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ABSTRACT Modern wind power systems have recently tended to focus on achieving fast-tracking wind
speeds (WSs), high maximum power point tracking (MPPT) efficacy without mechanical sensors, and high
performance under uncertain WS together with an effective control system. Therefore, a sensorless MPPT
method is introduced, which calculates the actualWS to save system installation costs and boost performance
levels. The implemented MPPTmethod is based on the approximating of the 3-order polynomial to the aero-
dynamics torque power coefficient. In this study, three-speed control strategies (SCSs) for a grid-connected
permanent magnet synchronous wind generator (PMSWG) are examined and assessed. Harris Hawks’
algorithm (HHA)-based PI controller (HHA-PIC) is used in place of (the conventional proportional-integral
controller (CPIC), and adaptive fuzzy logic controller (AFLC)) as a speed controller to overcome their
drawbacks. To track the generator speed to the desired speed, the HHA-PIC is used. All the CPIC, AFLC,
and HHA-PIC have been carefully thought out and constructed to satisfy the speed control loop’s responsive
performance. Additionally, a comparison of SCSs amongst the categories under investigation is done. The
effect of HHA on the functionality of SCS is verified using MATLAB/SIMULINK. To ensure the efficacy
and supremacy of the HHA-PIC over the CPIC and AFLC, a wide variety of WSs (step change, ramp, and
real fluctuations) are applied. The HHA-PIC boosts system efficiency over AFLC and CPIC by 0.81% and
8.48%, respectively. Finally, it can be said that HHA is a crucial remedy for the problems with CPIC and is
superior to AFLC.

INDEX TERMS Adaptive FLC, efficiency, Harris Hawks’ algorithm (HHA), MPPT, PMSG, real wind
variations, wind speed estimation.

I. INTRODUCTION
In the domains of international politics, economics, science,
and technology, there is now widespread agreement that
greenhouse gas (GG) emissions must be controlled and the
effects of global warming must be mitigated. The overuse
and use of fossil fuels (FFs) by humans is the primary
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cause of the buildup of GGs, particularly CO2, in the atmo-
sphere. The overall global use of FFs and CO2 emissions
in 2019 were 583.9 exajoules and 34169.0 million tonnes,
respectively, per the BP Statistical Review of World’s energy
2020 [1], [2]. Roughly 5.0% of the world’s energy is pro-
duced by renewable generators, hydroelectricity and nuclear
power being the exceptions. Approximately 1% each year, or
340 million tonnes per year, more CO2 is still being released
into the atmosphere [3], [4]. Energy from renewable sources
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(EFRSs), particularly wind energy (WE), have been used to
address these issues as environmental dangers were more
widely known and there was a goal to limit the use of fossil
fuels [5], [6], [7]. It is constantly expanding to meet the
rising demand for power in the world due to its clean and
environmental dangers [8]. As a result, it is anticipated to
supply 20% of the world’s energy demand by 2030 [9], [10].

Fixed speed (FS) and variable speed (VS) are the two basic
principles used in worldwide WE marketing. The FS genera-
tors are straightforward and cost-effective, but they require a
gearbox and have a limited speed range. Globally expanded
VS eliminates the need for a gearbox and enables maximum
power harvest regardless of wind speed (WS) [11], [12]. The
VS uses a variety of machine types, including permanent
magnet synchronouswind generators (PMSWGs), doubly fed
induction wind generators, and squirrel cage induction wind
generators [13], [14]. The PMSWGhas numerous advantages
compared to the other sorts described, including excellent
performance and power density as well as great reliability
and efficiency. Additionally, removing the gearboxes and DC
excitation increases theWE unit efficiency by 10% [11], [13].
Lately, 3-phase PMSWGs have been used in a variety of
industries to improve fault tolerance while reducing phase
current and torque pulsation ratio [15]. The main shortcom-
ings of these technologies continue to be their expensive
power converters and intricate control mechanisms [16].

