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ABSTRACT Vascular images contain a lot of key information, such as length, diameter and distribution.
Thus reconstruction of vessels such as the Superior Mesenteric Artery is critical for the diagnosis of some
abdominal diseases. However automatic segmentation of abdominal vessels is extremely challenging due to
the multi-scale nature of vessels, boundary-blurring, low contrast, artifact disturbance and vascular cracks
in Maximum Intensity Projection images. In this work, we propose a dual attention guided method where an
adaptive adjustment field is applied to deal with multi-scale vessel information, and a channel feature fusion
module is used to refine the extraction of thin vessels, reducing the interference and background noise.
In particular, we propose a novel structure that accepts multiple sequential images as input, and successfully
introduces spatial-temporal features by contextual information. A further IterUnet step is introduced to
connect tiny cracks caused using CT scans. Comparing our proposed model with other state-of-the-art
models, our model yields better segmentation and achieves an average F1 metric of 0.812.

INDEX TERMS Superior mesenteric artery, context-guided, sequential image segmentation, multi-scale
information, adaptive attention.

I. INTRODUCTION

Mesenteric vascular disease is a disease where the mesenteric
arteries or veins are continuously damaged for various rea-
sons. Among these, superior mesenteric artery embolism has
an overall mortality of 60% to 80% for its insidious onset
and rapid progression [1]. Such emergency cases pose high
demands for accuracy and efficiency of diagnosis. Medical
images contain key vessel information for diagnosis and treat-
ment [2], [3], [4]; for example, patients with thrombosis tend
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to have local thickening diameter, and in Crohn’s disease,
the mesentery is often dilated and twisted, with abundant
marginal capillaries. Accurate segmentation of the Superior
Mesenteric Artery (SMA) is a critical step for the diagnosis
of some abdominal vascular diseases. Doing this automati-
cally alleviate the workload of radiologists and other medical
experts in clinical scenarios.

In the angiogram obtained by a CT scan, each CT slice
contains only a small proportion of target vessels, so selecting
target vessels from raw CT images is extremely challeng-
ing. At present, clinical doctors obtain vascular information
with the help of the Maximum Itensity Projection (MIP)
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FIGURE 1. 3D angiograph generated from thick MIP. SMA originates from
the Abdominal Aorta (AA), as indicated by the arrow.

technique [5], which can be divided into thin MIP and thick
MIP. Thick MIP can be used to display the three-dimensional
structure of vessels at the cost of overlooking small vessels,
as seen in Fig. 1.

This shortcoming can be made up for by using thin MIP.
Radiologists can project the voxel of the greatest CT value
at a certain thickness (often 15mm) onto the background plan
by extracting microvascular structures from various CT depth
layers. Although features of thin vessels can be retained,
no single thin MIP image can reflect the coronal plane of
the vessel’s maximal projection [6]. The maximum coro-
nal projection mentioned in this paper is intended to show
the main vessels of SMA while ensuring their consistency.
Radiologists mentally fuse two complementary data sets for
diagnosis, with the risk of leaving out substantial amounts of
data.

Based on the imaging scenario of thin MIP, this paper aims
to generate a complete coronal view of blood vessels based
on the thin MIP sequence. To our knowledge, no existing
studies have been done on SMA vascular reconstruction,
while studies on MIP sequences are relatively rare. Although
the MIP image filters most of the soft tissue and abdominal
interference in the original CT sequence, the use of the MIP
image inevitably produces a large number of arterial interfer-
ences with similar feature expressions.

In recent years, deep learning methods represented by
Deep Convolutional Neural N6etworks (DCNN) [7], [8], [9]
have been widely used in medical imaging tasks. They have
the ability to automatically extract effective high-level fea-
tures by learning a large number of labeled samples. In this
scenario, the encoder-decoder structure has become the first
choice in dealing with medical images. The challenges of
convolutional networks for SMA vessel segmentation in MIP
sequences lie in multi-scale vessel information, wide distribu-
tion of low contrast and inference of adjective vessels such as
AA and vein vessels. Narrow vessels are very challenging to
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FIGURE 2. Challenges for accurate segmentation of SMA. From (a) to (c),
each part displays the blurring of thin and peripheral vessels due to low
contrast, tiny vessels a few pixels wide, vascular discontinuities due to
imaging techniques, and occluded tissue respectively.

distinguish, as some have a width of only one or a few pixels,
limiting the segmentation performance of SMA. Moreover,
cracks resulting from the MIP imaging principle still need to
be fixed. All of the above challenges are illustrated in Fig. 2,
where multi-scale information and interference are common
problems that exist in image segmentation. Existing work to
address the above issues simultaneously includes [10] which
utilizes dilation convolutions to detect convolutional features
at multiple scales. Reference [11] proposes a Scale-Aware
Pyramid Fusion block which fuses features extracted by three
dilated convolutions with different dilation rates to capture
different scale information. Reference [12] designs a novel
Unet structure with two encoders. However, simply stacking
multi-scale modules with fixed receptive fields cannot effec-
tively capture multi-scale features and deal thoroughly with
the large-scale variation of retinal vessels. It also introduces
too many additional parameters. Reference [13] modifies the
vessel segmentation task to a three-class classification prob-
lem between large vessels, small vessels, and background
regions to reduce the problem of intra-class variation. Though
these strategies may be beneficial, non-adaptive extraction
methods cannot thoroughly handle multi-scale vessels.

