT How can we bridge efficiently distribution difference between the source and target domains
in an isomorphic latent feature space by using metric learning. This study introduces metric learning on
manifolds which combine a cascaded learning network and a metric learning model to form a Unified
Domain Adaptation Model. Our approach is based on formulating a transfer from the source to the target
as a geometric mean metric learning problem on manifolds. The solution of symmetric positive definite
covariance matrices not only reduces the statistical differences between the source and target domains, but
also the underlying geometry of the source and target domains using diffusions on the underlying source and
target manifolds. By retaining both the nonlinear structure of the Riemannian geometry of the open cone of
symmetric positive definite matrices and cascaded learning networks, we improve the state-of-the-art results
on the Amazon (A), Caltech256 (C), DSLR (D), Webcam (W) and VisDA benchmark datasets by knowledge
transfer, while achieving comparable performances to competing methods on domain adaptation modeling.

INDEX TERMS Cascaded learning networks, transfer learning, pca filters, metric learning, domain
adaptation, symmetric positive definite covariance matrices, geodesic distance.

I. INTRODUCTION
When we use machine learning to solve real world problems,
for example, in pattern recognition and image retrieval tasks,
a significant challenge is that these algorithms require mas-
sive amounts of labeled training data, which may not always
be available. Therefore, designing a good machine learning
method that can transfer knowledge across domains plays an
important role. Although many hand-crafted feature-based
machine learning methods have been proposed in the past
decades, there are many shortcomings of these algorithms:
(1) Most of them use linear metrics to transform samples into
a linear feature space, so that the nonlinear relationship of
samples can be neglected. (2) Most of them assume that the
distribution of the test and training samples are the same. This
assumption does not hold in many computer vision applica-
tions because samples are captured across different scenarios.
Hence, learning deep metrics directly from training data can
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achieve better performance than hand-crafted feature-based
metric learning [1], [2], [3], [4], [5]. However, learning a deep
network involves backward propagation, which incurs a high
computational cost. In addition, training a deep network that
is robust for image classification depends on the expertise in
parameter tuning and tricks.

Fortunately, a combination of cascaded network andmetric
learning can be an alternative solution. The benefit of cascad-
ing is that it shrink the background while keeping the objects
in the scene, which accelerates the training procedure of fea-
ture learning. In addition, cascading enables the integration
of multiple sources of variation between the source and the
target in a unified framework with a theoretically optimal
solution. Metric learning can optimize deep neural networks
for learning a good feature representation, which maximizes
inter-class variations and minimizes intra-class variations,
while also reducing the distribution divergence between the
source and target.

Inspired by cascaded networks and metric learning,
to solve the above-mentioned problems, we hope to design
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a simple deep learning network that can train and adapt to
different data and tasks. Meanwhile, such a network could
serve as a good baseline for people to justify the use of
sophisticated architectures for their deep neural networks.
In addition, we use a nonlinear distance to transform samples
into a nonlinear feature space; thus, we can obtain the non-
linear relationship of the samples. Meanwhile, we introduced
a mapping to bridge the distribution discrepancy between the
source and target domain data.

To achieve these goals, on the one hand, we use basic
and easy operations to emulate the processing layers in a
convolutional neural network(CNN), PCA filters are used as
data-adapting convolution filter banks, ReLu operations serve
as activation layers, binary quantization serve as the nonlinear
layers, and nonlinear operations are only used in the last
output layer; we use the block-wise histograms of the binary
codes to replace the pooling layers of deep neural networks.
On the other hand, we model covariance matrices of samples
as a nonlinear feature space of symmetric positive definite
matrices, so that we could obtain the nonlinear relationship
of samples.We used themaximummean discrepancy (MMD)
metric to align the source and target data.

