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ABSTRACT Precision farming is one of the ways of transition to the intensive methods of agricultural
production. The case of application of unmanned aerial vehicles (UAVs) for solving problems of agriculture
and animal husbandry is among the actively studied issues. The UAV is capable of solving the tasks of
monitoring, fertilizing, herbicides, etc. However, the effective use of UAV requires to solve the tasks of
flight planning, taking into account the heterogeneity of the available attachments and the problem solved
in the process of the overflight. This research investigates the problem of flight planning of a group of
heterogeneous UAVs applied to solving the issues of coverage, which may arise both in the course of
monitoring and in the process of the implementation of agrotechnical measures. The method of coverage
path planning of heterogenic UAVs group based on a genetic algorithm is proposed; this method provides
planning of flight by a group of UAVs using a moving ground platform on which UAVs are recharged and
refueled (multi heterogenic UAVs coverage path planning with moving ground platform (mhCPPmp)). This
method allows calculating a fly by to solve the task of covering fields of different shapes and permits selecting
the optimal subset of UAVs from the available set of devices; it also provides a 10% reduction in the cost of
a flyby compared to an algorithm that does not use heterogeneous UAVs or a moving platform.

INDEX TERMS Precision agriculture, heterogeneous UAVs, monitoring, coverage path planning.
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I. INTRODUCTION

In 2050 the number of inhabitants of the planet should reach
9.6 billion [1]. Rapid population growth requires the accel-
erated growth of the food base. Transition from extensive
to intensive methods of agricultural production is necessary.
One of these methods is a system of new technologies called
Precision Agriculture (PA). PA is an agricultural productivity
management system based on a complex of aerospace, infor-
mation and communication technologies [2]. PA is an ele-
ment of precision land management and consists of precision
crop farming and precision livestock farming [3] (see Fig.1.).
PA allows setting up the actions for managing agricultural
production in space and time. The cultivated fields are con-
sidered as a heterogeneous object, each site of which is
individual and requires a different amount of resources [4].
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FIGURE 1. Precision agriculture as a part of precision land management
technologies.
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More and more farmers in recent years have recognized
the efficiency of production with employment of PA tech-
nology. In 2005 a survey among the US farmers showed that
75% of respondents had a negative attitude towards PA [5];
nevertheless, according to the data of year 2018, 75% of
farmers already use or plan to use this set of technologies [6].
PA implies more precise planning of agrotechnical measures
based on the collection and processing of a large amount of
information, for example, metered application of fertilizers
and herbicides only in areas where it is necessary. Due to
the precise use of resources, PA reduces the production and
environmental costs associated with agrochemical measures,
allows increasing the labor efficiency [7], crop productivity
(by 30-60% [8]) and revenues. For example, the employment
of PA in Kazakhstan can bring an economic effect of up to
$ 5 billion per year [8]. PA is based on the collection of up-
to-date data on the state of soil, plants and weather obtained
from the sensors installed in the fields and images of various
spatial resolutions obtained from satellites or on-board plat-
forms (manned or unmanned), which are then processed to
extract the information and make decisions. [9]. Unmanned
aerial vehicles (UAVSs) or drones can be used to collect such
data at the local level; these solutions have a number of
advantages in price, speed and mobility. Moreover, UAVs can
also be used to perform precise agrotechnical measures, such
as the application of fertilizers and herbicides. According to
Eagle Brother, the agricultural UAV market is expected to
grow to $5.19 billion by 2025 [10] primarily because UAVs
have a number of advantages over satellites and manned
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aircraft [11]. The intensive use of UAVs is conditioned by
such factors as relatively low cost [12], availability in the
market [13], ease of use and control [14], use in operation
in hard-to-reach places [15], and the possibility of changing
the functionality depending on the task, which should be
solved [16].

However, for the effective use of UAVs, it is necessary to
reduce the share of manual labor in their controlling and to
improve the quality of monitoring. This can be achieved by
the development of special methods, comprising the follow-
ing ones:

1) Image processing methods applied for solving the tasks
of classification and identification with employment of
multispectral images [17];

2) Flight control methods, providing the solutions to the
problems of covering a given area with one device or a
group of devices [18].

In this paper, we focus on the second problem. At the
present time, this problem is considered in the studies which
propose the planning of the optimal path for one drone’s or
group of drones’ mission based on the coverage problem [18].
Although the coverage algorithm is usually quite simple,
however, its implementation in specific cases may require
non-trivial optimization. It may be necessary to plan flights of
one or more UAVs in the fields of different shapes. Moreover,
both take-off and landing points can move during the process,
and UAVs may differ in technical characteristics. Therefore,
we consider the task of flight planning for a group of techni-
cally heterogeneous UAVs based on a moving platform and
covering relatively large fields of different shapes. Such task
can arise both in the course of monitoring the fields and in the
process of applying fertilizers and herbicides using UAVs.

The goal of this study is the development of a new method
for planning the flights of a group of heterogeneous UAVs
using a mobile platform for recharging and replenishment of
stock of substances. The method is developed based on the
use of a genetic algorithm (GA). The principal specifics of
the GA based method are

1) the path planning for the coverage of the agriculture field
by a group of heterogeneous UAVs.

2) the selection of the group of heterogeneous UAVs from
the predefined available set of UAVs.

3) the consideration of a vehicle platform supported the
mission and planning of its movement.

The efficiency of mobile platform (vehicle) exploitation in
problems of covering agricultural fields is evaluated in this
study too. The experimental study shows that the proposed
method optimizes the trajectories of technically heteroge-
neous UAVs and the mobile platform, minimizing the cost
of covering fields of various shapes.

