
Received 28 November 2022, accepted 31 December 2022, date of publication 9 January 2023, date of current version 12 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3235201

Generative Adversarial Networks for DNA
Storage Channel Simulator
SANGHOON KANG 1, YUNFEI GAO1, JAEHO JEONG 2, (Graduate Student Member, IEEE),
SEONG-JOON PARK 2, (Graduate Student Member, IEEE), JAE-WON KIM 3, (Member, IEEE),
JONG-SEON NO 2, (Fellow, IEEE), HAHYEON JEON4, JEONG WOOK LEE 5,
SUNGHWAN KIM 6, (Member, IEEE), HOSUNG PARK 7,8, (Member, IEEE),
AND ALBERT NO 1, (Member, IEEE)
1Department of Electronic and Electrical Engineering, Hongik University, Seoul 04066, South Korea
2Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
3Department of Electronic Engineering, Engineering Research Institute, Gyeongsang National University, Jinju 52828, South Korea
4Clinomics, Ulsan 44919, South Korea
5Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
6School of Electrical Engineering, University of Ulsan, Ulsan 44610, South Korea
7Department of Computer Engineering, Chonnam National University, Gwangju 61186, South Korea
8Department of ICT Convergence System Engineering, Chonnam National University, Gwangju 61186, South Korea

Corresponding author: Albert No (albertno@hongik.ac.kr)

This work was supported by the Samsung Research Funding and Incubation Center for Future Technology under Grant SRFC-IT1802-09.

ABSTRACT DNA data storage systems have rapidly developed with novel error-correcting techniques,
random access algorithms, and query systems. However, designing an algorithm for DNA storage
systems is challenging, mainly due to the unpredictable nature of errors and the extremely high price of
experiments. Thus, a simulator is of interest that can imitate the error statistics of a DNA storage system
and replace the experiments in developing processes. We introduce novel generative adversarial networks
that learn DNA storage channel statistics. Our simulator takes oligos (DNA sequences to write) as an
input and generates a FASTQ file that includes output DNA reads and quality scores as if the oligos
are synthesized and sequenced. We trained the proposed simulator with data from a single experiment
consisting of 14,400 input oligo strands and 12,108,573 output reads. The error statistics between the
input and the output of the trained generator match the actual error statistics, including the error rate at
each position, the number of errors for each nucleotide, and high-order statistics. The code is available at
https://github.com/gyfbianhuanyun/DNA_storage_simulator_GAN.

INDEX TERMS Channel simulator, DNA storage, generative adversarial networks, recurrent neural
networks, transformer.

I. INTRODUCTION
DNA storage is one of the most promising next-generation
storage systems [1], [2]. Contrary to the modern digital sys-
tem, which stores data in binary format using 0 and 1, the
DNA storage system converts data in the quaternary format
using four bases (Adenine(A), Cytosine(C), Guanine(G), and
Thymine(T)). Then, the system writes data by synthesizing
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corresponding DNA strands and reads data using the DNA
sequencing process [3]. The data density of DNA storage can
reach 215 petabytes per gram [4]. At the same time, mainte-
nance costs are low where fragments of DNA encapsulated
in silica can be preserved for thousands of years [5]. How-
ever, the synthesis and sequencing technologies are error-
prone [6], and therefore an appropriate error-correcting code
(ECC) is necessary for reliable data recovery [4], [7], [8], [9].

The errors in the DNA storage channel are often asyn-
chronous (insertion and deletion). Moreover, the sequence
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contains higher-order statistics; For example, the error rate
increases in the region of consecutive bases. Thus, it is noto-
riously hard to characterize the channel statistics perfectly,
so designing an ECC is also challenging. A line of research
focuses on ECC for a such noisy channel, which we call the
DNA storage channel; Blawat et al. [10] proposed a forward
error correction scheme, Erlich and Zielinski [4] combined
Reed-Solomon (RS) code and fountain code, where Jeong
et al. [7] also applied RS codes with an improved decoding
technique. Also, Press et al. [8] corrected asynchronous errors
using hashing and greedy search, and Chandak et al. [9] used
low-density parity-check (LDPC) and BCH codes. In addi-
tion, Hulett et al. [11] proposed a specific coding scheme
for Nanopore sequencing, where Chandak et al. [12] used
convolutional codes to correct many insertions and deletions.

Although the cost of sequencing is rapidly decreasing [13],
the high price of synthesis [14] is still the main bottleneck for
developing ECCs for DNA storage channels. It is well known
that simulation has predictive functions before conducting
actual experiments. It is used to predict the performance of
new ECC schemes in wireless communications [15], [16].
This approach significantly reduces the cost burden of design-
ing and testing ECC. Likewise, we hope to achieve a similar
effect using simulation in the DNA storage channel.