In this study, we propose a novel deep domain adaptation
algorithm using metric learning on a manifold. Unlike other
deep-domain adaptation methods, we use a simple yet novel
method; we do not exploit back propagation to update the
model parameters. Specifically, we make the following main
contributions: (1) We use cascaded principal components
analysis filters to build a deep learning network, which not
only extracts robust hierarchical visual features of an image,
but also avoids a large amount of computational complexity.
(2) We model a space of covariance matrices as a curved
Riemannian manifold of symmetric positive definite (SPD)
matrices for adapting deep representations, which reduces
the distance between domains by projecting data onto a
learned transfer subspace and largely enhances adaptation
effectiveness compared to most metric learning methods. (3)
We demonstrate both the uniqueness and global optimality
of our method because we reduce all domain adaptation
computations to nested equations, which involves solving the
well-known Riccati equation.

The architecture of the proposed algorithm is illustrated in
Figure 1. There are two components in this architecture: a
cascaded learning network and cascaded metric learning on a
Riemannian manifold. The justification and advantages that
we introduce such a strategy are as follows: (1) In a cascaded
learning network, although we only use forward propagation
to update the parameters, we minimize the reconstruction
error of PCA to obtain a family of orthogonal filters as
convolution filter banks, which are much better than the filter
parameters randomly initialized in CNN. In addition, the goal
of using backward propagation in a CNN is to minimize
classification error. (2) Stochastic gradient descent (SGD)
was used for filter learning in the CNN, and the training
time of deep network was much longer than that of the
proposed method. For example, training a cascaded learning

FIGURE 1. The architecture of the proposed cascaded principal
component analysis network and metric learning. The proposed
framework for deep domain adaptation. Transferable feature will finish
transiting from general to specific along the network. (1) the features
extracted from cascaded principal component analysis network are
general. (2) the features extracted from metric learning are going to fit
specific tasks by Riemannian manifold of symmetric positive definite
(SPD) matrices and MMD.

network on a training set (i.e., approximately 100000 images
of 300 × 300 pixel dimension) takes approximately an hour,
but the CNN take about 15 hours. (3) In cascaded metric
learning on the Riemannian manifold, by introducing a sec-
ondary criterion for aligning the source and target domains,
the proposed approach exploits both geometric and statistical
information of the source and target domain data, and mul-
tiple sources of alignment are integrated by solving nested
sets of Riccati equations. (4)We reduce all domain adaptation
computations to nested equations that involve solve the Ric-
cati equation. Hence, our method is both unique and globally
optimal. (5) The experimental results confirm the remarkable
benefits of the proposed method. (6) Our method is attractive
because of its simplicity and tremendous speedup over widely
used metric learning methods.

II. RELATED WORK
Domain adaptation involves learning a discriminative model
in the presence of a data shift between the source and the
target. Domain adaptation aims to build learning machines
that generalize across domains with different probability dis-
tributions. The main challenge of domain adaptation is the
reduction of discrepancies in the data distribution across
domains. Most existing domain adaptation methods learn
a shallow representation model by which domain discrep-
ancy is minimised, which cannot disentangle the explanatory
factors of the variations. Deep neural networks can learn
nonlinear relationships of samples that explain factors of vari-
ations behind data and extract transferable factors underlying
different domains [6], [7]. Hence, deep neural networks have
been widely studied in the computer vision [8], [9], [10], nat-
ural language processing communities [11]. In recent years,
many deep neural network models have been presented,
and representative models include IBN-Net, ResNet, SeNet,
DenseNet [12], [13], [14], [15], and generative adversarial
networks [16], [17], [18]. However, most of them aim to learn
hierarchical feature representations via deep learning rather
than domain adaptation.
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More recent studies have shown that deep learning has
been exploited in metric learning. Schroff proposed a triplet
measure of face similarity to learn mapping from facial
images to a compact Euclidean space [19]. Li introduced a
progressive and nonlinear deep metric learning approach to
obtain a better metric space from a learnt metric space [20].
Although these approaches have achieved satisfactory perfor-
mance, they assume that the training and the test samples are
captured in the same scenarios, which is not always satisfied
in real world.Meanwhile, to train networkmodel, deep neural
networks is also to need a large amount of labeled data, when
data samples are small, deep networks are usually overfitted.