The shortcomings in the processing of SMA reconstruct
arise mainly from two aspects. The first is the large area cov-
ered by AA. To solve this issue, space contextual information
can be useful since several parts of one vessel usually appear
in adjacent sequences. 3D convolution is a suitable choice
because it is a standard computational structure and has
achieved great success in extracting spatial information. Sec-
ond, the information loss caused by the thickness of the CT
scan makes the continuous MIP projection plane still unable
to reflect the complete vascular structure. This results in a
fracture in the final superimposed 2D segmentation result.
To address this, IterUnet is proposed to deduce the missing
part based on the trend of vessels. Despite the development
of numerous vessel segmentation algorithms in recent years,
few experts have focused on finding a solution to the issue of
vessel cracks brought about by insufficient original data.

In this paper, we propose a vessel reconstruction model
based on the MIP sequence. The main contributions of our
model include:

1) A novel backbone context-guided sequential structure
(CGS) is proposed which uses 3D convolution and 3D
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residual blocks in the encoder to refine spatial features of
sequential images, the corresponding serial structure of 2D
convolution and 2D residual blocks in the decoder is used
for feature recovery. Redundant features in the space are
integrated into the target vessels to obtain the maximum
vessel coronal plane generated from (overlapping) sequences
of 4 adjacent images.

2) A proposed dual-attention-guided structure (DA)
includes a scale-aware attention module and a feature fusion
module (FFM), which generates deformable convolution in
the scale-aware attention module, adaptively extracts vessel
features, and enhances the refinement of fine vessels. FFM is
introduced to assign different weights to multi-scale features
during up-sampling and down-sampling, achieving precise
localization of high-resolution target vessel semantic infor-
mation and enhancing the ability to identify target vessels
from complex backgrounds and artifacts.

3) An IterUnet step is used to solve the problem of vessel
cracks caused by information loss between slices, ensuring
the integrity of the vascular topological structure.

Il. RELATED WORK

The starting point of our novel reconstruction method is the
recent success of the U-shape architecture. As mentioned
above, artificial interference, limited space information, and
multi-scale vessels can all damage a vessel’s accuracy and
integrity. In the following part, we briefly review related
methods, dividing them into two sub-areas, i.e. the blood
vessel segmentation and multi-scale feature extraction.

A. VESSEL SEGMENTATION

In recent decades, many algorithms for vessel segmentation
have emerged. Some of the most successful are based on pair-
wise classifiers, such as Random Forests [14]. Reference [15]
presents a generative model for image synthesis that yields a
probabilistic segmentation of abnormalities. Reference [16]
incorporates vessel structure segmentation results obtained
from a multi-atlas label propagation approach to provide
strong tissue-class priors to Random Forests.

Compared with traditional methods, deep learning per-
forms better in terms of inference, speed and generalization
capacity. In the field of medical image processing, Convo-
Iution Neural Networks (CNN), Full Convolution Networks
(FCN) [17], [18], [19], Recurrent Neural Networks (RNN)
[20], [21], Resnet [22], Unet, and many of their variants have
become mainstream.

B. MULTI-SCALE FEATURE EXTRACTION

Although some classical networks have achieved impres-
sive performance, their ability to extract multi-scale features
under low contrast is still inadequate. How to extract multi-
scale features adaptively is a hot topic at present. To accom-
plish this goal, [23] captures target objects at different scales
with the help of a dynamic kernel selection mechanism,
while [24] applies a coarse-to-fine depth architecture to learn
multi-scale features of multimodal images. Reference [11]
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proposes a Scale-Aware Pyramid Fusion block that fuses
features extracted by three dilated convolutions with different
dilation rates to capture different scale information. However,
conducting convolutions on a large number of high-resolution
feature maps requires significant GPU resources [25]. Refer-
ence [12] proposes a novel Unet structure with two encoders,
but simply stacking multi-scale modules with fixed receptive
fields [26] cannot effectively capture multi-scale features
of SMA vessels. It also introduces too many additional
parameters, and non-adaptive feature extraction prevents effi-
cient handling of complicated situations including multi-
scale information and vessels that appear to cross over.
In [27], deformable convolution and deformable ROI pool-
ing are used as substitutes to replace the original feature
extraction structure, achieving the capability of dynami-
cally adjusting the receiving field based on the input image.
Prompted by this work, we designed a scale-aware atten-
tion module, which dynamically adjust the receptive field in
attention to refine the feature map and extract multi-scale
information.

lIl. METHODS

The purpose of this work is to establish a novel framework
to obtain the main branches of the SMA and vessel trend.
We propose a novel network architecture CGS that imple-
ments a mapping of one output corresponding to multiple
inputs, integrating redundant features in space into the target
vessel to obtain the maximum coronal vessel generated by
4 adjacent sequences. We then propose two sub-modules
that can be embedded in CGS regarding DA and IterUnet.
We first introduce DA which is consistent with the scale-
aware attention module and FFM. The former dynamically
adjusts the field to efficiently extract multi-scale features,
and the latter fuses features from the up-sampling layers
and skip layers, alleviating the interference of background
artifacts while enhancing the performance of segmenting thin
vessels. Finally, we apply IterUnet to fix cracks that arise
from the information loss between sections, guaranteeing the
connectivity of vessels. The overall architecture of the system
can be seen in Fig. 3 and the pseudocode of whole network
is described in Algorithm 1. Fig. 3 can be divided into two
parts. On the left is the CGS architecture used to obtain the
initial results of blood vessels. The purple and pink modules
in the figure are two sub-modules of DA. On the right is
IterUnet, which repairs the original results. Next, we will
explain our structural details from the network architecture,
DA, and IterUnet respectively.