In addition, the simulator is also valuable for the
channel-related random access verification [17], [18], analy-
sis of new synthesis techniques [19], [20], and bound analysis
of the channel [21], [22], [23], [24]. However, to the best of
our knowledge, there is no publicly available DNA storage
channel simulator except Antonio et al. [25], which mostly
focused on the Nanopore sequencer.

There are various types of simulators related to DNA
sequencing at present. ART [26] mimics a next-generation
sequencer, whereas Flux [27] simulates RNA-seq. Also,
pRIS [28] and simLoRD [29] simulate Illumina and PacBiuo
reads, respectively, when the error profiles are given.
PBSIM2 [30] simulates long reads of PacBio sequencer with
the quality value generated by the trained Hidden Markov
Model (HMM). However, the above sequencing simulators
focus only on 1st order statistics (e.g., error probabilities at
each location). Deep Simulator [31], [32] uses deep learning
techniques to mimic the entire pipeline of Nanopore sequenc-
ing. NanosigSim [33] improves the signal generator module
of the Deep Simulator using a bidirectional gated recurrent
unit (GRU). Nanopore SimulatION [34] is a modular soft-
ware tool capable of simulating the raw current values of
Nanopore sequencing reads. Schwarz et al. [35] simulated
error sequences with pre-defined error probability, which
needs to be specified by the user.

However, most of the simulators have hard-coded error
probabilities or have been designed for a specific sequencing
technology. Since it is a rapidly developing research area,
there are many different technologies in both sequencing
(e.g., Illumina [36] and Oxford Nanopore [37]) and synthesis
(e.g., Twist Bioscience). Each technology has unique charac-

teristics; for example, Nanopore technologies can sequence
long read (>1000 base pairs) while Illumina sequencing can
handle up to a few hundred base pairs. Simulators based
on specific experimental setups may not apply to an envi-
ronment with new sequencing and synthesis technologies.
For example, Deep Simulator [31] has pore modeling that
requires parameter engineering andmay not apply to Illumina
sequencing technologies.

In this paper, we propose a deep learning-based DNA
storage channel simulator. Our model is based on a generative
adversarial network (GAN) [38] which captures high-order
statistics of data. Also, the model’s training is universal
because it does not depend on specific sequencing and syn-
thesis technologies. More precisely, we employ an end-to-
end optimized deep learning-based algorithm, not requiring
parameter engineering but only depending on data statistics.

Note that designing a GAN-based simulator is non-trivial.
Most GAN is optimized to match the output distribution, but
the simulator needs tomatch the joint distribution of input and
output. Also, since the goal of the DNA storage simulator is
to mimic a noisy channel, we expect the randomness of the
generated sequence. In other words, the same input sequence
must produce various outputs where the distribution should
match the actual experimental data. This is not the case in
most GAN problems where the randomness is obtained from
a random latent input vector, and the generator (simulator)
is deterministic. This work proposes a novel GAN structure
where the discriminator takes both input and output to verify
the input-output statistics to overcome the problems.

We train the proposed model on 105 input sequences and
109 output sequences were obtained from a single experi-
ment, using a similar procedure described by Jeong et al. [7].
Note that this is enough to train the proposed model, which
implies that an extensive data acquisition experiment is
unnecessary. The proposed framework allows us to build a
simulator with the same statistics based on data from a single
experiment.

To verify the effectiveness of the proposed simulator,
we measure the error statistics. Our simulator shows sim-
ilar insertion, substitution, and deletion error rates. It also
matches the higher-order statistics, such as the proba-
bility of consecutive deletions (2, 3, 4-deletions). More-
over, we achieve the output randomness using multiple
weights obtained from the training procedure. Finally,
we apply the ECC technique proposed by Jeong et al. [7]
to simulated reads. We observe a similar error-correcting
performance compared to that of the real experimental
data.

II. BACKGROUNDS
A. DEEP LEARNING MODELS FOR SEQUENCES
In sequential data processing tasks, a gated recurrent unit
(GRU) [39] and Long-short term memory (LSTM) [40],
variants of RNN [41], are widely used. Specifically, in lan-
guage representation tasks, which is the most popular task
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for sequential data, RNN-based models’ performance is not
satisfactory.

On the other hand, a line of research combined an encoder
and a decoder for the languagemodel [42], [43], [44], [45] but
had bottleneck problems. Recently, Vaswani et al. [46] pro-
posed a Transformer, an attention-based network, and showed
remarkable performance in various language representation
tasks. It leads to pre-trained attention-based models such as
BERT [47] and GPT [48], [49], [50], which show state-of-
the-art performances. The pre–LN Transformer [51], which
places the layer normalization inside the residual block,
improves training with well-behaving gradients [52].