To overcome the shortcomings of deep metric learning,
several different transfer learning methods have been pro-
posed, including deep adaptation network [21], [22], [23],
domain adversarial network [24], [25], [26]. For example,
Ganin augmented a deep architecture with few standard lay-
ers and a gradient reversal layer to achieve domain adaptation
behaviour [22]. Sun extended the CORAL method [27] to
learn nonlinear transformations in deep neural network [23].
Tzeng first proposed learning a discriminative representa-
tion in the source domain and then a separate encoding that
maps the target data to the same space using an asymmetric
mapping through a domain adversarial loss [25]. Hoffman
proposed a cycle-consistent adversarial domain adaptation
model to adapt representations at both pixel-level and feature-
level [26]. Although these approaches have achieved reason-
ably good results, most of them consider only minimising
the distribution difference between the source and target
domains, they do not consider how to minimise intra-class
distance and maximise inter-class distance. Furthermore,
if the distribution difference is large and transfer functions can
not be explicitly obtained, the above methods cannot effec-
tively transfer knowledge. While deep transfer metric learn-
ing techniques have been proposed to overcome the above
issues [3], [28], [29], these methods use backward propa-
gation to update the parameters of the deep network, which
leads to tremendous computational complexity. For example,
French et al. developed a mean teacher model for domain
adaptation and designed confidence thresholding and class
balancing to achieve state-of-the-art results for variety of
benchmarks [30]. Pan et al. proposed a transferrable prototyp-
ical network for unsupervised domain adaptation, in which
the prototypes for each class in the source and target domains
were close in the embedding space, and the score distribu-
tions predicted by prototypes separately on source and target
data were similar [31]. To extend semi-supervised learning
techniques for unsupervised domain adaptation, Zhang et al.
proposed an algorithm for label propagation with augmented
anchors (A2LP), which improves label propagation by gen-
erating of unlabeled virtual instances with high-confidence
label predictions [32]. To address the open-set domain adap-
tation problem, Pan et al. proposed a self-ensembling with
category-agnostic cluster architecture, which steered domain
adaptation with the additional guidance of category-agnostic
clusters that are specific to the target domain [33]. To reduce

the computation cost, You et al. proposed a logarithm of the
maximum evidence method to assess pretrained models for
transfer learning, which is fast, accurate, and general [34].
Shu et al. proposed a zoo-tuningmethod to learn to adaptively
transfer the parameters of pre-trained models to the target
task, which promotes knowledge transfer by simultaneously
adapting multiple source models to downstream tasks [35].

However, under a distributional shift in UDA, pseudo-
labels can be unreliable because of their large discrepancy
from the ground labels. To improve the quality of target
pseudo-labels, Liu et al. developed a cycle-self-training algo-
rithm for UDA, which forced pseudo-labels to generalize
across domains [36]. Chen et al. proposed closing the domain
gap method through orthogonal bases of the representation
spaces, which used a new geometrical distance over the
representation subspace and learned deep transferable rep-
resentations by minimizing it [37]. Wang et al. presented a
self-tuning method to enable data-efficient deep learning by
unifying the exploration of labeled and unlabeled data and
the transfer of a pre-trained model, as well as a pseudo-group
contrast mechanism to reduce the reliance on pseudo-labels,
which boosted the tolerance to false labels [38]. Long et al.
designed a distance-based sampling criterion to assign label
for each unlabelled sample by its nearest labelled sample,
and proposed a self-training semi-supervised deep learning
method to train a fault diagnosis model, which exploited
a gradually mechanism to increase the number of selected
pseudo-labelled candidates [39]. Later, Long et al. used a
2-D edge embedding and amultiheadmasked attentionmech-
anism to realize a self-adaptation graph structure, which
adopted GNN as a meta-learner to make the model exploit
well the relationships among the samples in data sets [40].

In this paper, borrowing the idea of deep learning, we pro-
pose a novel deep domain adaptation method by learn-
ing hierarchical feature representation of domain data and
the geodesic distance of curved Riemannian manifold of
symmetric positive definite (SPD) with some information
transferred from the source domain. This algorithm only
use forward propagation to update the parameters of deep
network, and solve the task of learning a SPD matrix by
formulating it as a smooth, strictly convex optimization
problem.