A. NETWORK ARCHITECTURE

A MIP sequence is different from the general original
sequence. Each MIP image is a superposition result of vessels
of a certain thickness after processing by maximum density
projection technology. From the thin MIP sequence, we can
obtain the general trend of SMA which can be presented in the
2D plane. From the perspective of the input images, we take
4 adjacent slices as input (3D input); the superposition results
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FIGURE 3. Overview of the structure of the proposed complete system with its CGS backbone network.

of these adjacent slices are taken as the output (2D output).
In the subsequent experiment, we will provide the experi-
mental rationale for using 4 slices as the input. As shown
in Fig. 4, every four consecutive MIP images generate one
segmentation result. We define such a 4 to 1 mapping as a
single group, and the mapping of a MIP sequence to the final
result is denoted as an ensemble group. In the reconstruction
of the SMA, the appropriate sequence length was selected
according to the degree of vascular extension in the coronal
plane: when the patient’s vascular extension is small, a length
of around 15 is sufficient to reflect the trend of major vessels.
But for SMA with large extensions or to get more information
about marginal vessels, the length required is 30 or more. The
exact number of valid slices depends on the thickness of the
patient’s vessels.

Unlike previous work such as 2D Unet and 3D Unet, our
proposed CGS is neither a pure two-dimensional segmen-
tation nor a three-dimensional segmentation, but a hybrid
3D-2D model that uses 3D convolution and 2D convolution
alternately. It has been shown that 2D Unet performs well
in two-dimensional segmentation tasks. A typical example is
the segmentation of the retina. However, directly applying a
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2D segmentation algorithm to the MIP sequence will over-
look the relationships between slices, and key spatial context
information will be ignored if it is segmented individually.
In addition, networks with 3D kernels usually contain many
parameters which have a high probability of gradient vanish-
ing or exploding as well as the risk of over-fitting. Thus our
method aims to combine the benefits of both the 2D and 3D
approaches.

The proposed CGS network architecture can be seen in
Fig.3. We make appropriate modifications based on Unet
[28], which has been widely used for biomedical images since
it was first proposed in 2015 and has inspired many follow-
up methods. In order to address the issues mentioned above,
firstly we use the series structures of convolution and residual
blocks to replace the native feature extraction structure with
conv+conv+pooling. The shortcut in the residual network
makes it easier to optimize than the common network. This
also reduces the degradation caused by the increased network
depth. Secondly, we use 3D and 2D feature extractors in
the encoding and decoding respectively, retaining contextual
information through 3D features and reducing computation
by using 2D kernels.

4045



IEEE Access

K. Zhang et al.: Multi-Scale Deep Information and Adaptive Attention Mechanism Based Coronary Reconstruction

Algorithm 1 Pseudocode of the Proposed Network
Require:
CGS-single group consisting of 4 consecutive MIP
images;
IterUnet-Input:x( - penultimate feature in initial network
CSG, xs1 - feature in skip layers in CSG;
1: for each epoch not met do

// CGS
2:  Convert image to feature f using 3D residual and 3D
conv ;
3:  Fuse f comes from different stage using eq(2);
4:  Generate feature map y using eq(4-5);
5:  Obtain self-attention map using eq(7-8);
6:  Realize the feature dimension transformation from 3D
to 2D using eq(1);
7:  Fuse high and low features using FFM in eq(12);
8 Obtain the initial segmentation result;
9:  while initial segmentation result is not none do
// TIterUnet
10: Update input by concatenating all feature maps gen-
erated by all preceding layers;
11: Gain output using eq(14);
12: if iterations is not met then
13: Continue with step 10,11;
14: else
15: Obtain the final output;
16: end if
17 end while
18: end for

Unet uses the encoder-decoder structure, a classic architec-
ture including a compression path and expansion path. Med-
ical images are much more difficult to deal with than general
images due to the wide distribution of gray level values and
unclear boundaries. Thus, the good performance of Unet in
medical images also benefits from its special processing of
low-stage and high-stage features. Low-resolution informa-
tion from down-sampling is good for the identification of
pixel categories, and high-resolution information from up-
sampling provides accurate location information for segmen-
tation. These advantages will be inherited and preserved in
our backbone.

In the first 6 layers of the CSG, 3D features X €
REXSXHXW are extracted using the serial structure of 3D
convolution and 3D residual blocks, here H, W, S and C
represent height, weight, depth and channel of feature X;
these features are subsequently transferred to the next layers.
For grayscale images, C = 1, S refers to the number of slices
in a single group; in this work S is taken to be 4. (In subse-
quent experiments, we will demonstrate the reasonableness of
taking S to be 4). To prevent CGS from overfitting, a spatial
pooling layer with a probability of 0.5 to discard features is
embedded in layers 6 and 7, specifically placed before the
convolutional layer in layer 6, while layer 7 contains only the
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pooling layer. The features are recovered using 2D convolu-
tion and 2D residual blocks in the decoder, and [29] states
that two superimposed convolution layers in a single residual
block is the optimal structure. Thus this structure is used for
both 3D and 2D residual blocks in CGS (shown in Fig. 5).
After the last 2D residual block, we used 2 x 1 convolution
followed by a Sigmoid activation function to produce the final
vessel mask.

To realize the feature dimension transformation, a feature
dimension transformation module is designed in the skip con-
nection layer to realize the transformation from the 3D feature
to the 2D feature. Given 4 consecutive slices as input, we will
achieve a set of 3D features F/ € R!1*4*312x512_ Thjg three-
dimensional feature can be decomposed into x and y along
the two-dimensional plane and z along the transverse section.
Hence, we realize this dimensionality reduction via the 3D
convolutional kernel (4x1x1), where the first dimension of
the convolutional kernel indicates the transverse axis. the
paddings in the x, y, z axes are 1, 1, 0, respectively, and the
strides are all 1. This operation can be illustrated in Eq (1).

N 1
g, =D D> D> ww i+ x 4w,y +h)
T=—NW

=—1H=—1

ey

B. DUAL ATTENTION(DA) GUIDED MODULE

With the development of deep learning, multi-scale features
have shown superior performance in recent work [30], [31].
Inspired by these studies, we use attention mechanisms for
adaptive feature extraction. We thus propose a dual-attention-
guided adaptive channel feature fusion module that guides
accurate vascular segmentation. We next discuss two com-
ponents of this module in detail.