B. GENERATIVE ADVERSARIAL NETWORK
A Generative Adversarial Network (GAN) [38] is a frame-
work that adversarially trains two networks, a generator and
a discriminator. The role of the generator is to produce fake
(in our case, simulated) data that are similar to the given
data distribution, while the discriminator tries to distinguish
between the real and generated (fake) data. Equivalently, the
generator minimizes the minimax loss, while the discrimina-
tor maximizes it [53]. With the competing nature of the dis-
criminator and the generator, the generator keeps producing
more realistic generated (fake) data while the discriminator
detects the generated data more accurately. Finally, the gen-
erated data has similar statistics to the actual data and cannot
be distinguished by the discriminator.

Wasserstein GAN (WGAN) [54] minimizes the Wasser-
stein distance between the empirical distribution of actual
data and generated data. WGAN is more resistant to the mode
collapse problem in which the generator generates only spe-
cific data caused by unbalanced training between the genera-
tor and discriminator [55], [56]. Berthelot et al. [57] improves
WGAN by boundary equilibrium. Gulrajani et al. [58] intro-
duced a gradient penalty that shows better stability in train-
ing. Additionally, Mao et al. [59] map the generated data
to a latent vector, where Miyato et al. [60] constrained the
Lipschitz condition using weight normalization to overcome
mode collapse.

Although many generative models focus on mimicking
data distribution, there are GANs that considered the input
and output correlation [61], [62], [63]. However, the above
work proposed deterministic generators. To achieve random-
ness of the output, many works [64], [65], [66], [67], [68],
[69] inject noise into the generator. However, their primary
concern is the variability of the output instead of targeting a
specific joint distribution of the input and the output.

Most GAN generators (and discriminators) are convolu-
tional neural networks since GAN is originally designed for
vision tasks [38]. Recently, some efforts are tried to create
RNN-based GAN [70], [71], [72]. Further, Transformer-
based GANs [73], [74] were proposed and showed the robust-
ness of training. On the other hand, there are a few works
that considered generating sequences using GAN, including
the RNN with reinforcement training [75], [76], and the

FIGURE 1. Overall structure of the simulator. The read generator, consists
of insertion, substitution, and deletion generators, takes an oligo
sequence as an input and generates a read sequence. The generated
output is aligned with an input oligo sequence, and the quality score
generator produces corresponding quality scores.

Transformer-based generator for text generation [77], [78],
even long sequence generation [79], [80].

Since GAN is to mimic the given data distribution, many
studies have proposedGAN-based simulators. Peng et al. [81]
constructed a GAN medical ultrasound simulator suitable for
medical simulation and clinical training. Also, Rahnemoonfar
et al. [82] used a similar architecture to CycleGAN [61]
to synthesize snow radar images, Kim et al. [83] shows
user-parameterized GAN-based simulator of fluid, and Erd-
mann et al. [84] simulated an electromagnetic calorimeter
showers using WGAN. Notably, Yang et al. [85] suggested
a GAN-based wireless channel modeling for the continu-
ous additive white Gaussian noise channel, and Orekondy
et al. [86] proposed a GAN-based simulator that learns the
multi-channel distributions of the multiple-input multiple-
output channel.

III. METHODS
A. PROBLEM DESCRIPTION
A DNA storage system stores data in oligonucleotides and
reads the stored sequence from synthesized multiple oligos.
The goal of the simulator is to imitate the sequential processes
of the DNA storage system from the input oligo sequence to
the output read sequence.

Let X = {A,C,G,T } be a set of nucleotide bases, and
Xe = {A,C,G,T , −} be a set of extended symbols where
‘-’ is a placeholder that corresponds to inserted or deleted
symbols. Further, letQ ⊂ [0, 1] denote the set of normalized
quality values. The input of the simulator O is a nucleotide
sequence of length n, which we call the oligo:

O = O1O2 · · ·On
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where Oi ∈ X for 1 ≤ i ≤ n. Then, the simulator’s output
consists of length M of DNA sequence R, which we call the
read, and corresponding quality scores Q:

R = R1R2 · · ·RMQ = Q1Q2 · · ·QM

where Rj ∈ X and Qj ∈ Q for 1 ≤ j ≤ M . The length of
the output read sequence (and quality values) isM , which is a
random variable due to asynchronous (insertion and deletion)
errors. Let Y = (R,Q) denote the combined output of the
simulator, where Yj = (Rj,Qj) ∈ X ×Q for 1 ≤ j ≤ M .