III. DEEP LEARNING NETWORK USING METRIC
LEARNING
A. DEEP LEARNING NETWORK USING CASCADED
PRINCIPAL COMPONENT ANALYSIS
Denote {Ii}Ni=1 be N training images of size m× n, k1 × k2 be
the 2D filter size or patch size at all hierarchical feature learn-
ing stages. The proposed model is outlined in Figure 1, and
hierarchical features will be learned from the input images
{Ii}Ni=1 in the cascaded principal components analysis (PCA)
network, transfer metric learning will be learned from feature
space. Next, we present each component of the proposed
framework more detail.
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Center on each pixel, we extract a k1 × k2 patch, and
we extract all patches of the ith image xi,1, xi,2, . . . , xi,mn ∈

Rk1×k2 , where xi,j represents the jth vectorized patch of Ii,
then we subtract patch mean from each patch and obtain
a mean removed patch x i,j, We construct a matrix X i =

[x i,1, x i,2, . . . , xm,n] for Ii. By constructing the same matrix
for all input samples and getting them together, we obtain
X = [X1,X2, . . . ,XN ] ∈ Rk1×k2×Nmn. Suppose that the
number of filters in stage i isNi, the minimization reconstruc-
tion loss of PCA within a family of orthonormal filters is as
follows:

min
V∈Rk1k2×N1

||X − VV T
||
2
F , s.t.V TV = IN1. (1)

where IN1 is identity matrix of sizeN1×N1, the solution is the
N1 principal eigenvectors of XXT . The PCA filters are define
as:

W 1
l = matk1,k2 (ql(XX

T )) ∈ Rk1×k2 , l = 1, 2, . . . ,N1. (2)

where mat(p) is a map function that maps p ∈ Rk1×k2 to a
matrix W ∈ Rk1×k2 , and ql(XXT ) is the lth principal eigen-
vector of XXT . The main variation of all the mean-removed
training patches is characterized by the leading principal
eigenvectors. Hence, the lth filter output of the first stage
is:

I li = Ii ∗W l
l , i = 1, 2, . . . ,N . (3)

where * represents 2D convolution operation. Next, in order
to enhance nonlinear separability, we impose a activation
operation to I li , the activation function is ReLu. Then we take
all the patches of I li , subtract patchmean from each patch, and
get Y

l
i = [yi,l,1, yi,l,2, . . . , yi,l,mn] ∈ Rk1k2×mn, where yi,l,j

denotes the jth mean-removed patch in I li . Finally, we obtain
the lth filter output of the matrix collecting all mean-removed
patches Y

l
= [Y 1,l,Y 2,l, . . . ,YN ,l] ∈ Rk1k2×Nmn, now we

concatenate Y l for all filter outputs as:

Y = [Y 1,Y 2, . . . ,YN1 ] ∈ Rk1k2×N1Nmn. (4)

So we obtain the second stage PCA filters

W 2
l = matk1,k2 (ql(YY

T )) ∈ Rk1×k2 , l = 1, 2, . . . ,N2. (5)

For each I li of the second stage, we convolve I
l
i withW

2
l for

l = 1, 2, . . . ,N2 and get N2 outputs:

Oli = {I li ∗W 2
l }

N2
l=1, i = 1, 2, . . . ,N . (6)

Similar to DNN, we can repeat the above process to con-
struct a deeper architecture.

For all these outputs inOli , we use step function to binarize

them and get {H (I li ∗W
2
l )}

N2
l=1. Around each pixel, we convert

N2 binary bits into a decimal number. We convert the N2 out-
puts in Oli back into a single integer-valued image:

T li =

N2∑
i=1

2l−1H (I li ∗W 1
i ), i = 1, 2, . . . ,N . (7)

After we get N1 images T li , we partition each of N1 images
into B block. We compute the histogram in each block, and
concatenate all the B histograms into one vector, and denote
as Bhist(T li ). We obtain the feature of the input images Ii by
this encoding process:

fi = [Bhist(T 1
i ), . . . ,Bhist(T

N1
i )]T ∈ R(2

N2 )N1B. (8)

Our local blocks are non-overlapping for local histogram
extraction. The parameters of cascaded principal component
analysis network include the number of filters in each stage
N1, N2, the filter size k1, k2, the number of stages, and the
block size for local histogram computation.

