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ABSTRACT In this paper, we propose a new video coding method that saves bits using multi-sensor collab-
oration. Traditional video coding methods have saved bits by removing redundancy in videos. Recently,
multiple types of sensors are being deployed to many solutions and multi-sensor data have significant
advantages over single sensor data. The proposed method suggests a new way of video compression that
saves bits using multi-sensor collaboration. We apply multi-sensor collaboration to the 3D video coding
based on color and depth sensors. Based on the correlation between color and depth images, we design two
networks CNN-US and CNN-QE in the proposed video coding method to achieve up-sampling and quality
enhancement, respectively. The proposed method combines CNN-US and CNN-QE with 3D-HEVC to save
bits using multi-sensor collaboration. Compared with 3D-HEVC anchor, the proposed method achieves
average 5.9%, 66.8%, and 71.0% BD-rate reductions for sampling factors 1, 2, and 4 on the depth videos of
3D-HEVC test dataset, respectively.

INDEX TERMS 3D-HEVC, convolutional neural network, multi-sensor collaboration, redundancy, video
coding.

I. INTRODUCTION
In recent years, the storage and transmission of video data
have become more and more common, and a huge amount
of video data have been produced persistently. Thus, the
effective compression of video data is increasingly impor-
tant. The video coding technology has made meaningful
contributions to the compression of video data. The earli-
est research on video compression can be traced back to
1929 when inter-frame compression was first proposed. After
years of research and development, mature video compres-
sion codec standards have gradually formed, such asMPEG-2
[1], MPEG-4 [2], and HEVC [3], [4]. MPEG-2 provides
a wide range of compression rates to adapt to different
picture quality, storage capacity and bandwidth requirements.
However, the high-definition videos need higher compres-
sion efficiency, which has a limit by MPEG-2. MPEG-4
compresses and transmits video data through extremely nar-
row bandwidth and object-based coding to obtain the best
image quality with the least amount of data. Compared with
MPEG-2, MPEG-4 is suitable for interactive video services
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and remote surveillance. The High Efficiency Video Coding
(HEVC) standard is based on the MPEG-4 framework and
improves some modules such as inter-frame prediction, intra-
frame prediction and in-loop filter. Under the same image
quality condition, data compression rate of HEVC is 1.5 times
higher than MPEG-4. The latest Versatile Video Coding
(VVC) standard [5] was officially released in 2020, which
represents the most advanced video coding technology at
present. VVC is based on the HEVC coding framework and
has further improved lots of modules. Otherwise, VVC has
upgraded the encoding structure with multiple options such
as concurrent processing of encoder and decoder. Compared
with HEVC, VVC achieves nearly 50% bitrate reduction
under the same perceptual quality. VVC encoding complexity
is 10 times that of HEVC, while VVC decoding complex-
ity is about 1.5 times that of HEVC. In recent years, 3D
videos have received much attention due to the demands
for virtual reality. Plenty of scenes adopt depth image-based
rendering (DIBR) to generate a set of dense views, which
needs high quality depth images. Therefore, 3D-HEVC [6] is
investigated by JCT-3V as a 3D video coding standard [7].
3D-HEVC is an extension on the basis of HEVC, which
efficiently compresses multi-views and their corresponding
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FIGURE 1. Entire framework of the proposed video coding method based on multi-sensor collaboration. The proposed method combines two networks
CNN-US and CNN-QE with 3D-HEVC to save bits using multi-sensor collaboration. CNN-US is used to achieve up-sampling on the compressed depth video
frames for sampling factors 2 and 4, while CNN-QE is used to achieve quality enhancement on the depth video frames based on the correlation between
color and depth for all sampling factors, i.e. 1, 2, and 4.

depth data. 3D-HEVC includes all the key technologies
of HEVC and employs new compression technologies that
extract the unique characteristics of depth images and utilize
the dependencies between multiple views as well as between
texture and depth. Hence, 3D-HEVC has more advantages
in the consumer applications that require video texture and
depth. Compared with HEVC, 3D-HEVC specifically adapts
to the properties of depth images, which satisfies the urgent
need for depth image coding.