The paper is organized as follows. Section Il is an overview
of methods and software systems for flight control of UAVs.
This overview includes methods for solving the issue of cov-
erage too. Section III describes a method for planning flights
of a group of heterogeneous UAVs and moving a mobile
platform for covering (flyby) fields of different shapes.
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In Section IV the experimental study of the application of the
proposed method for fields of different shapes is discussed.
In conclusion, the principal results are summarized and prob-
lems for further research are considered.

Il. RELATED WORKS
A. UAVs IN PRECISION AGRICULTURE
Remote sensing, global positioning system (GPS), wireless
sensor network (WSN), sensors, UAV in general are the most
widely used technologies in PA [19]. PA technologies require
precision in the delivery of fertilizers, pesticides, herbicides,
fungicides, insecticides with minimal environmental risk to
workers and impact on cultivated plants [20]. The use of
UAVs solves to high degree these problems, including sig-
nificant (15-20%) savings of sprayed substances [21] and
high quality of spraying [22]. The study [23], [24] lists the
following UAVs applications in PA:

o Weed detection, mapping and management.

e Monitoring of vegetation growth and yield estimates.

e Monitoring the state of vegetation.

e Crop irrigation management.

e Smart sensor integration

Summarizing the data given in the literature, it can be
noted that UAVs can be used in almost all major classes of
agricultural work (see Fig. 2) [8]
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FIGURE 2. Agrotechnical works supported by UAVs.

Nevertheless, despite the good prospects, UAVs-based
applications have a set of limitations that can be divided into
three groups [8], [24]:

1. Technical. Limitation of power autonomy, flight
time, payload, sensor sensitivity, dependence on
weather conditions, limitations in computing power on
board, etc.;

2. Legal. The impossibility of some use options within the
city limits and restrictions on the use of UAVs weighing
more than 250 grams [25];

3. Software and algorithmic.

Software and algorithmic limitations include limitations in
data processing and limitations of software tools and algo-
rithms for UAV control and flight planning. The tasks of
flight planning and UAV management are very relevant, they
include [16]: area coverage, search operations, routing for
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a set of locations, data collection and recharging in a wire-
less sensor network (WSN), allocation of communication
channels and computing power for mobile devices, and the
operational aspects of a self-organizing drone network.

B. COVERAGE PATH PLANNING PROBLEM FOR PA

To solve the issues of precision farming, it is possible to
specify the task of coverage path planning (CPP) in two
modifications:

e CPP1 - for monitoring the condition of the field and
crops (monitoring task), when the impact on the ana-
lyzed surface is not expected.

e CPP2 — for the application of fertilizers, herbicides,
phytocides, etc. (application task), which involves addi-
tional restrictions related to the impact on the cultivated
fields.

The standard solution for the problem of coverage is to
use the back-and-forth algorithm, also called Zamboni [26].
It was found that for the CPP2 task other coverage options
(spiral, waves) are not effective, since many turns consume
battery power faster and negatively affect the quality of
spraying [27].

The market offers both commercial UAV control prod-
ucts and open source programs; the following commercial
products are offered in the market: senseFly(eMotion) [28],
Pix4D [29], DroneDeploy [30] and DJI (Terra) [31]; the open
source software are represented by OpenDroneMap [32],
microkopter [33], LibrePilot [34], and Dronecode [35], which
carry out (in different degrees of readiness) allocation of
the territory within which surface monitoring is carried out;
calculation of the optimal route for covering the territory with
one UAV; simulation of flight along the route (pre-launch
check); receiving flight data (UAV status) in real time with the
possibility of emergency termination of the flight if necessary.
However, in many cases there is a need in the algorithms
that optimize the route of one or more UAVs for specific
applications

The task of flight planning can be considered as an
optimization task with constraints. It can be defined as
follow [36]:

d =minc(x,t,e)

where x - expenses, ¢ -time, e - energy, c is the cost function of
all set of feasible path and ¢’ is an optimal path cost function.

The classical methods such as linear or nonlinear program-
ming methods are not suitable for large-scale objects and
complex objective functions. In such cases, artificial intelli-
gence methods (machine learning, fuzzy logic, swarm opti-
mization, hybrid methods and evolutionary programming)
are used [37]. The literature mentions genetic algorithm
(GA), particle swarm optimization (PSO), ant colony opti-
mization (ACO), artificial neural network (ANN), learning-
based methods, etc. Of those listed, GA accounts for 21% of
publications and is one of the most popular flight planning
algorithms [38].
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The GA mimics the Darwinian principle of natural selec-
tion. GA implies the presence of some candidate solutions,
which are usually called individuals, organisms, creatures
etc. During the execution of the GA, the population size of
individuals does not change, and bad solutions (individuals)
are replaced by better ones using stochastic selection based
on fitness function [39], [40].

In the early stages of the research, GA was considered in
comparison with other algorithms as one of the possible ways
to solve the UAV path planning problem. For example, the
study [41] explores the performance difference between PSO
and GA. The authors claim that PSO gets quality solutions
faster. At the same time, the paper [42] presents the results of
the comparative experiments in a 3D environment. Parallel
GA selected better trajectories than PSO did. The cost func-
tion took into account the route length, flight altitude, danger
zones, UAV power, collisions, fuel, and trajectory smoothing
(UAV with a rigid wing.)

Subsequently, GA was used to solve more complex prob-
lems, such as real-time flight planning [43]. The cost function
in this case took into account the length of the path, the
average height of the path, the intersection of radar zones,
the cost of the path exceeding the power of the UAV, the cost
of the path exceeding the range of the UAV, the cost of paths
intersecting with the earth’s surface. To improve the initial
GA population, authors of the paper [44] applied ACO, which
made it possible to increase the solution speed in a simulation
environment with many obstacles.