B. SIMULATOR
We propose a read generator Gread followed by a quality
score (qscore) generatorGqs. Given an input oligoO, the read
generator Gread(O) outputs a read R, and Gqs(O,R) generates
a quality score Q based on oligo and read sequences. This
is based on the nature of quality scores which indicates the
confidence level of the read. Roughly speaking, if there is a
mismatch between the bases of the oligo and the read, it is
more likely to have a lower quality score.

Due to the notoriously challenging nature of the asyn-
chronous error and unbalanced error rates between substi-
tution errors and others, we could not train a single generator
that handles all three types of errors simultaneously. Instead,
we divide the read generation procedure into three steps:
insertion generation, substitution generation, and deletion
generation.We call each intermediate sequences byXins,Xsub,
and Xdel, i.e., O → Xins → Xsub → Xdel → R (we will
specify later why Xdel and R are different). Let L denote
the length of the intermediate sequence, which is a random
variable and may be distinct from n and M . More precisely,
intermediate sequences are given by

Xins = Xins,1Xins,2 · · ·Xins,L
Xsub = Xsub,1Xsub,2 · · ·Xsub,L
Xdel = Xdel,1Xdel,2 · · ·Xdel,L

where Xins,k ,Xsub,k ,Xdel,k ∈ Xe for 1 ≤ k ≤ L. Due
to the insertion, we have n ≤ L, and similarly we have
M ≤ L because of deletion errors. Then, the read generator
is composed of three generators Gins, Gsub, and Gdel, which
introduce insertion, substitution, and deletion errors. Note
that the sequenceO andXins may have different lengths due to
insertion errors. However, the sequence lengths of Xins, Xsub,
andXdel are always the same since it has a placeholder symbol
‘-’. Finally, a trimmer removes ‘-’ symbol from Xdel, and we
obtain the output read sequence R.
The error-contained input-output pairs are rare compared

to error-free pairs in the dataset. In such a case, the generator
trained by the GAN [38] frameworkmay encourage the trivial
generator, which outputs the input without any errors. In this
work, we train the generator only on the error-contained pair
to focus on the error statistics. Then, we introduce a profile,
a binary vector p = (pi, ps, pd ) ∈ {0, 1}3 that indicates

FIGURE 2. Dataset generation for insertion, substitution, and deletion
channels.

whether each type of error occurs or not. More precisely,

Xins =

{
Gins(O) if pi = 1
O if pi = 0

Xsub =

{
Gsub(Xins) if ps = 1
Xins if ps = 0

Xdel =

{
Gdel(Xsub) if pd = 1
Xsub if pd = 0.

While training, we estimate the probability distribution of
the profile vector based on occurrences. In the simulation
step, for each oligo input, the simulator samples a random
profile vector based on the empirical distribution of the pro-
file vector and feeds it to all generators (Gins,Gsub, andGdel).
There are two main reasons why we use three separate

generators instead of a single generator: 1) different nature
of synchronous and asynchronous errors, and 2) biased error
statistics where substitution errors dominate the other types
of errors. Thus, we design generators that can solely focus
on each type of error, which is more efficient and robust in
training compared to a single generator network. We discuss
more on GAN training in the presence of a profile vector in
Section IV.

The qscore simulator Gqs takes an oligo and read pair
(O,R) as an input. It first aligns the oligo and the read which
we call Oaligned and Raligned, respectively. Then, it produces
quality scores corresponding to an aligned read. Similar to the
read generation, since the error rarely occurs in Gread and the
qscore statistics are significantly different when there exists
an error, we introduce two generatorsG(g)

qs andG(e)
qs . If there is

no error between generated read and the input oligo, we apply
an error-free generator G(g)

qs , and we apply G(e)
qs if there is an
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FIGURE 3. Structure of GANs for the read simulator. This includes an
insertion GAN, a substitution GAN, and a deletion GAN.

error. In other words,

Gqs(O,R) =

{
G(g)
qs (O,R) if O = R

G(e)
qs (O,R) if O ̸= R.

The entire structure of the proposed simulator is described in
Figure 1.