1) SCALE-AWARE ATTENTION MODULE
Recent work has proved the effectiveness of the attention
mechanism [32], [33] for its superior performance in image
recognition. Convolutional feature extraction ignores global
information, while the attention mechanism integrates con-
textual information as well, which has been shown to be
beneficial for improving the accuracy of image segmentation.
Methods to gain global information, for example CBAM
and self-attention mechanism, compute the feature similari-
ties between a position and all positions to capture long-range
dependencies. This operation means that any two posi-
tions with similar features contribute to mutual improve-
ment regardless of their distance in the spatial dimension.
Attention-based algorithms were first proposed in natural
language processing tasks where associations between words
are crucial for semantic comprehension. However, for local
SMA in the MIP image, we argue that not all pixels can
contribute to the semantic representation, and some are even
harmful. Many attemps have been made to capture more
global information, among which the most popular is pyramid
feature extraction. Reference [29] proposes a Scale-Aware

VOLUME 11, 2023



K. Zhang et al.: Multi-Scale Deep Information and Adaptive Attention Mechanism Based Coronary Reconstruction

IEEE Access

S Sul
‘4:\7_

=8

FIGURE 4. Structure of CGS.

SrEEEEeul

aRpoauy

Conv 3D BN Relu Conv 3D BN Add Relu  Output
g IJ.‘
% Inpuy —_—
&
3
Cony 2D BN Relu Cony 2D BN Add Relu  Output

FIGURE 5. Structure of feature extractor.

Pyramid Fusion block which applies three dilated convolu-
tions to capture different scale information. A novel Unet
structure is suggested by [31] to accept features from multiple
sensory fields. Regrettably, these fields depend on manual
settings while the region of interest usually depends on the
characteristics of the image itself. Simply stacking multi-
scale features with manually fixed receptive fields fails to
effectively capture multi-scale features, and cannot deal thor-
oughly with the large-scale variation of vessels.

One feasible approach is to capture the relationship
between pixels within a reasonable area and suppress noise
in the background. For this, we propose deformable convolu-
tion [34] to adaptively extract vessel features and strengthen
the ability to refine thin vessels. This approach has achieved
success in several tasks [35], [36], [37], [38], enabling recep-
tive fields to automatically adapt to different sizes of vessels.

In the process of encoding, features may be progressively
weakened when they are gradually transmitted to shallower
layers. To better utilize the multi-scale information, starting
from the last layer, we upsample features of each layer to the
same size as the target layer. Feature fusion is carried out
using the method shown in Fig 6. (a)(b). Taking stage 5 as
an example, feature maps in stages 6,7 will be upsampled by
factors of 2 and 4. Then the weight matrix is used to realize
the pairwise fusion of features. The results of this is then input
into the Scale-aware attention module to achieve adaptive
feature extraction. The process of multi-scale fusion can be
expressed in Eq(2).

F=fk=1

F;, = 7 ,
"= Cler T k=12 )
i=

@

where f represents the feature of each stage after 3D sam-
pling, C refers to the operation concatenate operation, fj,
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represents the fused feature comimg from the multi-scale
feature, and o represents the upsampling operation.

A traditional convolution applies a regular grid G (e.g. 3x3
or 5x5) to sample the input feature x, utilizing some function
to calculate sample values weighted by a kernel w. Supposing
a convolutional kernel size with K = > sampling locations,
for each pixel pg in the output feature map y, the convolution
process can be described in eq(3).

12
YPpo) = D" wi - x(po + pr) 3
k=1
where py,wy refer to offset positions within the grid G and
the corresponding kernel weight. x() are sampling positions
in x, t represents width (or length) of G. In a deformable
convolution, G is irregular, and the shape changes according
to the structural features of the input data; thus an extra
parameter Apy, is needed to record the offset of each position
in G. For each pixel pg in the output feature map y, the
deformable convolution process can be described in Eq(4).
12
YPo) = D wix(po + prApi) )

k=1

We first denote F;,, € RE*S¥HXW a5 the input feature,
where H, W, S and C represent height, weight, depth and
channel of feature Fj,; then we feed it into 2 parallel 3D
deformable convolution layers and obtain two new features
Fo1, Fop € REXSXHXW “the transformation process is illus-
trated in Fig. 7.

Eq(3) is also applicable when extending deformable con-
volution from 2D to 3D. Here, the sample grid G will have
13 sampling positions. The input feature Fj, is composed
of a set of voxels {p;j|li = 1,2,...,N}. The voxel at each
position can be denoted as (x, y, z). The corresponding offset
can be learned by an additional convolution layer, which can
be described as Apy = {Axy, Ay, Azi}. We let p = po +
Pk + Apk, where p represents the sampling locations in Fj,
after adding of the offset. Since Apy is usually fractional, the
output pixel position may not have the corresponding position
in the input image, so trilinear interpolation is applied to
obtain the final output, which can be found in Eq(5-6).

x(p) =D x(q) -8 p)-g(a7.p) -8 (a7 p)
qj€0

5)

g, j) = max(0, 1 — |i — jI) ©)

where Q represents the set of all integer positions in the sam-
pled volume centered on p;. Eq(6) indicates that in trilinear
interpolation points with a distance less than 1 near the target
point are included in the calculation.