To assure utilizing all accessible energy at fluctuating
WSs, maximum power point tracking (MPPT) methods were
researched [17], [18], [19]. Precise WS measurement is nec-
essary in an MPPT setup in order to properly control the
mechanical speed and achieve the desired value. A variety
of anemometers having precision and quality of (5–10) %
are placed at various locations near the turbine region in
order to measure the WS. A perfect measurement of the
effective WS is necessary for the turbine to be controlled
effectively; however, the anemometer is unable to provide
this information. Additionally, the anemometer has a high
upfront and ongoing cost, which lowers total system dura-
bility [20], [21], [22]. WS estimation (WSE) methods are
being used instead of sensors because they reduce system
complexity, increase efficiency, and deliver precise WS mea-
surements. In [17] and [23], various WSE approaches were
discussed. The polynomial-based estimating (PBE) technique
is one of them and is straightforward and precise [17], [24].
Thus, it is taken into account here just to calculate the WS.

Due to the necessity of energy these days, a lot of time
and effort has been put into the MPPT research area for
WE systems. The majority of these studies used traditional
algorithms like P&O and modified P&O, while other studies
usedmetaheuristic optimization techniques to optimize either
the PIC or the artificial neural network-based controller.
A study that compared two methods (P&O and HCS), for a
hybrid PV/WE technology was presented in [25]. To power,
the WE-producing system, a brushless power split system
was introduced, and a comparison with a single MPPT was

made [26]. The use of a new MPPT technique based on
adaptive active fault tolerant control solved some issues that
came with the operation of WE generation [27]. A fractional
control mechanism for adjusting theWE system’s pitch angle
to maximize the power it produces was presented in [28] and
compared with the traditional PI sort. Installing fuzzy logic
control (FLC) for MPPT increased the system harvest power
and system efficiency [29]. As an approach to maximize the
power produced by the WE system, a neural network (NN)
with a radial basis function was presented [30]. Additionally,
a modified particle swarm optimizer (PSO) was employed
to implement the learning process while the gradient descent
technique was used to train the NN.

AnMPPT technique with changeable step sizes by perturb-
ing the ωr of the WE system was established in [31]. A self-
adaptive P&O strategy for MPPT integrated with the WE
systemwas described in [32], to increase its output power (P).
A contrast with FLC, variable P&O, and fixed step P&O was
made in this study to increase the P, adaptive P&O, and hybrid
P&O control approaches for MPPT fitted with WE systems
were given in [33]. Control of the MPPT fitted with the WE
system by choosing a slide mode extremumwas done in [34].
The settings of the built-in controller were optimized using
an upgraded invasive weed method. In [35], two MPPT tech-
niques: λ and optimum torque control (OTC)were installed in
WE arrangement and assessed. For the purpose of replicating
MPPT forWE systems, [36] demonstrated a hybrid technique
integrating HCS and power signal feedback control, and the
PIC was optimized using PSO. Reference [37] used NN with
reinforcement learning to act out MPPT for the WE system.
For the MPPT-WE system, a dsPIC30F4011 was established
in [38]. In order to simulate MPPT implemented in the WE
system in Saudi Arabia, [39] proposed a method built on a
grasshopper optimizer (GOA). In comparison to other opti-
mizers, the GOA managed the boost converter duty cycle to
increase P.

Various controllers can be divided into several sorts, like
linear, nonlinear, or predictive. It is possible for controllers to
adjust the required regulated variables and enhance the whole
dynamic system. Though economical and easy to build, linear
controllers have several drawbacks, including poor dynamic
response, poor efficacy, and high sensitivity to outside disrup-
tions [40], [41]. The continuous model predictive controller
(MPC) and the finite control set MPC are two forms of
MPCs that are effective at predicting and enhancing system
behavior, however, MPC is quite complex and requires a lot
of computations [42], [43]. To create the converter switching
signals in continuous mode, a modulator is required, however
in the alternate mode, this is not necessary [44]. To obtain
the MP of the WE system, MPC-based MPPT was proposed
in [45]. AnMPPT for aWE system utilizing a PIC that had its
tracking speed increased employing an ant colony optimizer
was built in [46]. The use of metaheuristic algorithms is still
limited and requires more attention, despite the large number
of applied methods used to simulateMPPTwithWE systems.
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Additionally, hill-climbing search algorithmsmay not be suc-
cessful in extracting the MPP and have some restrictions on
tracking speed and efficiency. The most modern optimization
techniques, including, swarming methods, and the Elliptic
Curve, have been successfully used to regulate various con-
trolled variables including torque and current in a variety of
engineering challenges. In both the machine and grid side,
pitch control loops, optimized controllers were employed
instead of the conventional proportional-integral controller
(CPIC) [47], [48].