With the advent of deep learning, many methods based
on deep neural networks have been proposed to enhance
the coding efficiency of 3D-HEVC. Li et al. [8] proposed
self-learning residual model-based fast coding unit (CU) size
decision in the intra-coding of both texture views and depth
images that utilized residual signal as the feature of CU to
learn the features of the encoded coding tree unit (CTU).
They achieved reduction of encoding time by the fast CU
size decision. Zhang et al. [9] adopted a method of detecting
the smooth area and texture direction in the depth image
to reduce the number of intra-modes while decreasing the
complexity and time cost. These methods were dedicated
to modifying the internal modules of 3D-HEVC for perfor-
mance improvement. With the recent advances in the sensor
technology, especially the popularization of multi-sensory
data, there is a new opportunity to reform and elevate the
coding efficiency using multi-sensor collaboration. How-
ever, traditional video codecs, including 3D-HEVC, save
bits by removing redundancy, and do not take multi-sensor
collaboration into consideration to save bits. In addition to
the redundancy removal, multi-sensor collaboration of color
and depth images can remarkably contribute to improving the

coding efficiency. 3D-HEVC achieves depth image coding
but does not consider multi-sensor collaboration between
color and depth images. Moreover, if quantization parameter
(QP) is large, there would be obvious blocky artifacts in the
decoded results. Although most of existing methods based
on deep learning achieve speed-up of the prediction mode
decision for coding unit/prediction unit (CU/PU), they are not
robust to blocky artifacts under a large QP.

In this paper, we propose a new video coding method that
can save bits using multi-sensor collaboration. We apply
multi-sensor collaboration to the 3D video coding based
on color and depth videos. Inspired by [25], we build two
networks CNN-US and CNN-QE for the proposed method:
CNN-US is for up-sampling of the depth videos in sampling
factors 2 and 4, while CNN-QE is for quality enhancement
of the depth videos based on the correlation between color
and depth in all sampling factors 1, 2, and 4. First, we down-
sample the depth video frames in sampling factors 2 and 4.
Then, we utilize 3D-HEVC codec to encode and decode the
input color and depth videos. Next, we adopt CNN-US to
achieve up-sampling on the decoded depth video frames in
sampling factors 2 and 4. Finally, based on the correlation
between color and depth, we use CNN-QE to achieve qual-
ity enhancement on the depth video frames in all sampling
factors, i.e. 1, 2 and 4. Through experiments, we found that
down-sampling methods have little effect on the performance
and thus we choose uniform sampling for down-sampling.
Fig. 1 illustrates the proposed video coding method based on
multi-sensor collaboration with consumer applications.

Compared with existing methods, main contributions of
this paper are summarized as follows:
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• We propose a new video coding method that saves bits
using multi-sensor collaboration. We apply multi-sensor
collaboration to 3D video coding based on color and
depth videos, and use 3D-HEVC codec as baseline for
the proposed method.

• We build two networks CNN-US and CNN-QE for color
guided depth super-resolution (SR). CNN-US is used for
depth up-sampling, while CNN-QE is for depth quality
enhancement based on multi-sensor collaboration (color
and depth). The proposed method considers three sam-
pling factors 1, 2 and 4 based on CNN-US and CNN-QE.

• We verify the effectiveness of the proposed method
for video compression in comparison with 3D-HEVC
anchor. Compared with 3D-HEVC anchor, the pro-
posedmethod achieves average 5.9%, 66.8%, and 71.0%
BD-rate reductions for sampling factors 1, 2, and 4 on
the depth videos of 3D-HEVC test dataset, respectively.

The rest of this paper is organized as follows. In Section II,
we explain the advantage of multi-sensor collaboration and
some relevant methods. Section III describes the proposed
method based on 3D-HEVC codec, while Section IV pro-
vides visual comparison and quantitative measurements.
Conclusions are made in Section V.

II. RELATED WORK
A. MULTI-SENSOR COLLABORATION
Accompanied by the continuous improvement of the sen-
sor technology, various sensors such as depth, infrared (IR)
and near-infrared (NIR) sensors have been widely utilized
in recent years. Multi-sensory data are popular and being
applied to many consumer electronics such as smartphones,
self-driving cars and video surveillance. Since each type
of sensors has its own characteristics, multi-sensory data
are complementary. Thus, many outstanding achievements
have been resulted in image super-resolution (SR), image
fusion and object detection based on multi-sensor collabo-
ration. In practice, multi-sensor collaboration is very similar
to the cognition process of human brains. Human deci-
sion is made by analyzing various information obtained
by sensory organs. Similar to this, multi-sensory data have
significant advantages over single sensor data, which over-
come the limitation of single modal data. Thus, multi-sensor
collaboration has been widely applied to many kinds of
computer vision tasks such as quality enhancement, scene
reconstruction and target detection. Jiang et al. [10] pro-
posed a deep edge guided depth SR method that included an
edge prediction module and an SR module. The edge pre-
diction module utilized hierarchical representation of color
and depth images to produce accurate edge maps, which can
promote the performance of SR module. Huang et al. [11]
proposed a sparsity-invariant multi-scale encoder-decoder
network (HMS-Net) for depth completion to handle sparse
inputs and feature maps. They incorporated color informa-
tion with depth information obtained by LIDAR camera to
improve the performance in depth completion. Duan and