The above-mentioned paper [37] considers that GA,
among others, is used to maximize the coverage of the desig-
nated area, taking into account the time limit and feasibility
of the path. The study [45] shows the use of GA and the algo-
rithm “Traveling Salesman Problem” (TSP) for solving the
task of covering with obstacles. The field is divided into cells
free of obstacles, and back-and-forth motion is performed
to cover the entire working area in each of these cells. The
study [46] views GA as a means of minimizing the energy
used by the drone and a way to minimize the number of UAVs
tours. Nevertheless, it should be noted that this optimization
goal presents certain limitations, since it does not take into
account the associated costs of performing CPP.

Simultaneous use of several UAVs complicates the task
of flight planning; however, it gives a number of serious
advantages in the speed of mission completion and the ability
to cover a larger area [47]. The study [48] reveals the route
optimized for the application of fertilizers and pesticides,
taking into account the areas exposed to stress and identified
at the preliminary stage. Optimal routes are based on the
Traveling Salesman algorithm and Voronoi diagram. The
article [49] discusses an approach to managing a variety of
UAVs for optimal coverage in order to monitor the area of
interest. The main objective is to minimize the time of mis-
sion completion by optimizing the distribution of waypoints.
The simulation was carried out using MATLAB [50] and
GAZEBO [51].
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Perhaps, for the first time the issue of collisions in the
problem of planning the path of a set of UAVs using GA
was considered in [52], where the cost function takes into
account the length of the path, deviation from the original
trajectory, distance from the trajectory to obstacles, the angle
of rotation and collision. The study [53] proposes parallel GA
that solves the flight planning problem and minimizes the risk
of collisions. In [54] a similar task is solved using real-time
recursive multi-agent GA.

Authors of the study [18] propose a coverage path planning
method for a spraying drone, which allows restricting the
flight to the region of interest avoiding potential collisions;
this method also provides the shorted computational time.
Nevertheless, this method can be used for the homogenous
group of UAVs only. Another restriction of this method is path
planning for space in form of non-convex polygons.

Multirotor agrodrons have a limited flight time, which
is not enough to cover even relatively small fields (about
1 ha, as described in [55]). In the case of large areas, for
the CPP1 task and in most cases for solving the CPP2 task,
it is necessary to take into account the presence of a mobile
ground platform on which UAVs are refueled and recharged.
Experiments on covering large fields are described in [56].
The method involves launching the homogeneous UAVs from
the middle of the field. In general, the approach is effective
since the center of the field is equidistant from the edges
and several drones are able to make equal overflights of the
selected subfield without the risk of collision. The problem,
however, is the need to deliver the UAVs and the ground
station to the middle of the field. The algorithm of multi
coverage path planning (mCPP) was proposed to cover a large
area with several devices. The essence of this algorithm is the
division of the field into smaller subfields, after which the
back-and-forth algorithm is applied to cover each individual
subfield [57]. The research [58] describes an algorithm that
solves a similar problem of planning the flight path of a group
of UAVs to provide CPP2. There was proposed a modification
of GA, which takes into account the time window of the
optimal temperature for high-quality spraying.

Table 1 lists the parameters of the GA cost function that are
often mentioned in the literature.

The launch of UAVs from a moving platform is found in
the tasks of cargo delivery [63], [72], search and follow the
target [73]; however, it has not yet been considered in the
tasks of agricultural application of UAVs. Meanwhile, a mov-
able ground platform (car) can carry on board a charging
station or battery sets, as well as containers for fertilizers,
herbicides, bacteriophages, etc., which can be used to solve
the CCP2 task.

To summarize the facts, task of planning the flights of a
group of technically heterogeneous UAVs that periodically
replenish the charge and reserves on a mobile platform, sub-
ject to heterogeneous constraints arising in the process PA
implementation, does not have a common solution. There-
fore, investigations in this field are actual and perspective.
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TABLE 1. GA parameters.

Parameters of the genetic | References
algorithm
Track length [41], [42], [43], [44], [53], [46], [60],

[611,[65], [66], [54], [67], [68], [69], [70]
[42], [43], [44], [54]

[52], [58], [59], [63], [67], [68] .[64]
[41], [52]

Flight altitude

Flight time

Deviation from the
original trajectory
Distance to obstacles
(danger zones)

Rotation angle, direction
of travel

Possibility of collision [42], [43], [45],[52]
Path smoothing [42], [44], [59], [65]
Probability of mission [68]

[42], [43], [44], [45], [52], [69]

[59], [46], [52], [66], [67]

completion

Energy consumption [46], [65]

Multi UAVs [43], [45], [62], [63], [54], [52], [58], [71]
3D [43], [44], [54], [64]

The authors of this paper present one of the possible algo-
rithms for optimizing the flights of a group of heterogeneous
UAVs to solve the problem of coverage using a moving
ground platform (multi heterogeneous UAVs CPP with mov-
ing ground platform — mhCPPmp).

ill. METHOD

In this paper, a new method for determining the optimal paths
of several drones to fly around agricultural fields and vehicle
platforms for supporting the drones’ missions is proposed.
The back-and-forth route, also called “Zamboni” (see Fig. 3)
is typically used for path planning in such covering problems.
However, UAVs route planning in agricultural applications
requires taking into account a number of limitations that arise
in the practical application of UAVs. In particular, for the
proposed method we take into account:

FIGURE 3. Zigzag route of Zamboni.

— The shape of the agricultural field, which for example,
can be triangular, non-convex, smoothly curved, etc.

— The predefined available set of UAVs of different man-
ufacturers, models, and types, including multi-rotor and
single-rotor UAVs, as well as aircraft-type UAVs; these
drones can have different technical characteristics and
be heterogeneous.

— The availability of a mobile platform to support the
drone mission and its location near the field.
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— Other limitations as total flight time, price, maintenance
cost, etc.

These limitations have a different nature, which leads to
the decision of the optimization problem with heterogeneous
constraints problem, which can be decided by random search
algorithms, in particular, a genetic algorithm. Therefore the
proposed method core is implemented based on genetic algo-
rithm which is considered below.