IV. TRAINING GENERATORS USING GAN
A. GANs FOR READ GENERATOR
We train Gins, Gsub, and Gdel using three separate GANs
(insGAN, subGAN, and delGAN for Gins, Gsub, and Gdel,
respectively). However, we need to define each generator’s
input and output since the intermediate sequences (Xins,Xsub,
and Xdel) are not provided. The insGAN requires O and Xins,
the subGAN needs Xins and Xsub, and finally, the delGAN is
trained on Xsub and Xdel.
To achieve intermediate sequences, we first align the

sequences to get Oaligned and Raligned of the same lengths
for given oligo O and read R. Then, we obtain an inserted
sequence Xins by replacing ‘-’ in Oaligned with the base of
the same index of Raligned. Similarly, a substituted sequence
Xsub is obtained by replacing ‘-’ in Raligned with the base of
the same index of Oaligned. Finally, we have Xdel = Raligned,
a deleted version of the substituted sequence. An exam-
ple of the above data processing is described in Figure 2.
In this example, oligo O = CTCACGGT and read R =

CCACAGGA are given. First, we align two sequences and
get aligned oligo Oaligned = CTCAC-GGT and aligned
read Raligned = C-CACAGGA. Then, we obtain Xins =

CTCACAGGT by replacing ‘-’ in Oaligned with ‘A’ (the
6th base of Raligned), and obtain Xsub = CTCACAGGA by
replacing ‘-’ in Raligned with ‘T’ (the 2nd base of Oaligned).
The deleted sequence Xdel is simply C-CACAGGA which is
identical to Raligned.
The goal of GAN training is to get a generator that

produces similar error patterns as if it is obtained from
the actual experiments. The training procedure of GANs
(insGAN, subGAN, and delGAN) are the same; The gen-
erator takes an input sequence and produces an output
sequence, where the discriminator checks both input and out-
put sequences then determines whether the output sequence
is from real experiments or from the generator. We use
the framework of WGAN-GP [58] that minimizes the
Wasserstein distances between distributions with a gradi-
ent penalty that stabilizes the training. This training proce-
dure of GANs (insGAN, subGAN and delGAN) is shown
in Figure 3.

FIGURE 4. Structure of quality score GAN for the quality score simulator.

1) insGAN
The critical component of insertion generator Gins is a gated
recurrent unit (GRU) [39]. Since GRU takes input sequen-
tially, handling asynchronous errors such as insertion is suit-
able. Also, GRU has lighter architecture than Transformer,
but it can learn short-term dependency effectively and is more
appropriate to generate realistic consecutive errors. We stack
three bidirectional GRU [87] layers of 64 hidden units, which
effectively extract the sequence features. The bidirectional
GRU layers are followed by a single fully-connected layer
with a softplus activation function. Unlike subGAN or del-
GAN, the input and output of the insGANmay have different
lengths of sequences.

We denote Dins as the discriminator corresponding to the
insertion generator Gins. It takes the generator’s input and
output (O,Xins) as input to check whether the input and out-
put show proper channel statistics. The discriminator Dins is
based on a 1-dimensional convolutional neural network (1D-
CNN) [88], which investigates the joint distribution of input
O and output Xins. We use various CNN kernels and multiple
layers to capture the high-order dependencies. The discrim-
inator takes stacked input and output sequences as input.
Notably, we exclude batch normalization and dropout from
the discriminator to stabilize the GAN training. Finally, 1D-
CNN layers are followed by a fully connected layer without
an activation function. The more details of the discriminator
are the following. We stacked ten layers of 1D-CNN with
eight hidden dimensions. The CNN contains 5 × 5 kernels
and zero padding.

Note that Gins is a generator that introduces the insertion
error, and therefore we construct a dataset with erroneous
pairs only. I.e., all input and output pairs (O,Xins) in the
dataset for insGAN contain insertion errors. This is also the
case for subGAN and delGAN where the datasets consist of
pairs with substitution errors and deletion errors, respectively.

2) subGAN
The substitution generator Gsub is based on the Transformer
model [46]. Since the substitution error is the synchronous
error and is the most dominant type of error, the proposed
model focuses on higher-order statistics with an attention
mechanism. The generator Gsub takes Xins as an input and
outputs Xsub. The proposed model contains a learnable posi-
tional encoding and three encoder layers. An encoder layer
consists of two multi-head attention layers, followed by a
feed-forward layer with 64 hidden dimensions and layer nor-
malization layers. Finally, the generator outputs a sequence
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FIGURE 5. Distribution of matched reads per oligos. The most oligos have
100–150 matching reads.

processed by a fully connected layer with a soft plus activa-
tion function. The discriminator Dsub adopts a similar con-
struction to insGAN, ten layers 1D-CNN with 128 hidden
dimensions, 5 × 5 kernel, and a single zero padding.

3) delGAN
The deletion generatorGdel and discriminatorDdel are identi-
cal to that of insGAN. The generator Gdel has three layers of
bidirectional GRU and 64 hidden dimensions, whereDdel has
ten layers of 1D-CNNwith 8 hidden dimensions, 5×5 kernel,
and a single zero padding. However, since the input Xsub
and Xdel have the same sequence lengths due to place holder
symbol ‘-’, it is much easier to learn the statistics of the
deletion channel than the insertion channel.