Jung [12] proposed joint disparity estimation and pseudo
near infrared (NIR) generation from cross spectral image
pairs. They adopted difference map operator (DMO) and
non-local blocks (NLB) to bridge the spectral gap between
Y channel and NIR image. Chen et al. [13] proposed a
sensor fusion framework that took both LIDAR point data
and color image as input and predicted 3D bounding boxes
for object detection in the autonomous driving environment.
Hughes et al. [14] proposed a pseudo-siamese convolutional
neural network (CNN) architecture to solve the task of iden-
tifying corresponding patches in very-high-resolution (VHR)
optical and synthetic aperture radar (SAR) remote sensing
imagery. These methods make full use of advantages from
multiple sensors for computer vision tasks. Lan et al. [15]
proposed a multi-sensor collaboration network for video
compression based on wavelet decomposition, calledMSCN.
MSCN first combined multi-sensor collaboration with video
compression.

B. 3D-HEVC
Video coding standards aims at removing redundancy in
videos and saving bits, and are extended to supporting the
representation of multiview videos and multiview plus depth
formats. 3D-HEVC, as an 3D extension of HEVC, is targeted
at a coded representation consisting of multiple views and
associated depth images, generating additional intermediate
views in advanced 3D displays. Compared with HEVC, addi-
tional bit rate reduction in 3D-HEVC is achieved by spec-
ifying new block-level video coding tools, which explicitly
exploit statistical dependencies between texture and depth,
and specifically adapt to the depth properties. In recent years,
MPEG Immersive Video (MIV) standard [16] has been pro-
posed. The draft MIV standard provides support for viewing
immersive volumetric content captured by multiple cameras
with six degrees of freedom (6DoF) within a viewing space
determined by the camera arrangement. In the Test Model
for Immersive Video (TMIV), multiple texture and geometry
views are coded as atlases of patches using a legacy 2-D
video codec, while optimizing for bit rate, pixel rate, and
quality. The MIV standard enables a high-fidelity immersive
experience through playback of camera-captured 3-D scenes
with 6DoF of viewer position and orientation. It supports such
consumer applications with affordable coded pixel rate and
higher coding efficiency, especially for source content with
high-quality depth information.

C. DEPTH IMAGE SUPER-RESOLUTION
Up to now, depth image SR works are divided into two
categories: traditional approach and deep learning approach.
Traditional methods are more flexible, while deep learning
methods are good at obtaining the complex mapping func-
tions from a large scale dataset. Traditional depth SR meth-
ods are further divided into three categories: learning-based
methods, filtering-based methods and regularization-based
methods. The core problem of learning-based methods is to
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FIGURE 2. Network architecture of CNN-US. There are 3 dilation blocks before and after pixle shuffle layer. Every
dilation block consists of 4 dilated convolution layers followed by Leaky ReLU layers. c64k3s1 indicates a feature map
number of 64, a kernel size of 3 and a stride of 1. D′

s represents the decoded LR depth image and D′′ represents the
output upsampled by CNN-US.

obtain a sparse representation of depth images by designing
dictionaries. Ferstl et al. [17] learned a dictionary of edge
priors from an external database of high resolution (HR)
and low resolution (LR) examples, which can be used in
variational depth SR as an anisotropic guidance. Since global
dictionaries can not adapt to local features of depth images
well, Mandal et al. [18] proposed an edge preserving con-
straint and a pyramidal reconstruction strategy, which could
preserve the discontinuity appeared in the depth image and
deal with a higher upsampling factor. Filtering-based meth-
ods achieved depth SR via local filters, which usually relied
on guidance maps. The representative work is joint bilateral
fileter [19], which calculated the filter parameters using the
RGB-D pairs for depth SR. Lo et al. [20] presented a joint
trilateral filtering (JTF) algorithm for depth image SR, which
extracted spatial and range information of local pixels and
integrated local gradient information of the depth image. The
regularization-based methods adopted regularization terms to
make the depth SR problem well constrained. Liu et al. [21]
proposed a robust optimization framework for color guided
depth image restoration, which performedwell in suppressing
texture copy artifacts and preserved sharp depth discontinu-
ities than the previous weighting schemes.