B. DEEP DOMAIN ADAPTATION USING METRIC LEARNING
To represents source and target domain datasets in metric
learning, we define the two sets as follows:

S ⊆ Ds × Ds = {(fi, fj)|fi ∈ Ds, fj ∈ Ds}. (9)

D ⊆ Dt × Dt = {(fi, fj)|fi ∈ Dt , fj ∈ Dt }. (10)

Inspired by geometric mean metric learning (GMML)
algorithm [41], we model the distance bewteen similar points
in the S set byMahalanobis distance and the distance bewteen
dissimilar points in the D set by the inverse metric, we add
their contribution to the overall objective and propose a new
objective function:

∑
(fi,fj)∈S

dA(fi, fj) +

∑
(fi,fj)∈D

dA−1(fi, fj). (11)

where A is a set of symmetric positive definite (SPD) matri-
ces, it forms a Riemannianmanifold of nonpositive curvature.
we describe (28) using trace and turn it into the optimization
problem:

min
A≻0

∑
(fi,fj)∈S

tr(A(fi − fj)(fi − fj)T )

+

∑
(fi,fj)∈D

tr(A−1(fi − fj)(fi − fj)T ). (12)

We define the source and target domain covariance matrics
M and N :

M : =

∑
(fi,fj)∈S

(fi − fj)(fi − fj)T . (13)

N : =

∑
(fi,fj)∈D

(fi − fj)(fi − fj)T . (14)

We define the optimization problem (28) using M and
N ,namely

L = min
A≻0

∑
(fi,fj)∈S

tr(AM ) +

∑
(fi,fj)∈D

tr(A−1N ). (15)

Since L is both strictly convex and strictly geodesically
convex, therefore, if ▽L = 0, equation (28) has a solution,

VOLUME 11, 2023 3567



Z. Zeng et al.: Deep Domain Adaptation Using Cascaded Learning Networks and Metric Learning

and the solutionwill be the global optimal. Sowe differentiate
L with respect to A, we get

▽L = M − A−1NA−1
= 0. (16)

AMA = N . (17)

Hence, equation (28) is a Riccati equation, whose solution
is the midpoint of the geodesic joining M−1 to N , where
length is measured on the Riemannian manifold of SPD
matrices. namely

A = M−1♯ 1
2
N = M−

1
2 (M

1
2NM

1
2 )

1
2M−

1
2 . (18)

where ♯ 1
2
is the geometric mean of SPD matrices [41].

To exploit the multiple source and target data of the differ-
ent distribution, we can use the maximum mean discrepancy
metric (MMD) [42] to incorporate the statistical alignment
constraint.

||
1
n

n∑
i=1

Wf si −
1
m

m∑
i=1

Wf ti ||
2

= tr(AXLXT ). (19)

where X = {f s1 , f s2 , . . . , f sn , f t1 , f t2 , . . . , f tm} ∈ Rm+n, L ∈

R(m+n)×(m+n), L is a symmetric positive-semidefinite matrix,
if fi, fj ∈ Xs, L(i, j) =

1
n2
, if fi, fj ∈ Xt , L(i, j) =

1
m2 ,

otherwise, L(i, j) = −
1
mn . We add the MMD objective to

the previous overall objective in equation (28) and obtain the
following manifold objective function:

L = min
A≻0

tr(AM ) + tr(A−1N ) + tr(AXLXT ). (20)

We differentiate once again L with respect to A, we will
obtain the solution of the modified objective function:

▽L = M − A−1NA−1
+ XLXT 0. (21)

A = M−1
m ♯ 1

2
N . (22)

whereMm = M + XLXT .
To model the nonlinear manifold geometry of the source

and target domains, geometrical constraints can be imposed
on the solution. We model the source and target domains as
a nonlinear manifold, and use a random walk on a nearest
neighbor graph connecting nearby points to build a diffusion
on a discrete graph approximation of the continuous mani-
fold. asymptotic convergence of the graph Laplacian to the
underlying manifold Laplacian has been shown for estab-
lished standard results [43]. We exploit the above method to
find two graph kernels, Ks and Kt using the eigenvectors of
the random walk on the source and target domain manifolds,
respectively.