We next introduce a 1x1x1 3D conv to reshape Fy,
and F,y to 1/4 of original channel. After this step, the
feature dimension becomes F,,F,, € RV X%. Here,
N =S x H x W means the total number of voxels. This
operation helps alleviate the computation cost. We further
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perform a matrix multiplication between F,; and the trans-
pose of F,; to obtain the spatial attention weight matrix W e
RN >N with the help of the softmax layer:

exp(FO;I . Faé)

N
SLiexp(Fy - F,))

(N

wji =

where w;; € RV*N represents the influence of voxel i on
voxel j. In parallel, the input feature Fj, € RE*SxHxW
utilizes a 1x1x1 convolution layer to achieve the feature
Fyp3 € REXSXHXW Thjs feature is then reshaped to RV*C.
After this, we perform a matrix multiplication between F,3
and the transpose of matrix W, making it consistent with
the size of Fj,. The resulting attentional feature map O° is
described in Eq(8).

N
0] = a5 ) (@i Fo3) + Fin ®)
i=1

where o is initialized to 0 and learns to assign more weights;
N is the same as in Eq(7). The output has a global contextual
view and selectively aggregates contextual cues from the
target vessels based on the spatial attention map, improving
spatial semantic coherence.

Self-attention mechanism concerns mainly:query (q), key
(k), value (v), query content (x,) and key content (xi),
in multi-head self-attention, the output feature y, can be
formulated in Eq(9):

M
yq = Z Wm Z Am (qa ka v, xk) @ Wr/n.Xk (9)
m=1 keQy

where M represents the attention head, A, (¢, k, zg, x¢) is
the weight in the m™ attention head, W,, and w), are the
learnable weights, €2, is the reasonable region for computing
the output query.

For deformable convolution, the learnable weights are
updated based on contetnt of g and relative position. Thus,
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deformable convolution in attention can be described as
Eq(10-11).

M
y‘;c = Z W Z A% (g, k, x5) © Wi
m=1 ke
(10)

A gk xg) = g (K g+ P+ whxy) an

g() here is the same function as in Eq(6).

2) CHANNEL FEATURE FUSION MODULE

The segmentation of blood vessels in CT sequential images
has always been difficult due to the overlapping of adjacent
tissues and nearby vessels. Convolution kernels are used to
extract the image features and are stored in different channels.

In the segmentation model of encoder-decoder, high-
resolution information from deep extraction contains global
semantic information which helps to find the boundary of thin
vessels. Low-stage information is used for image recogni-
tion. The multi-scale features of low-stage and high-stage are
key to improving the accuracy of segmentation. Therefore,
the high-level features with rich semantic information and
the low-level features with abundant spatial information are
essentially complementary. In Unet and many of its vari-
ants, multi-scale features are directly concatenated: F © =
concatenate(F© , upsample(F g H)) where c represents the
current layer, L and H indicate low-level and high-level fea-
tures. Unfortunately, such a simple operation makes the use
of multi-scale information insufficient.

To improve the segmentation ability of the model for
microscopic vessels, in this paper we introduce FFM, where
the generated 2D low-stage features from down-sampling and
high-stage 2D features from up-sampling are concatenated
together according to the first dimension. In this way, seman-
tic information is fully utilized and interference in channels
has been effectively filtered. This concatenated feature will
subsequently be sent to FFM, modeling correlations between
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FIGURE 7. Example of 3 x 3 3D deformable convolution.

channels through a squeeze-and-excitation (SE) operation,
preserving more semantic context for accurate localization.
The new feature can be described in Eq (12):

FO = F™D @ (FL© @ 0(GAP(C 111 (FL©)))  (12)

where o represents the sigmoid function Cix| represents
the 1 x 1 convolution operation, @ and ® represents element
summing and element multiplication, respectively. We use
a parameter-free bilinear up-sampling strategy to reduce the
parameters while maintaining segmentation performance and
preserving more semantic context for accurate localization.
Details can be seen in Fig. 6(c).

C. IterUnet

In this section we apply an iterative network IterUnet, aimed
at connecting tiny cracks in CGS. In the following part,
we will state the motivation and architecture of this module.

An Iterative strategy has been utilized to get better segmen-
tation results in many existing methods. Even with the same
model, iterative application can be of great benefit repairing
the gap [39].

The most obvious characteristic of IterUnet is that the
input to each iteration is a concatenation of all feature maps
generated by all preceding layers, the same structure as dense
connection [40]. Suppose that the output of layer (I — 1) is
defined as x;_1, the output of / th can be defined as:

Lxp—1D (13)

In TterUnet, we supply penultimate feature from the initial
network CSG as input, using Unet as a repeated structure to
replace the original dense block. U here represents a sequence
of a series operations in Unet.

One fact we know is that when manually repairing cracks,
human infer the connection direction of the broken vessels
according to the trend of the vessels in the raw images.
Introducing thisapproach into the network will help refine
cracks, thus a rated feature is needed to constrain the optimal
direction. So we decide to exploit features x,; in skip layers
to guide the optimization direction, mainly for the following
two reasons. On the one hand, 3D features in the encoder
stage cannot be used directly. On the other hand, the low-level
X;1 realizes the maximum density projection of multiple slice
features with the help of a feature dimension transformation,

x = Uy([xo, x1, ..
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which is closest to the raw images we need. So, Eq(12) can
be restated in Eq(14).

x; = Up([x51, x0, X1, -+ ., X1-1]) (14)

IV. EXPERIMENTS AND RESULTS

In this section, we will give a detailed description of the
experimental design, including experiment setup and results
analysis.

A. EXPERIMENTAL SETUP

In the case of lmm thin-cut MIP, we usually have 13-30
slices containing critical vascular information. The purpose
of SMA reconstruction is to obtain the projection results of
SMA vessels in multiple MIP slices. In this work, we ended
up choosing four consecutive MIP slices as inputs to obtain
consistent spatial information. Given the morphological dif-
ferences of SMA across sequential slices, too many slices
would result in spatial disturbance. To verify the optimal
number of input slices, we set up experiments using 2, 3, 4,
5 slices as input and compared the resulting loss in various
models to see how well each input slice sequence converged.
The visual loss graph of different input strategies is shown in
Fig. 8: the training process gives better performance in model
fitting when there are four consecutive slices. Therefore,
in our subsequent experiments, input sequences of length
4 are used.