The application of convolution neural network (CNN)
has greatly improved the performance of depth SR, which
benefits from advanced network architecture, effective loss
functions and massive data. Ye et al. [22] proposed an end-to-
end deep controllable slicing network to realize region-level
depth recovery and high generalization ability for the task
of depth SR, which contains a scale-controllable module
and a depth slicing module for realizing the fine-grained
control of depth restoration with arbitrary magnification
and using depth image features with different depth ranges.
In CNN-based methods, color image is often adopted as

supplementary information to improve reconstruction accu-
racy. In addition, these methods based on RGB-D pairs need
extra operations to prevent texture artifacts. Jiang et al. [23]
proposed to predict depth edges via fusing deep features
extracted from two kinds of images in different scales without
directly utilizing color images. They constructed a disen-
tangling cascaded SR network to achieve depth image SR
by fusing depth edge map and LR depth image. Deng et al.
[24] designed a novel CNN to solve the general multi-modal
image restoration (MIR) and multi-modal image fusion
(MIF) problems based on a multi-modal convolutional sparse
coding (MCSC) model.

Sincemulti-sensory data are complementary, e.g. color and
depth, we propose a new video coding method that combines
multi-sensor collaboration with video compression to save
bits in this work.

III. PROPOSED METHOD
As illustrated in Fig. 1, the proposed method combines two
networks CNN-US and CNN-QE with 3D-HEVC to save
bits using multi-sensor collaboration. CNN-US is used to
achieve up-sampling on the compressed depth video frames
for sampling factors 2 and 4, while CNN-QE is used to
achieve quality enhancement on the depth video frames based
on the correlation between color and depth for all sampling
factors, i.e. 1, 2, and 4.

A. CNN-US
CNN-US is proposed to achieve depth image super-
resolution, which can be used to the case of sampling fac-
tors 2 and 4 in our framework. The network architecture
of CNN-US is shown in Fig. 2. Dilated convolution [26]
can increase the receptive field while keeping the number of
parameters unchanged, which achieves that each convolution

4872 VOLUME 11, 2023



Z. Ji et al.: Saving Bits Using Multi-Sensor Collaboration

FIGURE 3. Network architecture of CNN-QE. CNN-QE is based on U-Net framework and residual learning, which utilizes the depth image as
guidance to conduct the Y channel of the corresponding RGB image and generate its residual map. Meanwhile, CNN-QE performs intermediate
prediction of each upsampled block output as multi-scale loss function. c64k3s1 indicates a feature map number of 64, a kernel size of 3 and a
stride of 1, while i indicates different scales. D′′ represents the output of CNN-US, Y represents the Y-channel of the corresponding compressed
RGB image, D′ represents the output of CNN-QE and R represents the difference between the final output and the ground truth of the depth image.

output contains rich context information, and ensure that the
size of the output feature map remains constant. Therefore,
dilated convolution can well avoid the loss of internal data
structure and spatial hierarchical information caused by the
upsampling layer and the pooling layer, and reconstruct the
information of tiny objects. The pixel shuffle layer [27] con-
verts low-resolution (LR) feature maps to high-resolution
ones (HR) through convolution and multi-channel recom-
bination, which can effectively avoid the artifacts during
up-sampling by convolution and interpolation.

CNN-US utilizes pixel shuffle layer as up-sampling
operation and dilation blocks to better capture global infor-
mation of images. Each block is composed of 4 dilated
convolution layers followed by the Leaky ReLU layers. The
input of CNN-US is the frames of compressed low-resolution
depth video, while the output of CNN-US is the frames of
high-resolution depth video. We adopt L2-loss as the loss
function of CNN-US, which is defined as follows:

LUS =
∥∥D′′

− GT
∥∥
2 (1)

where D′′ represents the output of CNN-US and GT repre-
sents the corresponding ground truth of the depth image.