Genetic algorithm models the process of evolution. Each
individual (candidate solution) is described by a set of prop-
erties. GA iteratively forms new populations of individuals
(generations) using the randomly generated initial popula-
tion. In each generation, the adaptability of every individual
is calculated using fitness function. Fitness function is the
objective function in the path planning optimization prob-
lem. The most fitting individuals (solutions) are stochasti-
cally selected. The properties of the selected individuals are
recombined and/or randomly mutated. The new generation of
individuals is then used in the next iteration of the algorithm.
After a certain number of iterations, a generation that has the
best fitness values is formed.

A. GENETIC ALGORITHM COST FUNCTION FOR UAVs
ROUT OPTIMIZATION

The goal of the GA is to minimize the cost function, the target
indicator for optimization. The value of the function depends
on the set of restrictions (the shape of the field, the road along
which the platform moves, the list of parameters available
for the use of the UAV) and the search space. In general,
for the considered problem of optimal path planning the
optimization task is defined as:

Cpin=min C (d,i,1,r) (1)

where d € Dir is drone direction, i € Ip is entry points,
| € List is set of available UAVs, r € Route is a route of
a vehicle for the drone mission support. Let us consider the
fitness function parameters (1) in more detail.

Drones directions (d € Dir) are a floating—point number
in the range from O to 360, which determines the angle
between the geographical parallel and the direction of the
zigzag movement.

Entry points (i € Ip) are starting point of drone missions
for the specified field. In the proposed method, the number
of possible starting points does not depend on the shape of
the field and is always 4. Taking into account the direction
(angle), there are always no more than 4 different entry points
in the corners of the field. All other potential entry points
are considered suboptimal, since at some stage it will be
necessary to return to the missed section to fly around it
(see Fig. 4).

Set of available UAVs (I € List) is used to define the group
of drones for specified field flying. The group is selected from
the predefined list, possibly with repetitions. The following
UAVs properties are taken into account:

a. Maximum speed.

b. Maximum flight range.
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FIGURE 4. Four possible entry points for a given flyby direction.

c. Maneuverability coefficient — determines the degree
of deceleration on turns depending on the angle of
rotation.

d. Price per take-off-landing cycle — monetary assessment
of possible risks and wear of the drone during take-off
and landing.

e. Price per kilometer/hour — monetary assessment of the
wear of the drone per hour/kilometer of flight.

Route of a vehicle (r € Route) is should be optimal and
taken into account by the fitness function. There are many
routes for the movement of a vehicle acting as a moving
platform on which UAVs, funds for replenishing the used
substances and a charging station are transported. As it was
mentioned earlier, both the field and the road are defined as
input parameters. A road is defined as a line, accessible to
a vehicle (car). The places near the road are considered as
possible take-off and landing zones for drones (violet circles
on the fig.4). The car moves along the road while UAVs are
flying. This can reduce the overall cost of the mission as the
UAVs take off and land at different locations. Reloading and
refueling times are not taken into account. It is believed that
the car contains sets of ready-made batteries and containers.
The optimization process comprises the necessity to select the
route re Route as one or more take-off and landing positions
on the path of the vehicle.

The cost function is an essential part of any optimization
method. Quite a popular method of solving CPP are GA
modifications that minimize energy consumption, the number
of rounds [46] or the duration of the flight [58]. However,
such optimization goals do not allow considering the costs
of maintenance personnel, the cost of operating UAVs, etc.
For elimination these limits, we propose to use a next fitness
function.

B. GENETIC ALGORITHM FITNESS FUNCTION
The mhCPPmp method developed by the authors uses the
total cost of the flight as a fitness function, consisting of three
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components: the cost of drone wear and related risks, staff
salaries (pilot/driver) and a penalty for extended (exceeding
a threshold) flight time. The fitness function is calculated as
follows:

fit = (W + §)*P 2

where fit is the total cost of the overflight, W is the cost
associated with the wear of the UAVs, S is the cost associated
with the work of personnel and the vehicle, and P is the
penalty. It should be noted that the penalty P is an integral
(intangible) part of the cost function, since during the actual
flyby, only W and S contribute to the final cost of the flyby.
The penalty P plays the role of a regularization that allows
to avoid the convergence of the algorithm to solutions that
take an inadequately large amount of time, for example, to fly
around the field with a very cheap drone with a low flight
range for hundreds to thousands of hours. Let us discuss the
components of the mentioned costs.

The Cost of Drone Wear: It includes the cost of all take-off
and landing cycles (risks and wear) and the total cost of wear
of the drone during the flight/distance.

l
W= Zl (Weyicte 4 Wi * d + Wi x ) (3)

where > performs summation for all take-offs of all involved
[ drones, Weyjcie is the cost of take-off/landing (the parameter
describes, among other things, the risks of damage to the
drone during take-off/landing), Wy, is the cost (deprecia-
tion) per kilometer of flight, W, is the cost (depreciation)
per hour of flight, d is the distance traveled by the drone
during the flyby, h is the time. Wy, and W), can generally
be interchangeable, but they can also be used simultaneously.
This definition of W provides greater flexibility to adjust
the weights depending on the information available for this
drone (for example, official estimates of the manufacturer,
or statistics on the maximum time / distance for the period
of the drone operation).

Staff Salaries: This is an estimate of the cost of paying
a pilot with a given surcharge for each individual take-off
and landing cycle, including the cost of maintaining and
depreciation of the moving platform.

S = Trotal * Shourly + Nitarts * Sper—start (4)

where S is the total payment to the pilot, T3,y is total time
of flight (in hours), Spouriy is the costs per hour of flight,
Nitarss 18 the number of take-off and landing cycles, Sper—srar
is the additional payment to the pilot for one take-off and
landing cycle. Sper—siars can be used to adjust the algorithm’s
propensity to use bigger number of cheap drones (when the
parameter decreases), or to use fewer expensive drones with
a long range (when the parameter increases).