Ks =

m∑
i=1

e
−

−σ2s
2λsi vsi (v

s
i )
T . (23)

Kt =

n∑
i=1

e
−

−σ2t
2λti vti (v

t
i )
T . (24)

where vsi and v
t
i are the eigenvectors of the randomwalk diffu-

sion matrix on the source and target manifolds, respectively,
λsi and λti are the corresponding eigenvalues.

Now we integrate the source and target domain manifold
geometry into a new objective function:

L = min
A≻0

tr(AM ) + tr(A−1N ) + tr(AX (K + µL)XT ). (25)

where K ≻ 0, K =

(
K−1
s 0
0 K−1

t

)
, and µ is a weighting term

that combines the geometric and statistical constraints over A.
Now differentiating L with respect to A once again,

we obtain the solution to equation (28) A = Mgs♯ 1
2
N , where

Mgs = M + X (K + µL)XT .
When we compute the solution of equation (28), the

geodesic viewpoint is important because it decides how to
assign different weight to the matrics M and N . Hence,
we should refine the equation (28) using weighted geometric
mean. To explain the idea of weighted geometric mean, for
two SPD matrices M and N , we introduce the following
Riemannian distance metric on the nonlinear manifold of
SPD matrices.

δ2R(X ,Y ) := ||log(Y−
1
2XY−

1
2 )||2F . (26)

where ∥ • ∥F denotes the Frobenius norm. Using this metric,
we can generalize the equation (28) to the weighted form.
We import a parameter that characterizes the degree of bal-
ance between the cost terms of the source and target domain
data. The weighted formulation is then

L = min
A≻0

Lt (A) = tδ2R(A,N )

+ (1 − t)δ2R(A, (M + X (K + µL)XT ))−1. (27)

The unique solution to equation (28) is M−1
gs ♯tN , where

Mgs = M + X (K + µL)XT , ♯t denotes a geodesic between
two points in a manifold. For the SPD manifold, the geodesic
γ (t) for a weight scalar 0 ≤ t ≤ 1 between M−1 and N is
defined by (28):

γ (t) = M−
1
2 (M

1
2NM

1
2 )tM−

1
2 . (28)

IV. DEEP DOMAIN ADAPTATION ALGORITHM
We present the proposed deep domain adaptation algorithm
in Algorithm 1. The algorithm is based on learning deep fea-
ture representations from source and target domain datasets,
computing the Mahalanobis distance matrix A depending
on the source and target covariances, incorporating a MMD
metric, and combining the source and target manifold geom-
etry. Thus, we ensure the uniqueness and optimality of the
proposed algorithm by modeling the Riemannian manifold
underlying SPD matrices.

V. EXPERIMENTS
We compare the proposed model to state-of-the-art transfer
learning methods on unsupervised domain adaptation prob-
lems. We focus on the effectiveness of domain adaptation
using metric learning.
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Algorithm 1 Algorithm for Deep Domain Adaptation Using
Cascaded PCANet and Metric Learning
Input:

The set of source domain data, Ds, with labels LS = {yi},
and the set of unlabelled target domain data, Dt ;
Parameters: step length of geodesic t , hyperparameters
parameter µ;

Output:
Distance matrix A, Use the learned A matrix to transfer
source features to the target domain, and perform classi-
fication;