B. CNN-QE
CNN-QE is designed to achieve quality enhancment on depth
images based on multi-sensor collaboration. Guo et al. [28]
proposed a depth super-resolution method which infers a HR
depth image from its LR version by hierarchical features
driven residual learning. The method achieves depth image

enhancement by obtaining a residual map corresponding to
the up-sampled depth image via a convolutional neural net-
work. Inspired by this idea, we designed CNN-QE to imple-
ment enhancement operation on the depth image by residual
learning, which can enhance the high frequency component
of depth video frames, to apply to sampling factors 1, 2 and
4 in our framework. The overview of the proposed network
architecture and parameter settings is shown in Fig. 3. Differ-
ent from previous depth super-resolution methods like [28]
that extract hierarchical intensity features from color images
to transfer useful structure to the final HR depth images,
our proposed framework utlizes the structure information of
depth images as guidance to assist the Y channel of the corre-
sponding color images to reconstruct residual maps as shown
in Fig. 3. CNN-QE uses the fixed-size convolution kernel to
extract different levels of depth features, which can make full
use of the edge information in the depth image and eliminate a
large number of detailed textures in color images. In addition,
the proposed CNN-QE is based on U-Net [29] framework.
Skip connection operation is a direct connection between
nodes of different layers in U-Net framework by skipping one
or more layers of nonlinear processing. As one of the algo-
rithms that utilize multi-scale features to solve problems, skip
connection can alleviate gradient disappearance and achieve
feature enhancement. Based on U-Net framework, CNN-QE
can realize feature reuse and ensure maximum information
flow between layers. Meanwhile, inspired by [30], we gener-
ated intermediate predictions of each upsampled block output
and put them into the loss function, which can minimize the
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difference between the reconstructed residual map and the
corresponding ground truth. In addition, we introduced the
difference between the final output and the ground truth
of the depth image as a part of loss function to improve
enhancement performance. In our experiments, L2-loss is
good enough to get better results in CNN-QE. The loss func-
tion of CNN-QE is formulated as:

LQE =

3∑
i=0

2−i
∗ ∥Ri − mi∥2 +

∥∥D′
s − GT

∥∥
2 (2)

wheremi represents multi-scale featuremap andRi represents
the residual map of the corresponding size, m0 represents the
output of CNN-QE, R0 represents the ground truth of the
residual map, D′ represents the input of CNN-QE and GT
represents the ground truth of the depth image.

Based on the characteristics of multi-sensor collabora-
tion and residual learning, CNN-QE with U-Net framework
as backbone and LQE as loss function, is designed to
achieve depth image enhancement. The input of CNN-QE
is decoded depth and color video frame or the output
of CNN-US, and the output is the enhanced depth video
frame.

C. MODEL SELECTION STRATEGY
In our experiements, we found that in sampling factor 1,
i.e. the same size of the input color and depth videos, due
to the difference of residual maps under different quantiza-
tion parameters (QPs), the effect of a single training dataset
is poor for the recovery of high frequency component of
depth videos. Meanwhile, we found that the performance
can be improved by a compressed training dataset whose
compression degree, i.e. QP, is smaller than the compression
degree of the test sequences. Thus, we use the compressed
dataset for training whose QP is slightly lower than that of
the test sequences. The loss of the data is similar between
the training and testing sets, which is more conducive to the
image reconstruction. Therefore, we use a model selection
strategy for sampling factor 1 in the proposed method as
follows:

1) For QP34, train CNN-QE with uncompressed training
data.

2) For QP39 and QP42, train CNN-QE with training data
compressed by HM16.16 in QP34.

3) For QP45, train CNN-QEwith training data compressed
by HM16.16 in QP39.

The setting of QPs is based on 3D-HEVC common test
condition (CTC) [7].

IV. EXPERIMENTAL RESULTS
Compared with 3D-HEVC anchor, we perform visual com-
parison and quantitative measurements on 7 test sequences
in 3D-HEVC dataset [7]. To consider the size mismatch
between color and depth frames, the proposed method is
implemented on 3D-HEVC codec by encoding and decoding
color and depth videos separately.