The platform used in this experiment comes from a deep
learning computing platform with two NVIDIA RTX-3090
24GB graphics cards. The operating system and version is
ubuntu 20.04, the machine learning environment configura-
tion is torch 1.7.0 with CUDA 11.1 and the program compi-
lationing environment is Python 3.6.12.

B. DATASET

CT scans used in the experiment were acquired from a
Siemens dual-source CT scanner (Somatom Force, Siemens
Healthcare, Forchheim, Germany). We list the scan parame-
ters in Table 1.

From June 2021 to December 2021, we collected
150 patients’ Abdominal CT scans from Affiliated Hospital 2
of Nantong University and completed the reconstruction of
thin MIP. Scans have a resolution of 512 x 512 pixels per slice,
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FIGURE 8. Training loss curve (left) and its local enlarged curve (right) for different input strategies in the training process. The 4 adjacent

slice input strategy can achieve the least training loss.

TABLE 1. Scan Parameters of the CT Equipment.

Group
Scanning range

Scan parameter
Diaphragmatic apex to inferior
margin of symphysis pubis
Supine

A 90KV/B Sn150KV

A 144mAs/B 90mAs

Position
Tube voltage
Tube current

Pitch 1.0

Speed 0.5S
Collimation 2x192x0.6 mm
Contrast medium concentration 370mgl/ml
Slice thickness Imm

Slice gap Imm

and each MIP sequence has from 13 to 30 slices. For single
group experiment, we have a data set consisting of 2148
MIP slices. Based on the distribution of SMA, we select
a series of slices that best represents the characteristics of
SMA. For a sequence of length N, N-3 sets of results can
be obtained for every 4 consecutive overlapping entries as
input. Three experts were invited to manually annotate these
vessels. In order to evaluate the effect of the proposed model
objectively, we split the MIP dataset into three parts, namely
the normal group, the low contrast group, and the large area
AA interference group. We employ a 5-fold cross-validation
strategy and report the average results, where each fold con-
tains 60% scans for training, 20% for validation, and 20% for
testing. To increase the variability of the data, we rotate, flip
and mirror the images randomly, but without augmenting the
dataset size.

In the subsequent evaluation, we will evaluate the model
from two perspectives namely, the reconstruction of a sin-
gle group and the ensemble group (150 samples). A MIP
sequence composed of 15 images can be regarded as one
15-image ensemble group and 12 single (4-image) groups.

C. EXPERIMENT
In this section, we first conduct a comparative experiment on
the model backbone, then we compare models with different
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loss functions to choose a loss function that is more suited to
thin MIP reconstruction. Next, we conduct an ablation study
of our method to verify the serviceability of the innovative
structures. Finally, we compare our work with state-of-the-
art approaches on our dataset.

1) BACKBONE STUDIES

We integrate spatial context information into 2D segmenta-
tion tasks. To demonstrate the effectiveness of this operation,
a comparison between using single image (SIS) and using
CGS is conducted. Additionally, simply concatenating low-
level features with high-level features introduces interfer-
ence and noise coming from the background. This fails to
fully utilize semantic information. We compare the results of
employing channel attention (CGS+ FFM) and direct con-
catenation (CGS+CAT) from two perspectives: single group
and ensemble group, in order to demonstrate the impact of
FFM on the above problems.

To quantitatively evaluate the backbone model, we select
the F1 score (F1) as the final evaluation index. Meanwhile,
scores of Accuracy (A), Precision (P) and recall (R) in the
test set are demonstrated.

From Table 2, we observe that CGS+CAT obtains better
performance than SIS. By comparing the two different feature
extraction structures, the model with CGS obtains higher
scores in R, P, and F. The introduction of context information
increases the measure of R from 0.63 to 0.684 and F1 from
0.691 to 0.720. In the ensemble group, R and F1 increased
to 0.740 and 0.763, 4.3% and 2.1% higher than the orig-
inal 2D result respectively. Although they have almost the
same complexity, their segmentation performance has signif-
icant differences. Three-dimensional information integrates
higher-dimensional spatial features, which is more robust
when reconstructing vascular vessels.

We further analyze the performance of FFM. From Table 2,
we observe that CGS+FFM performs better than CGS+CAT.
For P, CGS+FFM achieves 0.709 in single group and 0.752 in
ensemble stacking group. CGS+CAT achieves a P score of
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TABLE 2. Quantitative Results of Different Backbones by Five-Fold Cross-Validation for Datasets (A, P, R, F1). The Best Result Is in Bold Text.

Approach model A P R F1
SIS 0.963 0.630 0.820 0.691
Single CGS+CAT 0.970 0.684 0.788 0.720
CGS+FFM 0.972 0.711 0.776 0.731
SIS 0.961 0.697 0.839 0.742
Ensemble CGS+CAT 0.966 0.740 0.812 0.763
CGS+FFM 0.968 0.752 0.804 0.769

only 0.684 and 0.740 respectively, 2.5% 1.2% lower than
CGS+FFM. For F1 score, CGS+FFM achieves 0.735 in
single group and 0.769 in ensemble stacking group, which is
1.3% and 0.6% higher than those in CGS+CAT. These results
consistently demonstrate that feature fusion using FFM is
superior to direct concatenation. P and R are negatively cor-
related. As a comprehensive metric of P and R, F comes out
best in both groups of experiments.