An effectivemetaheuristic strategy harris hawk’s algorithm
(HHA) is employed to close the gap left by the usage of the
earlier techniques. In this work, the optimal power output
of a PMSWG is investigated for a variety of WS profiles
(step change, ramp changes, and real fluctuations). Without
employing any sensors, the effective WS is estimated via
the WSE technique. Additionally, it lowers the cost of sys-
tem installation, gets rid of WE system complexity, raises
reliability, and boosts efficiency. Numerous disadvantages of
employing a CPIC as a speed controller directly impact the
WE system’s dynamic response. The CPIC of the speed con-
trol loop (SCL) is fine-tuned using the HHA to reduce these
limitations. The adaptive fuzzy logic controller (AFLC) is
designed and implemented as a speed controller to highlight
the merits of the proposed system. To monitor the machine
speed to the reference amplitude, the HHA-PIC is used. The
CPIC, AFLC, and the HHA-PIC are all well thought out
and developed to guarantee the SCL’s obedient behavior. The
transfer function (TF) notion is used in the formulation of
the PIC gains. Additionally, an illustration scheme is used to
demonstrate the HHA design. Additionally, a comparison of
SCLs amongst the categories under research is conducted.

The following is how this paper is formed: TheWE system
mathematical model and control are presented in Section II.
Section III provides a description of the WSE algorithm.
Section IV provides clarification on the SCLs and HHA.
Simulation results are presented in Section V. In the final
section (VI), the work’s result is reported.

II. STUDIED SYSTEM MODEL AND CONTROL
Fig. 1 shows the researched system and its control system.
An exterior SCL and two inner current control loops make
up the wind-side converter (WSC). SCL is in charge to
control the generator\mechanical\rotor speed (ωr), and the
current control loops are applied for maximizing the gen-
erated power. The back-to-back power electronic converter
connects the PMSWG to the electric grid (EG), and the grid-
side converter injects output power (P) into the EG.

A. WIND TURBINE (WT) MODEL
The produced mechanical power (Pm), tip speed ratio (λ),
power coefficient (Cp), and mechanical torque (Tm) for the

turbine model can be formulated as follows [49], [50], [51]:

Pm = Cp (λ.β)
Aρν3w
2

(1)

Cp(λ, β) = 0.5176
(
116
λi

− 0.4β − 5
)
e

−21
λi + 0.0068λ

(2)

λ =
ωrR
vw

(3)

1
λi

=
1

λ+ 0.08β
−

0.035
1 + β3

(4)

Tm =
Pm
ωr

(5)

where ρ, β, A, and vw are the air density, pitch angle, blades
area, and WS, respectively.

Fig. 2 depicts the four operational zones of the WE system
broken down into these regions. The turbine is restricted from
operating in areas 0 and 3 to protect it from any mechanical
dangers. The MPPT runs in region 1 just under-rated WS to
maximize the power generated at various WSs. In all other
cases, the pitch control is used to ensure that the turbine is
operated safely over the allowed WS until the cutout ampli-
tude. As shown in Fig. 3, the ωr is adjusted to track the MPP
at any WS to function with the ideal values of, λ, Cp, and β.

B. PMSWG MODEL
The PMSWG’s model is fully defined in [50], [52], and [53]
and its stator voltages (Vds and Vqs) are presented via Park’s
transformation:[

Vds
Vqs

]
= [Rs]

[
Ids
Iqs

]
+

[
λ′
d − ωeψq
λ′
q − ωeψd

]
(6)

where λ̇d = Lds
dId
dt , λ̇q = Lqs

dIq
dt , and the subscript ’’s’’

denotes stator.
The symbols Rs,

(
Ids, Iqs

)
, ωe, and

(
Lds,Lqs

)
are the resis-

tance, currents, electrical angular speed, and inductances,
respectively.

The flux components are written as:

ψds = LdsIds + ψpm (7)

ψqs = LqsIqs (8)

where ψpm is the permanent magnet (PM) flux linkage fun-
damental value.