1: Do forward propagation to all data points;
2: Compute the feature of all data points by (28);
3: Compute the source and target matricesM and N by (28)

and (28);
4: obtain MMD term by (28);
5: Compute the weighted geometric mean taking into

account the MMD term by (28);
6: Compute the weighted geometric mean taking into

account the source and target manifold geometry by (28);

7: Compute the cascaded weighted geometric mean taking
into account the source and target manifold geometry by
(28);

8: return Return distance matrix A = M−1
gs ♯tN ;

A. SETUP
This evaluation was conducted on two public datasets:
Office-31 [44], Office+Caltech [45], and VisDA [46].

1) OFFICE-31
This dataset is a evaluative benchmark for domain adapta-
tion. It comprises 4652 images in 31 classes collected from
three different domains: Amazon (A), which contains images
downloaded from amazon.com,Webcam (W) and DSLR (D),
which contain images taken by a web camera and digital
DSLR camera in an office with different settings, respec-
tively. For completeness, we evaluated the proposed method
across six transfer tasks, A → W, D → W, W → D, A → D,
D → A, and W → A.

2) OFFICE-10+CALTECH-10
This dataset is built by using Caltech-256 as source domain
and the 3 domains in Office 31 as target domain. We used
the 10 categories shared by Office 31 and Caltech-256 and
selected images of the ten categories in each domain of Office
31 as the target domain. We evaluated our method across six
transfer tasks, A → C, W → C, D → C, C → A, C → W and
C → D.

3) VisDA
VisDA is the largest dataset for challenging domain adap-
tation, containing over 280k images from the training, vali-
dation and testing domains. All the three domains included

the same 12 categories. The training domain includes 152k
synthetic images generated by 3D CAD model of the same
categories from different angles and under different lighting
conditions. The validation domain consists of 55k real images
from COCO [47]. The testing domain contains 72k images
from video frames in YTBB [48]. We evaluate the accuracy
and accuracy averaged over all known and unknown of all the
12 categories for adaptation.

4) COMPARED METHODS
We compare the performance of our method with state of
the art transfer learning and deep learning methods: Transfer
component anaysis (TCA) [49] is a classical transfer learn-
ing method based on MMD regularized PCA. The geodesic
flow kernel (GFK) [34] is a widely evaluative method
for our datasets that transforms intermediate representation
to bridge the distribution discrepancy between the source
and target. Convolutional neural network (CNN) [50] is a
good method which turns out a strong model for transfer-
able representation. A deep adaptation network (HAN) [21]
embeds hidden representations of all task-specific layers in
a reproducing kernel Hilbert space where different domain
distributions optimally using multi-kernel MMD can be
explicitly matched. Gradient reversal (RevGrad) [23] is a
new unsupervised domain adaptation method that uses back-
ward propagation training. Deep CORAL [22] is an extended
CORAL method for learning nonlinear transformations in
deep networks. Adversarial discriminative domain adaptation
(ADDA) [25] firstly learn a discriminative representation
in the source domain, then learn a separate encoding that
maps the target data to the same space using an asymmetric
mapping through a domain adversarial loss. Cycle-consistent
adversarial domain adaptation (CyCADA) [26] is a excel-
lent method that adapts representations at both pixel-level
and feature-level. Self-ensembling for domain adaptation
(SE) [30] is an effective algorithm that uses a self-ensembling
mechanism. Self-ensembling with category-agnostic clusters
(SE-CC) [33] is a novel architecture that leads to domain
adaptation under the guidance of category-agnostic clusters
in the target domain. Transferrable prototypical networks
(TPN) [31] are frameworks of prototypical networks for both
general-purpose and task-specific adaptation. Label propa-
gation with augmented anchors (A2LP) [32] is an improved
label propagation algorithm that generates unlabeled virtual
instances. Cycle self-training (CST) [36] is a principled self-
training algorithm that forces pseudo-labels to generalize
across domains.

We followed standard evaluation protocols for unsuper-
vised transfer learning and exploited all labeled source
examples and all unlabeled target examples. The average
classification accuracy of each transfer task was compared
using three random experiments. For baseline methods,
we followed the standard procedures to select the model,
as explained in their respective papers. For MMD-based
methods (i.e., TCA, DAN and our method), we used Gaussian
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TABLE 1. Classification accuracy on Office-31 dataset for unsupervised adaptation.