2) LOSS FUNCTIONS

We next investigate the impact of the network loss function
on reconstruction performance. CE Loss and DICE Loss are
respectively used to train models. The quantitative and quali-
tative results can be found in Table 3 and Fig 9. As can be seen
from Table 3, compared with DICE Loss, the model using CE
Loss improves by 1% and 4% on A and F1 respectively, while
the score of R decreases by 5%, The optimization objective of
CE Loss can cause the model to obtain a higher p-measure.
For the ensemble group, CE Loss achieves 0.769 in F1 and
0.753 in P, 1.5% and 4.7% higher than those in DICE Loss.
These results show that CE Loss can be used to segment
more extensive and deeper blood vessels, which are mainly
manifested as low-contrast target vessels in the background
with similar feature expressions. Recognition of more target
vessels increases the P score. Further analysis is conducted
by comparing the intuitive segmentation results of these two
loss functions, and the final results are displayed in the form
of a pseudo-color graph after superposition. Compared with
Dice Loss, the gray scale of vessels obtained by CE Loss is
wide and the boundary of vessels is fuzzy, so is uncertainty
about the pixels of some vessels with low contrast. In general,
the brightness of the gray map can be expressed as the proba-
bility of being target vessels, so more vascular information
is retained (as shown in the arrow in the last column of
Fig. 9). By observing columns (a-e) in Fig. 9, we find that
CE Loss segments small vessels with low contrast earlier than
DICE Loss, and the overall consistency of vessels is stronger.
We admit that using CE Loss to identify more target vessels
will lead to some mis-segmentation problems. Addressing
these questions, we will introduce more sub-modules to deal
with these problems in the ablation experiment.

3) ABLATION STUDIES
We present both quantitative and qualitative experiment
results of the submodules we proposed above. To avoid
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TABLE 3. Mean Results of Model With Different Loss Functions, the Best
Result Is Shown in Bold Text.

Approach Loss A P R F1
Sinele DICE loss 0.964 0.615 0.834 0.695
& CE loss 0.972 0.711 0.776 0.731
DICE loss 0.966 0.740 0.836 0.754
Ensemble
CE loss 0.968 0.752 0.804 0.769

disturbance of the results caused by the randomness of data
augmentation, we apply a 5-fold-cross-evaluation on our
dataset and take the average result of the parameters as the
final result. The corresponding data can be seen in Table 4,
while the visual segmentation can be found in Fig. 10.
We start from baseline (CGS+FFM), then we evaluate the
CGS+DA, which employs the Scale-aware attention module
for strengthening the extraction of thin vessels while allevi-
ating the distribution of noise and background on the basis of
(CGA+FFM). Finally, we process the model with IterUnet
(CGS+DA+IterUnet) to optimize vessels with tiny cracks.

We first evaluate the performance of the scale-aware atten-
tion block. As depicted in Table 4, the F1 score of CGS+DA
is much higher than that of CGS+FFM. For F1, CGS+DA
achieves 0.791 in single group and 0.807 in ensemble group,
which is 4.8% and 0.6% higher than models without scale-
aware attention blocks. The high score of a single group
indicates stability of the model. The result of the ensemble
group is obtained by superposition of single groups. If a target
vessel is not separated in a single group, but is separated in
a subsequent single group, it has almost no impact on the
result of the ensemble group. In the results for multiple single
groups of a patient, there are many overlapping areas of main
vessels, so the tiny marginal vessels with a small proportion
in a single group determine the vascular extension range and
vascular accuracy of the ensemble group. Therefore, although
the improvement of the ensemble group performance is not
statistically outstanding, it can reflect better reconstruction
performance.

In particular, we noticed the increase in P score. For P,
the addition of the Scale-aware attention module increased
by 7.9% and 1.4% in the single group and the ensemble
respectively. The improvement of P here is fairly critical,
and the visual effect is demonstrated in Fig. 10 (Ensemble
group). We first notice that the proposed DA enhanced the
segmentation ability of thin vessels in the end. This effect
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DICE Loss

CE Loss

Groud truth

(@) (b)

FIGURE 9. Performance comparison between loss functions. The five columns from left to right show the
results of each of the four inputs, and the last column (f) displays the stacking result of the whole sequence.
Columns from top to bottom indicate model with DICE Loss, model with CE Loss, and ground truth annotation.

TABLE 4. Quantitative Results for Ablation Studies. All the Methods Are Based on CGS.

Approach model A P R F1
CGS+FFM 0.972 0.709 0.785 0.735
Single CGS+DA 0.978 0.788 0.806 0.791
CGS+DA+IterUnet 0.978 0.811 0.792 0.798
CGS+FFM 0.968 0.752 0.804 0.769
Ensemble CGS+DA 0.976 0.798 0.822 0.807
CGS+DA+IterUnet 0.976 0.799 0.824 0.808

benefits from the adaptively adjusted receptive field in the
module, which can adaptively focus on small blood vessels.
Meanwhile, we note that adjacent vessels with similar feature
expressions and artifacts in adjacent vessels have been greatly
improved. This effect benefits from the multi-use of channel
attention mechanism, which causes attention features to focus
on the most discriminating regions.

We finally investigate the effectiveness of the proposed
IterUnet. In Table 4, we observe that the addition of IterUnet
doesn’t make a big change to scores as it only works on
tiny vessels. The tiny change can be seen in the last col-
umn in Fig. 10, where we apply false color to render local
enlargement performance: the darker the color, the better
the continuity of the blood vessels. By introducing weight-
sharing in IterUnet, we successfully empower the model with
the ability to find possible defects in the intermediate results
and fix them in a reasonable way. The experimental results
prove that the proposed module has been successful.