4) RANDOMNESS IN READ GENERATOR
A distinctive point of the GAN-based simulators apart
from the other GANs is the stochasticity of the generator.
To achieve the output variability, we first introduce an addi-
tional random number for each input base. We also store
ensembles of generators obtained during a single training pro-
cedure but in different epoch numbers. Because of instability
in the minimax training of GAN [56], [89], the generator
after each epoch varies meaningfully. Thus, the simulator
randomly selects a generator from the ensemble and then
produces the output. We provide experimental results and
verify the output variability in Section V-C.

B. GAN FOR QUALITY SCORE GENERATOR
The quality score generator takes aligned oligo and read pair
(Oaligned,Raligned) as an input. We train two quality score
generators (G(g)

qs , G
(e)
qs ) separately; a generator for error-free

sequence pairs and a generator for error-contained sequence
pairs. The training framework is the same for both cases.

Given the dataset consists of oligo, read, and quality scores,
we align the oligo and read sequences where the quality
scores follow the aligned reads. This provides aligned oligo
Oaligned, aligned read Raligned, and aligned quality scores
Qaligned. Note that there is no quality score corresponding
to the deleted base. As described in the following example,

we fill such a gap (2nd base in the example) with the nearest
quality value (1st quality score ‘!’ in the example).

Oaligned : CTCAC-GGT

Raligned : C-CACAGGA

Qaligned : !!@@*((()

The quality score discriminator takes triplet of aligned
oligo, aligned read, and aligned quality scores
(Oaligned,Raligned,Qaligned) as an input. Then, it determines
whether the quality scores are generated or not. We also
follow the framework of WGAN-GP [58] that minimizes the
Wasserstein distances with a gradient penalty, which is resis-
tant to the mode collapse problem. The training procedure for
quality score GAN is described in Figure 4.

1) QSCORE GAN
The quality score generator Gqs has a similar structure with
Gins, which consists of two bi-directional GRU layers with
64 hidden dimensions. The GRU layers are followed by
the fully connected layer and hyperbolic tangent activation
function. Note that the generator produces normalized quality
scores between 0 and 1. The quality score discriminator Dqs
consists of ten 1D-CNN layers with 8 hidden dimensions,
5 × 5 kernels, and a single zero padding. A fully connected
layer that follows CNN layers generates the scalar value to
compute Wasserstein distance.

Similar to generators in Gread, the generator takes addi-
tional random numbers as input corresponding to the base.
It introduces the randomness of generated quality scores.
While training, we added L1-regularization for quality score
GAN for stability.

V. EXPERIMENT
A. DATASET
In the experiment, we use the same oligo design proposed by
Jeong et al. [7]. There are 18,000 oligos of length 152 in the
dataset, where all oligos have balanced GC contents (base G
and C proportion is between 45 to 55 percent) and homopoly-
mer run length is limited by 3. We obtain the corresponding
FASTQ file that contains only reverse direction results from
the single experiment, consisting of reads and quality scores.
We wrote the data using Twist Bioscience synthesis and read
it with the Illumina Miseq Reagent v3 kit.

Given the FASTQ file, we match each read to the nearest
oligo based on edit distance. After discarding noisy reads
(i.e., reads with Ns or distance to nearest oligo is larger than
5), we obtain 15,126,429 reads. Note that a single oligo
can be sequenced multiple times (see Figure 5). Then, the
oligos (and the matched reads) are divided into two sets; the
training dataset consists of 14,400 oligos and corresponding
12,108,573 reads and the test dataset consists of 3,600 oligos
and corresponding 2,999,656 reads. For insGAN, subGAN,
and delGAN, we extract the error-contained sequence pair
from the training dataset where the edit distance is nonzero
and generate training datasets for insGAN, subGAN, and
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FIGURE 6. Error rates of insertion, substitution, and deletion channels at each index.

FIGURE 7. Error rates of consecutive deletion errors at each index. Our simulator shows similar rates, which implies it learns high order
dependencies.

FIGURE 8. Comparison of error distribution (index of erroneous base) between generated reads using single weight and using multiple weights.

delGAN as described in Figure 2. Also, we trimmed aligned
sequences at 145 lengths as the later part of the sequence is
considered noisy. For qscoreGAN, we generate an error-free
dataset for G(g)

qs and the error-contained dataset for G(e)
qs .

We then run the simulator with oligos in the test dataset. The
error statistics of simulated data and an actual experiment are
compared.