TABLE 2. Classification accuracy on Office-Caltech dataset for unsupervised adaptation.

TABLE 3. Classification accuracy on VisDA dataset for unsupervised adaptation.

kernel with bandwidth c to set the median pairwise squared
distances on the training data. For all methods, we executed
standard cross-validation on the labeled source data to choose
their hyper-parameters. For our method, the parameters of
the cascaded principal component analysis network are set
as follows: the filter size of the networks is k1 = k2 = 5, the
block size 8 × 6, and the number of filters is N1 = N2 = 5.
The hyperparameter t of cascaded metric learning is set to
0.6 for all domain adaptation tasks.

B. RESULTS AND DISCUSSION
1) PERFORMANCE COMPARISON
We show the unsupervised adaptation results for the first six
Office-31 transfer tasks in Table 1, and the results for the other
six Office-10 + Caltech-10 transfer tasks in Table 2. From
these results, we can observe that our method outperforms
most of the compared methods on most transfer tasks, but
slightly falls behind the SE and SE-CC methods on some
tasks, and achieves comparable performance on the easy

transfer tasks, D → W, and W → D, where the source and
target domains are similar. This is reasonable because domain
adaptability may vary across different transfer tasks.

A performance comparison of VisDA for domain adapta-
tion is presented in Table 3. The proposed method performs
consistently better than most of the compared methods, but
slightly falls behind the SE and SE-CC methods on the mean
accuracy and some tasks. In particular, the mean accuracy
averaged over all 12 classes can achieve 80.6%, making an
absolute improvement over TPN by 0.2%.

The performance improvement demonstrates that our
architecture of deep domain adaptation via cascaded principal
component analysis networks and cascaded metric learning
can transfer domain knowledge across different domains.

We attemp to use a very deep cascaded learning network to
learn more transferable features. However, when the number
of network layers exceeds three, the performance improve-
ment is trivial.

From the experimental results, we can make the fol-
lowing observations. (1) Deep transfer learning methods
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FIGURE 2. The t-SNE visualization of feature learnt by the proposed
method on (a) Source, (b) Target of Office-10+Caltech-10.

significantly outperform traditional shallow transfer learn-
ing methods by a large margin. (2) Deep transfer learning
methods that reduce the distribution discrepancy between the
source and target domain data using deep adaptation net-
work outperform the standard CNN and conventional shallow
transfer learning methods. (3) In contrast to all the previous
deep transfer learning methods in which transferable features
are implemented by forward propagation and back propaga-
tion, the proposed transfer network only use forward propa-
gation to learn transferable features, which can significantly
speed up deep transfer learning and substantially boost the
domain adaptation performance.

2) FEATURE VISUALIZATION
We visualize the features learnt by the proposed method with
the t-SNE [51] on source and target of Office-10+Caltech-
10 in Figure 2(a)-(b). Through domain adaptation by the pro-
posed method, the distributions of two domains are brought
closer, making the target distribution similar to the source
one.

VI. CONCLUSION
In this study, we propose a new deep domain adaptation
approach to bridge the distribution discrepancy between the
source and target domain data. The cascaded deep network
does not require regularized parameters and backward prop-
agation, which consist of only a cascaded linear map and
a nonlinear output, this simplicity and tremendous speedup
can be an alternative framework to deep CNN. Using the
geodesic distance between the source and target domain data
covariances, we built the nonlinear Riemannian geometry
of the symmetric positive definite matrices (SPDs), which
enables the integration of geometry and statistical informa-
tion by introducing the Riccati equation, which simplifies
domain adaptation computation because the Riccati equation
is a mathematically elegant solution to the domain adaptation
problem. A cascaded weighted geometric mean strategy fur-
ther improves domain adaptation effectiveness. An extensive
experimental evaluations of the standard domain adaptation
benchmarks show that the proposed method is effective.
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