4) COMPARISON WITH OTHER STATE-OF-THE-ART
METHODS
We compared our models with some state-of-the-art ones
including original Unet, S-UNet [41], R-net [42] and
AA-UNet [10]. The latter three are proposed for retinal seg-
mentation. Visual results can be seen in Fig. 11 (single group).
We notice that all of these methods can extract the rough
outline of vessel trees. The main difference lies in the seg-
mentation performance of the terminal small vessels and the
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processing of background noise and interference. Comparing
our method with S-UNet, (see the comparison between the
third and fourth columns), from a series of predicted datasets,
we select two images that best represent the segmentation
problem commonly seen in S-UNet. From the local magnified
image, it is found that the problems with the treatment of
edge vessels are as follows (see Fig. 11): blurred vessels,
poor continuity, loss of small foreground vessels (red arrow),
and improper segmentation of background vessels under low
contrast (blue arrow). Compared with thick vessels, thin ves-
sels with low contrast are extremely similar to artifacts in
the background, which increases the challenge for accurate
segmentation. When manually labeled, it is difficult to dis-
tinguish the attributes of fine vessels with the naked eye.
One tip for doctors to determine whether they belong to the
foreground or background is to track the main vessels of fine
vessels.

Then we analyze the performance of R-Net. On the whole,
the segmentation result of R-Net is much better than that
of S-UNet which mainly reflected in the clear vessel tree
and stable continuity of vascular structures. Similar to the
problem with S-UNet, R-Net fails to segment deeper blood
vessels (green arrow). In addition, R-Net brings about partial
background disturbance since it lacks global guided contex-
tual information, which is manifested by the appearance of
other vessels dissociating from the vessel tree(blue arrow).
This phenomenon is depicted in the unamplified segmenta-
tion of each sample. The remaining comparison networks,
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CGS+FFM

CGS+DA CGS+DA+IterUnet

FIGURE 10. Qualitative comparison of the baseline model, dual attention guided module, and IterUnet module.
From left to right, each column represents the one slice in sequential input, ground truth, segmentation results of
CGS+FFM, segmentation results with the guidance of dual-attention module and segmentation output with

IterUnet.

TABLE 5. Quantitative Results of the State-of-the Art Models by Cross-Validation on Our Dataset With Respect to F1 Score.

F1 score
Approach model normal Low contrast AA Interference
Unet 0.725 0.659 0.679
S-UNet 0.760 0.686 0.693
Single X-ray_net 0.792 0.754 0.736
R-Net 0.748 0.733 0.718
AA-UNet 0.802 0.754 0.732
Our Model 0.823 0.768 0.747
Unet 0.753 0.687 0.712
S-UNet 0.804 0.675 0.725
Ensemble X-ray_net 0.825 0.701 0.753
R-Net 0.746 0.686 0.718
AA-UNet 0.829 0.763 0.756
Our Model 0.857 0.786 0.794

Unet, X-ray net and AA-UNet can merely segment the main
structure of SMA, and struggle to distinguish the tiny vessels
which are only a few pixels wide. Finally, we compare the
result of the raw images with similar interference, by com-
paring the pictures in the last row of Fig. 11. It can be seen
that besides our model, only X-ray has successfully learned
and utilized context information to remove the interference.
Unfortunately, the accuracy of the X-ray net is inadequate.
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From the quantitative perspective, our model comes top in all
three datasets which can be found in Table 5. All other models
just realize a mapping of the original images.

Experiments show that our proposed model segments
almost the complete range of vessels, effectively suppressing
the disturbance of low contrast and artifacts, and ensuring the
continuity of vessels. It reduces the problem of broken blood
vessels, and obtains the best overall segmentation results.
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Data Groundtruth Ours

Sample 1

Sample 2

Sample 3

S-UNet

R-Net U-Net AA-UNet

X-ray net

FIGURE 11. Qualitative segmentation results by different vessel segmentation methods. From left to right,
each row displays:the raw image, the manually outlined ground truth (even rows are a magnified view of the
local region of odd rows), the result of methods segmented by our method, SU-Net, R-Net, Unet, X-ray and

AA-UNet net respectively.

V. DISCUSSION AND CONCLUSION

Currently, most existing indicators for vessel segmentation
are pixel-based measurement, where thin vessels may not
contribute much to the value of the indicators as they contain
only a small number of pixels. However, in the field of
medical imaging, the pixel-based metrics mentioned above
may experience the problem of class imbalance. In this work,
we added adaptive attention mechanism to make the model
more actively focus on the characteristics of the blood ves-
sels themselves, especially small blood vessels. However,
this performance improvement comes at the cost of a larger
parameter space, how to lightweight the network will be
explored as part of our future work.

In this work, we present a novel architecture for the
reconstruction of SMA based on MIP sequence. In partic-
ular, we propose a novel backbone CGS. In this structure,
to include contextual information we take a sequence of
consecutive images in the MIP sequence as the input, and use
the superimposed image of the target vessel in these images
as the output. The mixed use of 3D and 2D convolution intro-
duces spatial-temporal features into the segmentation task,
succeeding in achieving relatively complete vessels which
can be displayed on screen rather than relying on an artificial
combination. Two sub-modules, a multi-scale aware attention
module and FFM, are embedded in our CGS. The former
can adaptively extract features from multi-scale feature maps.
This operation helps us to progressively aggregate relevant
contextual features and guides us to focus on smaller features.
The latter helps filter disturbance from different channels,
reducing the interference from peripheral vessels.

To validate the best input sequence length, we conduct
experiments on different input lengths and finally confirm
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4 slices as the optimal context. Then we further prove the
structural advantages and the rationality of using FFM to fuse
features. We next provide ablation experiments to evaluate
the impact of the individual components of the proposed
architecture. Last, we compare the model with approaches
that have been recently proposed. Experimental results show
that the proposed model outperforms all previous approaches
both quantitatively and qualitatively, largely due to the adap-
tive ability to model rich contextual dependencies. This
demonstrates the efficiency of our approach in providing pre-
cise and reliable automatic segmentation of MIP sequences.
We believe that this approach is flexible and can be extended
to other MIP sequence tasks where complete coronal imaging
is required.
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