To train models with sequential data in batch, we need
to match the lengths of sequences. We introduce additional
symbols for sequences to match the length; symbols S and
E represent the start and the end of the sequence, and sym-
bol P is padded to match the length. Then, we apply the
one-hot encoding to sequences, where the one-hot vector is an
8-dimensional vector (ACGT-SEP). For insGAN, subGAN,
and delGAN, an additional uniformly distributed random
number is added to a one-hot vector to induce randomness of
the simulator, as we discussed in Section IV-A4. For qscore-
GAN, the oligo and read sequences are aligned, then covert to

TABLE 1. Consecutive error rates of insertion and deletion channels.

one-hot encoded vectors. Then, encoded vectors are stacked,
and we also add a random number to form a 17-dimensional
vector.

B. TRAINING
We train WGANs (insGAN, subGAN, delGAN, and qscore-
GAN) with gradient penalty. The batch size is 1024, and
learning rates of the generator and discriminator are 5×10−4

for insGAN, 5 × 10−4 for Gsub, 1 × 10−4 for Dsub, 10−3 for
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TABLE 2. Comparison of error types (base pair) of insertion and deletion
channels.

TABLE 3. Comparison of error types (base pair) of substitution channels.

delGAN, and 10−4 for qscoreGAN. For better convergence
results, we adjust the learning rate in the subGAN according
to the number of epochs, i.e. multiply the learning rate by
0.1 every 40,000 batches.

For the randomness of read generator, we obtain the
trained weights of 2500 to 2509 epochs for insGAN, 500 to
509 epochs for subGAN, and 1300 to 1309 epochs for del-
GAN. From the training dataset, the estimated profile vector
distribution is the following: the percentage of error-free pairs
is 84.253%, the percentage of insertion is 0.945, substitu-
tion is 10.646, deletion is 3.572, insertion with substitution
is 0.101, insertion with deletion is 0.039, substitution with
deletion is 0.437, insertion with substitution and deletion is
0.007.

C. RESULTS
To the best of our knowledge, our work is the first attempt
to design a DNA storage channel simulator, while other
simulators focus only on DNA sequencing. Thus, in this
section, we mainly provide the error statistics of the proposed
simulator and compare them with the error statistics of actual
data.

1) READ GENERATORS: ERROR STATISTICS
To evaluate the performance of the proposed simulator,
we first investigate the error statistics of reads. Figure 6-(a)
presents the insertion error rates, the number of insertion
errors at each index divided by the total number of reads with
insertion. Similarly, Figure 6-(b) and Figure 6-(c) show the
substitution and deletion error rates, respectively. Although
the error probability is not given explicitly, the generated
sequences follow the distribution of positional error (1st order
statistics).

We also analyze the consecutive insertion and deletion
error rates to investigate the high-order statistics of the gen-
erator. Since an insertion error is rare, we focus on consecu-
tive deletion errors. Figure 7 shows the rate of consecutive

TABLE 4. The number of erroneous bases of 25 generated reads from a
single fixed input oligo sequence. Due to unstable nature of GAN training,
the error distribution of generated reads using different weights
significantly varies.

deletion errors (1-deletion to 4-deletions) starting at each
index. Table 1 compares the ratio of consecutive errors for
both insertion and deletion errors, which are averages of the
rate of consecutive errors. The results indicate insertion and
deletion errors do not occur independently; for example, the
rate of 2-deletion is not a square of the rate of 1-deletion. The
proposed generator mimics the consecutive error rates of the
experiment, which cannot be achieved with predefined error
probabilities.

We further count the number of errors for each base,
illustrated in Table 2 and 3. In Table 2, we count the num-
ber of insertion error bases among 33,158 oligo-read pairs
from the test dataset, and count the number of deletion error
bases among 37,668 oligo-read pairs from the test dataset.
In Table 3, we count the number of substitution error bases
among 19,170 oligo-read pairs from the test dataset. Errors of
three bases (A, C, and T) occur uniformly in the experiment,
whereas base G is inserted more often than other bases, and
deleted bases have occurred nearly equally. In the case of
substitution errors, the frequency of each base error type
varies widely. Among them, the number of base G changing
to base T is the most, and the number of base C changing to
base G is the least. The proposed simulator also captures these
per-base error statistics.