The electromagnetic torque (Te) can really be defined in
the following way:

Te =
3
2
np
(
ψdsIds − ψqsIqs

)
=

3
2
np
(
ψpmIqs + IdsIqs

(
Lds − Lqs

))
(9)

For the surface-mounted PMs sort, (Lds-Lqs). Ids is
set\forced to zero to remove losses. So, Te will be written
as:

Te =
3
2
np
(
ψpmIqs

)
(10)
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FIGURE 1. Addressed system.

The system’s mechanical Eq. is written as in (11):

Tm = J
dωr
dt

+ f ωr + Te (11)

where f and J are the friction coefficient, and moment of
inertia, respectively.

C. CONTROL OF WSC
Since SPL is a component of the WSC system, its control
function is covered in this article. As seen in Fig. 1, theWSC’s
job is to maximize the power that theWS captures. To achieve
optimum operation during the WS fluctuation, the MPPT is

used. As seen in Figs. 2 and 3, its function is to achieve
Cp = 0.48 and λ = 8.1 in zone 1 with β = 0. The WSC also
uses two control loops to implement field-oriented control.
The MPPT method is used to adjust ωr at its desired value
before applying the SPL. To reduce ωr error, a variety of con-
troller sorts, including traditional or improved PI controllers,
are used as speed controllers. The inner one is in charge of
producing the switching pulses and controlling the machine
currently. The space vector modulation controls the machine
current with its reference to enhance the produced Te, which
is linked to Iqs and forces Ids to 0. Fig. 4 depicts the SCL
concept in detail [12], [54], [55].
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FIGURE 2. Operating regions of the wind system.

TABLE 1. Turbine constants.

III. WSE ALGORITHM
With no anemometer, νW is calculated from nonlinear 3-order
polynomial Cp in (12) [56], [57].

Cp = a0 + a1λ+ a2λ2 + a3λ3 (12)

By substituting (1) and (3) into (12), the Pm is written as
in (13).

Pm =
ρAν3w
2

(
ao + a1

ωrR
νW

+ a2

(
ωrR
νW

)2

+ a3

(
ωrR
νW

)3
)

(13)

νW is calculated as a function of (Pm, ωr ) via the next
3-order polynomial Eq. (14), implementing a numerical anal-
ysis solution, and a single root is feasible from the three roots.
The wind system constants are presented in Table 1 [56].

v3w +
a1
a0
Rωrv2w +

a2
a0
(Rωr )2 vw +

a3
a0
(ωrR)3 −

2Pm
ρA

= 0

(14)

For calculating Pm as a function of (ωr , Iqs), Eq. (15) is
expressed as follows:

Pm = ωr

(
J
dωr
dt

+ f ωr + 1.5npψpmIqs

)
(15)

IV. INVESTIGATED CONTROLLERS FOR SPEED LOOP
A. PI CONTROLLER
The SCL controls the ωr at its ideal value, which is created
by the WSE method, to harvest the greatest power for all WS
changes. Therefore, a precise CPIC design by a thorough TF
of the entire system is crucial. Using a 2-mass model, the
TF has been calculated from the drive train’s (DT) dynamics
as a function of (ωr , Te). Through a spring and damper,
the high-speed mass of the PMSWG is connected to the
low-speed mass of the turbine. The linearization model is
used to describe the 2-mass DT (16-19) [47], [56], [57],.

d1ωr
dt

=
1Te +1Tsh

2Hg
(16)

d1θr
dt

= ωc (1ωt −1ωr ) (17)

d1ωt
dt

=
1Tm −1Tsh

2Ht
(18)

1Tsh = Ks1θr + f (1ωt −1ωr ) (19)

where the symbols (Hg,Ht ), Tsh, ωt , θr , (Ks, f ) are the inertia
constant of (generator and turbine), shaft torsional torque,
turbine speed, shaft twist angle, shaft stiffness, and damping
coefficients, respectively.

Both of Pm and wind-power (Pwind ) can be written as:

Pm = PwindCp (λ, β) (20)

Pwind = 0.5ρπR2v3w (21)

Implementation of linearization concept around ωr and from
Eq. (5) 1Tm is expressed as:

1Tm ≈ −
Pmo
ω2
to
1ωt +

Pwindo
ωto

Cp (λ, β)
λ

dλ
dωt

1ωt (22)

The SCL schematic block diagram is presented in Fig. 5.
αω

S+αω
is the inner current CL, αω is the converter’s CL

bandwidth. The controller gains (Kp(ω), Ki(ω)) are designed
as Kp(ω)

2(Ht+Hg)
≪ αω and Ki(ω)

Kp(ω)
≪ αω. The dynamics of the

converter’s CL are ignored when (ω ≪ αω). Therefore, the
speed CL-TF is written as in (23).