Penalty for too Long Flight Time: The penalty P allows
considering the maximum and boundary time of the flyby.
The maximum flight time sets a strict limit with an expo-
nential penalty. If the flight time exceeds the maximum flight
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time specified, the salary and the wear price of the drones are
multiplied by:

Phard = (1 + 1000t ~Toex) )

where Pjgq is hard penalty, Tyy, is total flyby time (in
hours)), Tyax is the specified maximum flyby time.

The boundary flight time sets a soft limit with a small
linear penalty, which prevents optimization to the maximum
flight time (to the hard limit). If the flight time exceeds the
stipulated limit value, the salary and the wear price of the
drones are multiplied by

Psofp = (1 +

where Py, is soft penalty, Ty is the total flyby time
(in hours), Tporderiine 15 the specified boundary flyby time, and
Tnax 1s the specified maximum flyby time.
The total penalty P is calculated as follows:
P =1,if Tyori < Tporderiine
P=P soft» if Tyorat = Tpordertine AND Tiorqi < Tinax
P = Pard, if Trotal > Tinax
A high-level pseudocode describing the operation of the
function is as follows:
grid = generate_grid(field, radius, direction)
current_position = 0
fit=20
for each car_stop:
for each drone:
W, S, P. current_position = eval(drone, grid,
current_position)
fit+=W+S)*P
return fit

(6)

(Ttotal - Tbara'erline))
(Tmax — Thorderline)

IV. CASE STUDY

The proposed method has been evaluated based on a simu-
lated environment, which includes agriculture fields of differ-
ent shapes. And this method has been used in the development
of the computing system for flight planning, identification,
and classification in the real environment. This system is
elaborated by the Institute of Automation and Information
Technology of Satbayev University (KazNRTU).

A. DATA OF SIMULATED ENVIRONMENT

The evaluation of the proposed method was carried out on a
set of five fields of different shapes and sizes (Fig. 5). The
field boundaries are shown by red lines in Fig.5. These fields
have different forms and it allows the consideration of the
proposed method specifics for complex forms of fields. The
purple circles indicate places where drones can take off and
land. These places are situated along a specified road.

The experimental study has been implemented for the fixed
set of drones and the proposed method allows the selection
of the group of heterogeneous UAVs from the predefined
available set of UAVs. The set of fixed UAVs used in the study
is shown in Table 2.
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In Table 2 next parameters for drones are shown: “Max
speed” reflects the operating speed of the drone, “Max dis-
tance” is the maximum distance for one take-off and landing
cycle, and ““Slowdown ratio” indicates the loss of speed on
turns depending on the angle (a higher value corresponds to
greater losses on turns). The parameters ““‘Price per cycle”,
“Price per kilometer” and ‘““Price per hour” correspond to
Weyicies Wim» Wi tespectively which are introduced in (3).

The distance between the parallel lines of Zamboni route
in the experiments was equal to 200 meters.

II
II
\
5
\
k. =

LY

FIGURE 5. Five fields where simulation experiments were conducted (left
to right, top to bottom: “Complex”, “Non-Convex", “Triangle”, “Small
rectangle”, “Big rectangle” fields).

The proposed GA based method needs the definition of the
constants introduced in (4) — (2). These constants have been
defined as:

« the maximum flyby time 7}, = 8, hours, since daylight

hours can be estimated as 8 hours;

« the boundary flyby time Tporderiine = 2, hours, which has

been defined by expert evaluation;

« the costs per hour of flight is defined according to pre-

liminary tariff rate Spuy = 10, dolars

« the additional payment to the pilot for one take-off and

landing cycle is defined according to a tariff rate too as
Sper—smrt =3.

The experimental study has been implemented based on a
genetic algorithm from the Python DEAP library. The popula-
tion size is set at 250 individuals, 150 generations. According
to the preliminary study 50 generations are sufficient for
algorithm convergence, but this number has been increasing
to have guaranteed convergence of the algorithm.

A two-point crossover and a standard tournament selection
with a group size of 3, implemented in DEEP, were used.
The mutation function was implemented independently due
to non-standard optimization parameters, such as an ordered
subset of drones and an ordered set of points on the road for
take-off sites. These parameters are defined for the fitness
function (1). The custom mutation function deals with each
of the 4 optimizable parameters independently:

« Direction (angle ranging from 0 to 360) can be modified
by adding a random number from Gaussian distribution
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TABLE 2. Set of the predefined drones used in the experimental study and their parameters.

e Max Max Slowdown Price per cycle Price per kilometer Price per hour

Name speed distance ratio Weyicie) Wiem) W)
1 DJIPhantom 4 7 33.6 0.005 0.78 0.023 1.68
2 DJIPhantom 3 58 24 0.005 0.464 0.019 1.115
3 DJIMavic Mini 2 58 29.97 0.0048 0.449 0.015 0.87
4 DJIMavic Mini 47 23.5 0.0063 0313 0.013 0.626
5 DIIMavic Air2 68 23.8 0.0048 0.936 0.026 1.811
6 DJIMavic Air 68 23.8 0.005 0.476 0.02 1.36
7 DJIMavic 2 72 372 0.005 1.674 0.045 3.24
8 DJIMavic Pro 61 27.45 0.005 0.732 0.026 1.626
9 DIl Spark 47 12.53 0.0063 0.167 0.013 0.626
10 parrot Anafi Thermal 15 6.5 0.0036 0411 0.063 0.95
11 parrot Anafi 54 225 0.0036 0.6 0.0266 1.44
12 Ryze Tello 29 6.28 0.005 0.031 0.005 0.145
13 Autel Robotics Evo II 72 48 0.005 2.88 0.06 432

with mean (mathematical expectation) equal to O and B. RESULTS

standard deviation equal to 45. In order to keep the value
in the range from O to 360, after this modification the
resulting value is divided by 360 and the remainder is
kept as the final result of the mutation.