2) READ GENERATORS: ERROR DISTRIBUTIONS
Since our goal is to simulate the noisy channel, the simulator’s
output should be random. More precisely, we expect our
simulator generates various sequences for the same input,
and the distribution should match the experiment. Recall that
we added random numbers for each input base and used the
ensemble of generators (trained with a different number of
epochs) to induce a probabilistic behavior of the simulator.
For the insertion generator Gins, we use 11 generators with
trained weights at epochs from 2400 to 2410, where we use
11 generators for the deletion generator Gdel with trained
weights at epochs from 1290 to 1300. In the substitution gen-
erator Gsub, the same 11 generators are used, and the weights
are trained at epochs 500 to 510 due to the faster convergence
obtained by using the Transformer structure. To verify that
the read simulator generates output diversity, we generate
25 reads from the fixed oligo. Table 4 and Figure 8 show the
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FIGURE 9. Randomness of generated reads from a single fixed oligo at insertion, substitution, and deletion channels. The x-axis presents the index of
the error, while different color indicates the different erroneous bases. The dotted line shows the number of errors of all bases at each index.

analysis of the simulated reads by the insertion generatorGins,
the substitution generator Gsub, and the deletion generator
Gdel. Table 4 shows that generators with different weights
produce significantly various error patterns, especially in
insertion.

We also investigate the error occurrences when the input
is fixed to a given sequence. The comparison is between
generated sequences using single weight configuration and
sequences using 10 different weights from 10 epochs.
Figure 10 implies that the generation with multiple weights
has more variability in error patterns. Moreover, Figure 9
shows the error statistics of generated sequences from the
fixed oligo, where we generated 25 sequences to test Gins,
100 sequences to testGsub, and 50 sequences to testGdel. Note
that we produce output read sequences from a single input
sequence, the exact error location does not perfectly match
due to the random nature of the generator. However, it shows
that the error statistics of the generated sequence are similar
to the true error statistics (from an actual experiment) in terms
of both error location and bases.

3) QSCORE GENERATOR
Figure 10 shows the positional mean quality scores from
the experiment and the simulation. In the experiment, the
quality score decreases except for the first few indices, and
the generator also mimics this behavior. Figure 11 shows

FIGURE 10. Mean of quality scores at each index. We present the mean
quality scores of error-free reads, and the mean quality scores of reads
with errors.

that the output distributions of quality score generators also
match the experimental results. For error-free bases (when
oligo and read coincides), the corresponding quality score is
mostlyG, which is the highest value. However, in the presence
of error, a certain portion of lower quality scores (such as
‘,’ and ‘+’) exists. Our quality score simulator captures this
characteristic. Note that the original GAN often suffers from
mode-collapse where the generator only recovers a single
mode of the target distribution. However, thanks to WGAN-
GP, we successfully recovered two modes (one on ‘G’ and
another around ‘,’ and ‘+’).
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FIGURE 11. Distribution of corresponding quality scores when the
substitution error occurs.

TABLE 5. Clustering and decoding statistics at the smallest random
samples for both simulation (ours) and experiment results [7].

4) APPLICATION OF ECC ALGORITHM
We test the error correcting code (ECC) to simulated reads
and the actual experimental reads. More precisely, we apply
ECC that proposed by Jeong et al. [7], where the author com-
bined Hamming distance-based clustering, Reed-Solomon
(RS) based error correcting techniques, and quality-score-
based decoding. The authors seek a minimum number of
read samples where the ECC algorithm perfectly recovers the
oligo input. With experimental reads, the minimum number
of reads was 86000, where 200 out of 200 decoding trials
succeeded. We also applied the same ECC technique to the
simulated data from the same oligo inputs. The minimum
number of generated reads was 84000, where 10 out of
10 decoding trials succeeded.

Furthermore, Table 5 also shows the other statistics pro-
vided by the ECC algorithm, including cluster-related statis-

tics. The ECC algorithm produces about the same number of
clusters for both experimental and simulated data. Interest-
ingly, the number of size-1 clusters is also identical, which
is a crucial error factor in the cluster-based ECC algorithms.
These results imply that the proposed simulator produces
similar reads to the experiment.

VI. CONCLUSION AND DISCUSSION
We presented the generative adversarial network framework
for the DNA storage channel simulator. Our simulator gener-
ated sequences and quality scores with similar error statistics
to an actual experiment. The proposed framework is purely
data-centric that does not depend on specific sequencing or
synthesis technologies.

However, our model does have limitations. First, learn-
ing data from Nanopore sequencing may be challenging
due to the training complexity of Transformer models.
We leave developing a training-efficient network for the
longer sequence as crucial future work. Another interesting
direction is to manage the GAN training. It is well-known
that the GAN is extremely hard to train, and our frame-
work also requires fine-tuned hyperparameters to train the
generator successfully. We believe that the well-behaving
GAN architecture allows us to apply the technique to a more
challenging setting, including long sequence length, biased
error probabilities, high-order dependencies, and a massive
amount of data.
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