ωr

ωref
=

2sωnξ + ω2
n

s2 + 2sωnξ + ω2
n

(23)

whereωn, and ζ are the CL bandwidth, and the damming ratio
of the PIC, respectively. Also, ω2

n = K Ki(ω)
2Hg

, 2ωnζ = K Kp(ω)
2Hg

,
and K = 1.5npψpmTbase. The attained controller gains for
precise operation based on this analysis are (Kp = 5, and
Ki = 100).

B. ADAPTIVE FLC MPPT CONTROL
Due to its simplicity, ability to tackle system nonlinearity,
and lack of information regarding mathematical modeling,
FLC approaches are now more frequently used in a vari-
ety of applications [58]. Weird tracking behavior is caused
by the nonlinearity of WE systems and climatic conditions.
As a result, adaptive FLC-based MPPT techniques can be
used to track the MPP in the PMSG WE system with less
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FIGURE 3. λ, Cp and β.

FIGURE 4. Speed control concept.

FIGURE 5. PI speed controller block diagram.

data needed and simpler implementation. For obtaining the
MPPT in WE systems, numerous FLC methods have been

proposed in the literature. There are three primary stages
that the FLC’s functioning and construction may be broken
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FIGURE 6. Adaptive FLC structure.

down into. These stages contain steps for fuzzing, evaluating
rules, and defuzzification. Fig. 6 illustrates the reaction of the
adaptive FLC adjustable parameters to system modifications,
including output scaling factor, fuzzy rule, and membership
function [29], [59]. Application of adaptive FLC can enable
the PMSG to run at MPP as well as high dynamic perfor-
mance under high variable wind speed. As a result, when pro-
viding a new control scheme superior to this recent scheme,
is considered a robust, efficient, and effective approach.

C. HHA-PIC MPPT CONTROL
The HHA is a metaheuristic approach that mimics the HH’s
successful chase technique’s cooperative behavior. Like other
techniques, it contains the phases of exploration and exploita-
tion. The HHA is broken down into two exploration phases
and four exploitation steps in the formulas below. The follow-
ing processes are employed by HHs to kill their rabbits and
are mimicked and modeled by the HHAmodel. It was chosen
for this research due when put to the test on 6 constrained
design engineering tasks and 29 unconstrained benchmark
problems, it outperformed the other 11 techniques [60]. The
HH’s behavior towards prey is represented by the following
equations, and the concept of the HHA is properly described
in [60], [61], and [62]. A flowchart for the SCL’s application
of the proposed HHA is given in Fig. 7.
Exploration phase:

Y (t + 1)

=


Yrabit (t)− Ym (t)− C3 (LB+ C4 (UB− LB)) ,

q < .5
Yrandom (t)− C1 |Yrandom (t)− 2C2Y (t)| ,

q ≥ 0.5


(24)

Ym(t) =
1
N

N∑
i=1

Yi(t) (25)

The transition from exploration to exploitation:

E = E0

(
1 −

t
T

)
(26)

Exploitation phase:
a) Soft besiege, C ≥

1
2 and |E| ≥

1
2

Y (t + 1) = 1Y (t) − E |qYrabit (t) − Y (t)| (27)

TABLE 2. Gained PI controller gains.

where

1Y (t) = Yrabit (t) − Y (t) (28)

b) hard besiege, C ≥
1
2 and |E| < 1

2

Y (t + 1) = Yrabit (t) − E |1Y (t)| (29)

c) soft besiege with progressive rapid dives, C <
1
2 and |E| ≥

1
2

H = Yrabit (t) − E |qYrabit (t) − Y (t)| (30)

G = H + 0.01s
uσ

|γ |
1
β

(31)

where

σ =

0 (1 + β) sin (πβ2 )

0
(
1+β
2

)
β2(

β−1
2 )


1
β

(32)

d) hard besiege with progressive rapid dives, C <
1
2 and |E| < 1

2

Y (t + 1) =

{
H if F (H) < F(Y (t))
G if F (G) < F(Y (t))

}
(33)

The problem formulation for the SCL is built on the objec-
tive function to minimize integral time absolute error (ITAE)
given in (34) as a starting point. Table 2 shows the selected
PI gains for the examined choices.