« Starting point can take one of four different values rep-
resenting possible entry points to the field and denoted
“ne”, “nw”, “se” and ‘“sw”’. In case of mutation, its
value is just randomly assigned to one of the other
3 possible values.

¢ Ordered list of drones — in the case of mutating this
parameter one of three equally probable operations can
be applied:

o Inserting new random drone to a random position in
the list

o Removing random drone from the list

o Shuffling (randomizing order) drones list

¢ Ordered list of moving planform waypoints - in the case
of mutating this parameter one of three equally probable
operations can be applied:

o Inserting new random waypoint to random position
in the list. The waypoint is always located on the
road (shape of available starting positions)

o Remove random waypoint from the list

o Sorting the waypoints list. Sorting rather than shuf-
fling is justified by the hypothesis, that sequential
points on the road are more likely to be optimal,
than chaotic moving back and forth across the road
(the hypothesis is supported by the results of pre-
liminary experiments)

The algorithms were implemented as part of a Python
project using the Django framework for working with data
(fields, drones, missions) and visualization. The genetic algo-
rithm is launched through the distributed computing module
SCOOP (Scalable Concurrent Operations in Python). The full
source code is available in the GitHub repository [74].
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The experiments have shown that with a population size
of 250. The next list of parameters has been computed and
evaluated (Table 3 and Table 4):

« Shortest distance;

« Average distance;

¢ Minimum time;

« Average time;

o Minimum UAVs operating cost;

o Average UAVs price;

o Minimum wage;

o Average salary.

Tables 3 and 4 illustrate the result of the algorithm for the
first 6 iterations for the field Small Rectangle in Fig.5. The
columns “Minimum distance’, ‘“Minimum time”’, etc. show
the best value of the corresponding indicator among the Nth
population (iteration) of the genetic algorithm. Accordingly,
the columns ‘“‘Average distance”, “‘Average time”, etc. show
the average of the Nth population. The column ‘“Optimal
solution” shows four parameters of the optimal solution:
the angle of the flyby direction relative to the parallel, the
identifier of one of the entry points (North-West, North-East,
South-West or South-East — here the designation of the entry
point is given before taking into account the angle of the
flyby direction), an ordered list of drone numbers in the
group and a list of start/landing points (vehicle movement
points) in the form of a proportion relative to a straight
zigzag line road (that is, O and 1 are the ends of the road,
and for example 0.5 is the middle). These parameters agree
with the parameters of the fitness function (2). For example,
[191.30183, ‘sw’, [10], [0.769523]] can be interpreted in
the following way: 191.30183 is overflight angle, ‘sw’ is
South-West designation of the entry point, [10] is one drone
with the identifier 10 is used, [0.769523] is one landing/take-
off point is used, located at a distance of 0.769523 from the
point the beginning of the road (the total length of the road
is 1).
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TABLE 3. Example of a report on experiment (first 8 columns).

Shortest distance ~ Average distance ~Minimum time

Average time

8605.878 12166.85261 1.302346126 4.929971565
8782.686 11052.03682 1.329518984 2.611911349
9015.183 10467.84878 1.626004535 2.003314627
8967.351 10474.31307 1.366972901 11.56982284
8884.708 9873.300724 1.266294939 1.756767236
8483.662 9516.862024 1.193633858 1.597602938

Minimum UAVs Average UAVs ..
. . Minimum wage Average salary

operating cost price

26.27349112 122.2002113 16.02346126 74.95571565
26.75786794 93.21949474 16.29518984 41.05911349
15.93423489 65.88740831 19.26004535 29.20114627
27.26506163 45.15342499 16.66972901 175.1462284
27.0261275 35.9136091 15.66294939 32.71167236
25.92586618 30.91860918 14.93633858 19.90002938

TABLE 4. Example of a report on experiment (the second part of Table 3).

- Minimum
.. Minimum  Average
Minimum  Average value Average value . .
number number . Optimal solution
penalty penalty of launches  of launches of the fitness of the cost function
function
0 3.14E+110 1 2.584 42.296 3.149E+110 [191.30183, 'sw', [10], [0.769523]]
0 4.31E+24 1 1.996 43.053 4.31826E+24 [191.301836, 'sw', [10], [0.2186493]]
0 6819.895 1 1.56 35.194 6914.984337 [169.36122, 'se', [10], [0.4133684]]
0 1.53E+302 1 1.528 43.9347 1.5312E+302 [15.03341, 'ne', [10], [0.8360568]]
0 68402978311 1 1.24 42.689 68402978380 [36.33246, 'ne', [10], [0.8360568]]
0 0.298560 1 1.092 40.8622 51.11719949 [175.971, 'sw', [10], [0.818194]]

TABLE 5. Comparison of the proposed method and random search based method.

Size (m?, Best fitness  Best fitness Number of Drones Number of
. . Drones IDs car IDs car
Field name number of grid value value . . .
. . (Genetic) waypoints (Rando waypoints
waypoints) (Genetic) (Random) (Genetic) m) (Random)
> F)
Small Rectangle 21.2 936 m’, 27 19,97 17,27 11 1 11 1
grid points
. 3°203°139 m2,
Big Rectangle 433 grid points 723,46 1074,75 11,3,1,2 1 2 3
. 2°324°105 m2,
Triangle 69 grid points 52,78 56,38 11 2 11 2
Non-Convex 1439°023m2, 465 228,95 1,3 2 3,11 1
191 grid points
1°439°023 m2,
Non-Convex (No group) 191 grid points 216,58 - 11 6 - -
Complex 61.8 294 m2, 81 70,31 90,19 11 3 11 3
grid points
618’294 m2, 81
Complex (No car movement) arid points 78,64 - 11 1 - -

To test the effectiveness of the algorithm, it was com-
pared with the results of a random search. In the case of
a random search, the best solution was searched among a
group of random solutions, the number of which is equal to
the iteration number multiplied by the population size. It is
determined that the random algorithm converges only for
100-150 iterations on simple small fields, while on
non-convex and complex fields (including triangular ones) it
does not converge to an optimal solution even after 150 iter-
ations (Table 5).