A. NETWORK TRAINING AND IMPLEMENTATION
For sampling factors 2 and 4, we utilize the same training
datasets with [28], namely 58 RGB-D images from MPI Sin-
tel depth dataset [31] and 34RGB-D images fromMiddlebury
dataset [32]. To increase the amount of training data, we aug-
ment data with flipping and rotation [28]. In the training
phase, the depth images are cropped to 128 × 128 image
patches by random sampling, thus reducing the training time.
Finally, the augmented training data have roughly 170,000
image patches. To synthesize LR depth images, we down-
sample each full-resolution image patch by uniform sampling
with the scaling factors. For sampling factor 1, it is required
to use the training data under different QPs to achieve depth
video enhancement. Therefore, we use DIML indoor training
dataset [33] that contains 1500 RGB-D images and generate
the compressed training data in QPs 39, 42 and 45. We also
perform the same data augmentation in sampling factors 2
and 4. Since the training datasets are image pairs, all of the
test sequences are compressed by HEVC reference software,
HM16.16, under All Intra (AI) configuration. The setting of
QPs is based on 3D-HEVC CTC, where the QPs of the depth
video are 34, 39, 42, 45 and the QPs of the corresponding
color video are 25, 30, 35, 40. These test sequences covers
different resolutions and scene conditions to verify the perfor-
mance of the proposed method framework. During the train-
ing phase in CNN-US and CNN-QE, we use a batch-mode
learning method with a batch size of 64 with ADAM opti-
mizer for network optimization. The number of epochs is
set to 100 for CNN-US and 50 for CNN-QE. The learning
rate is set to 1e−4 for CNN-US and CNN-QE under different
sampling factors. For training, we use PyTorch framework on
a PC with one Tesla V100 GPU.

B. VISUAL COMPARISON
We evaluate the proposed method on 7 test sequences that
are provided by 3D-HEVC CTC [7]. The 7 test sequences
are composed of two groups according to size: one with
size 1024 × 768 - Kendo, Balloons and Newspaper, and the
other with size 1920 × 1088 - Poznan Hall2, Poznan Street,
Undo Dancer and GT Fly. Since each group shows similar
performance, we select one test sequence for visual compar-
ison on each group: Kendo and Undo Dancer. Meanwhile,
in our experiments, we have found that HM can not encode
the second group of test sequences whose size is 1920 ×

1088 under sampling factor 2. The situation is due to that
HM codec is unable to divide proper Coding Unit (CU) for
inappropriate video size. Therefore, we have implemented
sampling factors 1 and 4 on the second group.

The visual comparison results on Kendo andUndo Dancer
sequences are shown in Fig. 4 and Fig. 5, respectively. The
results of the first row show that 3D-HEVC anchor occurs
obvious blocky artifacts that expand with the increase of
QP and edge information of depth images gradually blurs.
The second row shows the results by the proposed method
under sampling factor 1. Compared with 3D-HEVC anchor,
the edge information has been enhanced to a certain extent.
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FIGURE 4. Visual comparison on Kendo sequence. QP represented by four columns are 34, 39, 42 and 45 in turn. The first row represents
3D-HEVC anchor with apparent blocky artifacts. The second row, the third row and the last row represent the experimental results under
sampling factors 1, 2 and 4, respectively. The results indicate that the proposed method can eliminate blocky artifacts, but with local distortion in
some cases.

TABLE 1. BD rates for the first view of depth videos in comparison with 3D-HEVC anchor on 7 test sequences. NR: Not reported.

The third row shows the results under sampling factor 2.
As QP increases, the proposed method causes edge blurring
and local distortion but without obvious blocky artifacts. The
last row shows the results in the case of sampling factor 4.
With increase of QP, the blur of edges grows more severe and
the distortion becomes obvious, but there are still no serious
blocky artifacts. The visual comparison demonstrates that
CNN-US and CNN-QE effectively suppress blocky artifacts
and thus the proposed method is effective in video compres-
sion using multi-sensor collaboration.

C. QUANTITATIVE MEASUREMENT
In video coding, Bjøntegaard-Delta (BD) rate [34] and rate-
distortion (RD) curve [35] are usually used to evaluate the

rate-distortion performance of different video encoders and
BD rate can be calculated from RD curve. Both BD rate
and RD curve can intuitively represent the coding efficiency
improvement of the optimized algorithm compared with the
original algorithm under the same video quality. A negative
BD rate indicates that the coding performance of the opti-
mized algorithm has been improved. For RD curve, higher
curve points indicate better performance. We adopt two met-
rics to assess the proposed method. In addition, 3D-HEVC
utlizes multi-view coding structure, which can make use of
the information of the first view to eliminate redundancy,
thus the first view is the pivotal coding content. To verify
the effectiveness of the proposed method, we perform the
evaluation focusing on the first view in our experiments.
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FIGURE 5. Visual comparison on Undo Dancer sequence. QPs in four columns (left to right) are 34, 39, 42 and 45 in turn. The first row represents
3D-HEVC anchor. The second row and the last row represent the experimental results under sampling factors 1 and 4, respectively. The results show that
the proposed method can remove blocky artifacts with local distortion in some cases.