ITAE =

∫
∞

0
t |error|dt (34)

V. SIMULATED RESULTS AND DISCUSSIONS
The simulation results are run under three different WS pro-
files (step change, ramp, and real variations) and examined
to show the efficacy of the HHA-PIC. To demonstrate the
usefulness of the suggested approach, the performance of the
two researched controllers is compared under all simulated
situations. Additionally, the WE system efficiency is calcu-
lated over the course of the entire scenario to pinpoint the
proposed controller’s perfection in performing at optimal λ,
CP values under variable WSs. Table 3 lists the simulated
PMSWG parameters. Moreover, the impact of the moment of
inertia on the dynamic performance is given in the Appendix.
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FIGURE 7. Flowchart of HHA.
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FIGURE 8. SYSTEM RESPONSE AS A RESULT OF A STEP CHANGE IN WS: (a) WS PROFILE, (b) 3, (c) CP , (d)ωr , (e)Pm.

TABLE 3. System parameters.

A. CASE 1: STEP CHANGE OF WS
The outcome of various turbine parameters is depicted
in Fig. 8. Fig. 8 (a) depicts the studied WS profile to
investigate the impacts of stepping up and down on the

turbine characteristics. The settling time via CPIC, AFLC,
and HHA-PIC is 0.124 s, 0.0941, and 0.0086, respectively.
Fig. 8(b) and (c) show λ andCPwhich guarantees operation at
desired values (8.1 and 0.48, respectively). The CPIC reaches
the optimal values λ and CP slowly, taking 0.174 s, com-
pared to the AFLC, taking 0.0094 s, and HHA- PIC’s taking
0.0076 s. The generated Pm is displayed with all controllers
and exhibits an improvement for the proposed method over
the alternate in Fig. 8 (e). Figuring out how to set the ωr to
the desired value is shown in Fig. 8(d), which demonstrates
how well the HHA-PIC tracks its reference than the other
simulated types. Fig. 8 demonstrates how the suggested WE
system can compute the Pm using the current sensor and ωr
sensor with little fluctuations. Additionally, compared to the
CPIC, and AFLC, the HHA-PIC achieves maximum power
with much less inaccuracy. Findings highlight the efficiency
of the WSE method and the superiority of HHA-PIC over
CPIC, and AFLC particularly at the beginning and changing
conditions.

B. CASE 2: RAMP OF WS
In this case, the WS varies up and down with smooth ramp
rates with a mean speed of 6 m/s, as seen in Fig. 9 (a), with
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FIGURE 9. SYSTEM RESPONSE AS A RESULT OF RAMP CHANGES IN WS: (a) WS PROFILE, (b)3, (c) CP , (d)ωr , (e)Pm.

FIGURE 10. Real WS data.

a time span of 5 s. Figs.9 (b) and (c) prove that the MPPT is
achieved, with the λ andCP are maintained at their maximum

and optimal values, respectively. The capability of the WSC
to track the ωr with its reference value displayed in Fig. 9(d).
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FIGURE 11. System response as a result of random variations in WS: (a) WS profile, (b)λ, (c) CP , (d)ωr , (e)Pm.

TABLE 4. Performance comparison with previously published techniques in PMSWG.

Fig. 9(e) illustrates the captured Pm under the variations in
WS. Based on the simulation results, it is clear that the system

response with HHA-PIC gives better tracking capability and
the oscillation rate is reduced compared to CPIC, and AFLC.
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TABLE 5. IAE values for studied controllers.

Fig. 9 shows that the AFLC is better than CPI in terms
of less overshoot, fewer oscillations, and fast response. So,
HHA-PIC can be considered very fast in response to system
dynamics, particularly, when the WS changes suddenly.