Analysis of the results of the comparison (Table 5) shows
that the use of the mhCPPmp algorithm used in this study
allows for improving the solution by 6-32% (depending on
the shape and area of the field). The results obtained by the
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genetic algorithm and random search algorithm in Table 5 are
indicated as “Genetic” and ‘“Random” accordantly.

In Table 5 the evaluation of two important innovations
on the presented optimization problem is introduced too:
(a) the optimal solution search for the set of drones from
predefined group of heterogeneous UAVs, and (b) the mov-
ing of a vehicle to start and land UAVs in different places.
The influence of these innovations has been investigated on
the different shapes of agriculture fields. The addition of the
moving vehicle in the optimization of the drone’s route for
the field of type “Complex” (Fig. 6) allows for achieving
the fitness function value 70.3, at the same time the fitness
function value is 78.6 when the vehicle was banned from
driving (optimization of only one start/landing point) (Fig.7).

5797



IEEE Access

R. . Mukhamediev et al.: Coverage Path Planning Optimization of Heterogeneous UAVs Group for Precision Agriculture

The influence of the use of the drones’ set from predefined
group of available UAVs has been considered for agriculture
field of shape “Non-Convex™ (Fig. 5).

The influence of the use of the drones’ set from a prede-
fined group of available UAVs has been considered for the
agriculture field of shape ‘“Non-Convex”” (Fig. 5). The fitness
function value is 196.2 for the optimal route of drones that are
chosen from the predefined group, and the fitness function
value is 216.5 when the route is formed for one drone only.
Note that in the first case, the algorithm chose two drones —
Ryze Tello and DJI Mavic Mini.

Therefore, the proposed improvements to the overflight
algorithm can reduce the cost of overflight by about 10%
in this field. Full reports on computational experiments are
available in the repository [74].

FIGURE 6. Route of the flyby of the “Complex” field without moving the
vehicle. Different colors of the lines indicate separate take-off and
landing cycles.

The analysis of the obtained result (Table 5) shows the
efficiency of the proposed method for large fields of complex
shape. The proposed GA based method has no advantages
over the random search algorithm for small fields of a simple
shape (”’Small rectangle”, ”Triangle’’). For these fields, the
optimal solutions of these two algorithms are similar: the
same drone was selected (11 -Parrot Anafi) and the fitness
functions for GA and random search algorithm are closely
(19.97 and 17.27 accordantly). Therefore two innovations are
not considered for these fields in Table 5. For a large field
of a simple shape ’Big Rectangle ", the proposed algorithm
demonstrates a solution 30% better in comparison with the
algorithms of random search. The best fitness of the genetic
algorithm is 723.46 and it is 1074.75 for random search. The
improvement is achieved through the use of different types of
drones (11,3,1,2) and the movement of the moved vehicle. For
fields of complex shape (’Non-convex’, ”Complex’), the
proposed method also has the best results, in particular, in par-
ticular, the improvement is 23% for the ~’Complex field”
and 14.5% for ”Non-Convex”. Table 5 shows the results
another innovation too, which can define the restrictions on
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FIGURE 7. Route of the flyby of the “Complex” field with the movement
of the vehicle. Different colors of the lines indicate separate take-off and
landing cycles.

the number of UAVs and vehicle movement. For example, the
using single UAV (Non-Convex (No group)) results solution
on 10% worse. It should be noted that the number of car
movements has also increased from 2 to 6, which means an
increase in work on recharging and refueling UAVs. If it is
impossible to move the car (Complex (No car movement)),
the cost increases by 11.7%.

The results of the experiments shown in the Table 5 allow

drawing the following conclusions:

1) the mhCPPmp algorithm selects efficiently the param-
eters of the flyby. In particular, it can be noted that
the same drone with the highest economic efficiency
(the ratio of technical characteristics to price) is always
selected as a UAV, unlike the situation with the random
selection algorithm.

2) Insome cases, the algorithm selects an additional drone
/drones when it is required to meet the specified execu-
tion time and to avoid charging a penalty, which also
leads to the expediency of using more expensive and
faster drones with a large flyby radius.

3) The hypothesis about the effectiveness of using a group
of drones and the movement of a car platform for
launching and landing drones at different points has
been confirmed. The effectiveness of such an improve-
ment depends on the shape and area of the field, the
location of the road and the drones available.

It should be noted that the developed algorithm has certain

drawbacks and can be improved.

C. APPLICATION
The proposed method has been used elaboration of the com-
puting system for flight planning, identification, and classifi-
cation. The interface of this system is shown in Fig. 8.

The method for route planning can be applied to plan
a drone taking off, flying around an agricultural field and
returning to a vehicle moving along the field or in close
proximity to it. In the real environment, this system has been
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FIGURE 8. Interface of the computing system for flight planning,
identification, and classification in the real environment.

used for the construction of the optimal route for the UAV
flight for two applications (flybys). The first flyby involves
the use of a drone equipped with an RGB camera and allows
obtaining images for solving problems of identification and
classification. The second type of flyby involves the use of
a multi-rotor drone with a multispectral camera and allows
obtaining multispectral images for gluing the field map and
analyzing the health of vegetation. Both of these flybys were
performed based on the optimal routes elaborated by the
computer system. The cost of these flybys has been reduced
compared to flybys performed without prior optimization.