FIGURE 6. RD curves for the first view of Kendo, Balloons and Newspaper sequences. Left to right: Kendo, Balloons and Newspaper. The horizontal
axis represents the bitrate for the first view of depth videos. The vertical axis represents the average PSNR value of all depth frames for the first view
of depth videos. RD curves are drawn based on four QPs: 34, 39, 42 and 45. The blue line indicates 3D-HEVC anchor, and the green line, the red line
and the black line represent the experimental results under sampling factors 1, 2, and 4, respectively. RD curves show that the proposed method can
remarkably save bits while maintaining video quality.

Table 1 shows that BD rate results for 7 test sequences.
Compared with factor 1, BD rate is significantly improved
in factors 2 and 4. In factor 1, we adopted CNN-QE to
achieve quality enhancement on the decoding results of
3D-HEVC and BD rate has a certain gain. In factors 2 and 4,
we introduce down-sampling operation for depth videos
and thus the proposed method can save bits remarkably
while achieving quality enhancement. That is, the pro-
posed method achieves a significant improvement in BD
rate. Compared with factor 2, factor 4 saves more bits
with a more gain in BD rate. RD curves are shown in
Figs. 6 and 7, which compare the performance of the
proposed method under different sampling factors in com-
parison with 3D-HEVC anchor. The RD curves indicate
that:

1) Under sampling factor 1, CNN-QE can achieve a certain
degree of quality enhancement on depth videos by the model
selection strategy;

2) Under sampling factor 2, CNN-US and CNN-QE
remarkably save bits while improving the quality of depth
images;

3) Under sampling factor 4, CNN-US and CNN-QE
remarkably save bits with a limit of quality improvement in
high bitrate due to the lack of information in the input depth
videos.

The visual comparison on Kendo and Undo Dancer
sequences indicates that the proposed method successfully
removes blocky artifacts, and CNN-US and CNN-QE are able
to perform super-resolution and quality enhancement well.
The quantitative measurements on BD rate and RD curve
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FIGURE 7. RD curves for the first view of GT Fly, Poznan Hall2, Poznan Street and Undo Dancer sequences. Top
left to bottom right: GT Fly, Poznan Hall2, Poznan Street and Undo Dancer. The horizontal axis represents the
bitrate for the first view of depth videos. The vertical axis represents the average PSNR value of all depth
frames for the first view of depth videos. RD curves are drawn based on four QPs: 34, 39, 42 and 45. The blue
line indicates 3D-HEVC anchor, and the green line, the red line and the black line represent the experimental
results under sampling factors 1, 2, and 4, respectively. RD curves show that the proposed method can
remarkably save bits while maintaining video quality.

verify that the multi-sensor collaboration can contribute to
video compression and remarkably save bits while maintain-
ing video quality.

V. CONCLUSION
In this paper, we propose a new video coding method
that saves bits using multi-sensor collaboration. Traditional
video coding methods have saved bits by removing redun-
dancy in videos. Recently, multiple types of sensors are
being deployed to many solutions, and the proposed
method newly attempts to save bits using multi-sensor
collaboration. We have introduced multi-sensor collab-
oration to the 3D video coding based on color and
depth sensors. We have elaborately combined color guided
depth super-resolution (CNN-US and CNN-QE) with video
compression and make full use of multi-sensor collaboration
to save bits without degrading image quality. Experimen-
tal results demonstrate that the proposed method achieves
average 5.9%, 66.8%, and 71.0% BD-rate reductions
over 3D-HEVC anchor for sampling factors 1, 2 and 4,
respectively.

In our future work, we would like to extend multi-sensor
collaboration to various multi-sensory data compres-
sion, e.g. visible (VIS) and infrared (IR) sensors, color
and near infrared (NIR) sensors, and color and LiDAR
sensors [36], [37].
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