C. CASE 3: REAL FLUCTUATIONS OF WS
The feasibility of the studied control system to achieveMPPT
is investigated in this part. with respect to genuine WS data
measured in Ras Ghareb wind farm in the Gulf of Suez,
Egypt, as seen in Fig. 10. The measured data is taken for
8 hours (480 mins) and reprocessed and scaled for 100 s to fit
the simulation necessities. Three controllers (CPI, AFLC, and
HHA-PI) are compared to prove the efficacy of the proposed
control strategy. The portrayed WS profile is displayed as
given away in Fig. 11(a). Fig. 11(b) as well as Fig. 11(c)
demonstrate that the MPPT is attained since the λ and CP
values are kept at their desired values, respectively. The
proposed HHA-PIC for MPPT sustains the optimal CP more
rapidly and maintains the optimal value of λ as perceived in
Fig. 11(b). Fig. 11(d) displays the WSC’s capacity to track
the ωr with its reference value. The Pm acquired by the WS
is described in Fig. 11(e). From the simulated results, it can be
said that the suggested HHA-PIC makes an available option
for achieving MPPT under the high variability of WS and is
superior to the compared controllers.

D. SYSTEM EFFICIENCY
The efficiency of the PMSWG system using the HHA-PIC,
AFLC, and CPIC is shown in Fig. 12. As can be observed
from Fig. 12 (a), the HHA-PIC system outperforms the CPIC,
and AFLC in terms of improving the efficiency of a WT
system. According to Fig. 12 (b), the average efficiency
over this time period improved to 93.91% with HHA-PIC
versus 85.44% with CPIC and 93.10% with AFLC. Table 4
compares this study’s findings with previously published
ones to demonstrate its originality and significance.

E. ERRORS OF HHA-PIC AND CPIC BASED ON MPPT
CONTROLLERS
In addition, a quantitative comparison of tracking errors using
the integral of time absolute error (ITAE) for the best evalua-
tion of the HHA-PIC method is introduced as follows [63]:

(ITAE) =

∫
∞

0
|e(t)| dt (35)

Table 5 illustrates a comparison of tracking errors of
CPIC, AFLC, and HHA-PIC based onMPPT controllers. The

FIGURE 12. The efficiency of PMSWG under the investigated controllers.

HHA-PIC has the lowest error when compared with the other
controllers. Consequently, the HHA-PIC is the best solution
for achieving MPPT.

VI. CONCLUSION
This research examines a straightforward MPPT method to
calculate WS without the need for any WS sensors in an
effort to save installation costs and boost overall effective-
ness. Additionally, the approximated WS is calculated using
the ωr and Iq feedbacks and depends on the Pm/torque. The
PMSWG presents three SCL systems, the first using the
CPIC, the second using AFLC, and the third using HHA-
PIC. The system components and their control schemes are
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also presented. The CPIC at SCL is adjusted using the AFLC
and HHA approaches to fix its flaws. To control the ωr with
the required value, the HHA-PIC is implemented. The HHA-
PIC, AFLC, and CPIC in SCL have been compared, and
with the suggested controller, the WE system operates at
Cp = 0.48 and λ = 8.1 in all working situations. The
performance analysis demonstrates that HHA-PIC outper-
forms CPIC and AFLC when employing the WSE-MPPT
method and suggests a significant fix for issues with tra-
ditional controllers. The overall system efficiency has been
85.44%, 93.10%, and 93.91% with the CPIC, AFLC, and
HHA-PIC, respectively. Furthermore, the proposed scheme
achieved higher efficiency with a negligible settling time
(0.0086s). Finally, it can be said that the suggested technique
improves the effectiveness and efficiency of WE systems and
facilitates the production of cleaner energy.
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APPENDIX A
Influence of inertia on electromagnetic torque [33]:

Te ± Tm = f ωr + Jω′
r (36)

(−) and (+) Signs represent acceleration and deceleration
modes, respectively.

Acceleration mode (1ω/1t > 01ω/1t> 0)

Te − Tm = f ωr + Jω′
r (37)

In step-change 1t → 01t → 0 very small value, so that,

Te ↑↑ αJ ↑
dωr
dt ↓↓

αJ
1ωr

1t
(38)

Deceleration mode (1ω/1t < 0)

Te + Tm = f ωr + Jω′
r (39)

And,

Te ↓↓ αJ ↑
dωr
dt ↓↓

αJ
1ωr

1t
(40)

where 1ω = ωnew − ωold
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