D. LIMITATIONS

Some limitation of the proposed method are caused by some
technical assumptions, which are often used in precision
agriculture and are not restricted application of the proposed
method for many applications. In the context of the method,
the limitation can be considered next:

1) The use of Zamboni (back-and-forth) flyby route is
restricted the algorithm application for non-convex
fields. But fields of complex non-convex form can be
split into some convex fields and each of them can be
applied the proposed algorithm of the optimal flyby.
The problem of the complex field splitting to convex
fields is not considered in this paper, but it can be
implemented by studies in [45] and [66].

2) The proposed method is not recommended to use for
UAVs in indoor agriculture areas (such as greenhouses)
without additional technical support by control and
positioning systems that do not use the GPS signal,
because there is the possibility of GPS signal loss.
Another specific indoor area in agriculture is taking
into account the presence of obstacles and restrictions
on the height of flights for the flight planning algorithm
as it is shown in the study [75].

3) Reloading and refueling times at the movable platform
is not taken into account. It is believed that the car
contains sets of ready-made batteries and containers.

VOLUME 11, 2023

Nevertheless, UAV batteries can be charged statically
(Static charging) and during flight (in-flight charg-
ing) [76]. Accounting for these features when solving
monitoring problems (CPP1) will require the refine-
ment of the algorithm.

4) The proposed algorithm optimizes the path in
two-dimensional space only and it is developed for
offline planning of UAV path. The set of way’s point
is forwarded or uploaded to an onboard controller
of UAVs.

V. CONCLUSION

Precision farming can significantly increase crop yields. Nev-
ertheless, its application requires optimization of the imple-
mentation of agrotechnical measures. UAVs can collect data
for decision-making and carry out individual agricultural pro-
duction activities. However, a number of unsolved problems
still prevent the widespread use of intelligent UAV technol-
ogy for solving precision farming problems. One of these
tasks is flight planning to solve the problem of coverage.
Despite the clarity of the general statement, this task can
be very difficult in practical implementation if heteroge-
neous restrictions on overflight are taken into account and
when using technically heterogeneous UAVs. To solve this
problem, the authors proposed a modification of the genetic
algorithm mhCPPmp, which takes into account: 1) the pos-
sibility of moving a mobile platform, providing recharge and
replenishment of substances (in case of solving the problem
of applying fertilizers, herbicides, etc.) and 2) the use of
heterogeneous UAVs. These features of the algorithm allowed
to improve the quality of the solution by 10-12% compared to
same algorithm without a mobile platform and using a single
UAY, even on relatively small fields (see Table 5). The main
limitation of the current version of the mhCPPmp algorithm
is the use of back-and-forth method, which is well suited
for flying over convex fields without obstacles, but may not
be optimal for fields of complex configuration with zones
of different availability. Other limitations of the proposed
method are listed in section I'V-D.

FUTURE RESEARCH
Based on the above reported study, the following areas of
further research can be identified:

1) Optimization of more complex routes, for example by
dividing the field into several ones, with the calculation
of Zamboni flyby in each of them separately;

2) Preventing drones’ collisions by ‘‘separating” their
paths (divergence of their flight routes);

3) Taking into account the dynamic characteristics of
drones (speed of altitude gaining, acceleration rate);

4) The possibility of partial refueling of drones running,
for example, on gasoline, to optimize the weight of the
drone;

5) The ability to fly around the territory on curved
trajectories.
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FIGURE 9. Field formation.

APPENDIX A. SIMULATION ENVIRONMENT

Many simulation environments are designed for pilot training
and do not contain tools for modeling or planning flights for
a group of heterogeneous UAVs. Due to these circumstances,
a decision was made to develop a simulator that provides
an assessment of the flight planning algorithm in precision
farming problems. The simulator allows:

1) Simulate the process of movement in two-dimensional

space of technically heterogeneous UAVs.

2) Upload local maps of the area.

3) Control the speed of the UAV.

4) Visualize the field coverage process.

5) Simulate the flight of several UAVs.

The simulation environment is developed in Python 3.7.9.
The source code is available at github.com (https://github.
com/uavkz/SwarMown). The simulation environment archi-
tecturally consists of two modules:

A1) Calculation module. Contains functions that allow you
to calculate the route according to the specified parameters,
as well as get the main indicators of the flight.

A2) Web module. Required for creating fields in the GIS
interface, setting flight parameters, experiments, and other
service tasks.

A1 CALCULATION MODULE

The module contains the necessary functions for calculating

the cost of a flight, other indicators of a flight, and sections

of the flight route. The module is used to solve the optimiza-

tion problem as a way to calculate the objective function. It is

developed using the following libraries:

6) The NumPy library version 1.18.2 provides high per-

formance matrix computing capability as well as other
mathematical functions.
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FIGURE 10. Mission creation.
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FIGURE 11. Flight route formation.

7) The Shapely library version 1.7.0 is required to perform
calculations on flat geometric objects.

8) The GeoPy library version 1.22.0 provides functions
for calculations related to geo-coordinates.

9) The Haversine 2.3.0 library implements a function for
calculating the distance between points on a geoid
using the Haversine formula.

10) The Vincenty library version 0.1.4 implements an alter-
native to the Haversine formula for calculating the
distance between points on the geoid.

11) The PyProj library version 1.0.0.post1 solves the prob-
lem of translating geo-coordinates between different
geographic projections. All projections of the EPSG
(European Petroleum Survey Group) standard are
supported.
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A2 WEB MODULE

The web module is developed based on the Python web
framework Django version 3.0.3. Leaflet.js version 1.6.0 is
used to display maps and geographic layers. For displaying
moving objects - the Pixi.js rendering engine version 5.1.6,
as well as an Opensource solution for integrating Pixi objects
into the Leaflet.js framework of L.PixiOverlay.js maps.
Figures 9-11 illustrate how to create a field, a mission, and
control a flyby route in a simulator environment.
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