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ABSTRACT The design of Networks-on-Chip (NoCs) components implies a wide range of techniques and
methods to address the microarchitecture of the packet-forwarding components, where routers and switches
are the most complex because they constitute the NoC’s backbone. Due to this complex design space, several
works use approaches limiting architectural exploration, focusing only on achieving high-performance
levels; therefore, they are inadequate for designing NoC components when particular functionalities are
demanded, as in real applications with specific protocols and interfaces. This paper presents a design
methodology based on a top-down approach with NoC-oriented abstraction levels to systematically generate
a microarchitecture and its hardware description according to system requirements. The design flow
transforms a high-level functional model into a microarchitecture model through a refinement process at
each abstraction level. This structured approach involves integrating details on how the data is functionally
managed within the component according to the system requirements and the processing granularity of
each level, allowing testing alternatives in the early stages of the design when necessary. The models of
each abstraction level can be described and simulated using the simulator OMNet++. Thus, the obtained
microarchitecture model will be directly translated into a Hardware Description Language (HDL). The
methodology is tested via the design of a NoC switch for a Software Defined Radio (SDR) system.
Performance analysis and implementation results in a field-programmable gate array (FPGA) show that
the proposed design is functional and comparable in both area and frequency to other similar state-of-the-art
components, and it is also configurable to build star topologies of up to 16 nodes.

INDEX TERMS Design methodology, microarchitecture, modeling techniques, Networks-on-Chip, switch
component.

I. INTRODUCTION

Current silicon technologies allow Systems-on-Chip (SoCs)
to have many modules such as CPUs, memories, Intellectual
Property (IP) cores, etc. Because of this growth, Networks-
on-Chip (NoCs) have been widely adopted as a new
on-chip interconnection paradigm to meet recent and future
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parallel processing applications demands of the industry
[1], [2], [3], [4]. An important research topic regarding
on-chip networks is the design and implementation of the
NoC components, where the routers and switches are the most
complex designs.

The microarchitecture design of these components
involves a vast design space, where a set of techniques
and well-accepted practical solutions are used to implement
aspects of the communication paradigm such as flow
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control, routing, arbitration, buffering, and quality of service
(51, [6], [71, 81, [9].

Consequently, different strategies are used for router and
switch microarchitecture design. In accordance with a recent
literature review, a taxonomy of router! design approaches is
suggested and discussed below. See Table 1.

A. DESIGNS BASED ON CANONICAL ARCHITECTURE
MODIFICATIONS

Router design approaches based on canonical architecture
modifications use a model as a reference, mainly the model
proposed by Peh and Dally [10], which introduces the basic
wormhole and virtual-channel (VC) router architectures.
By using these base models, specific architectural design
areas can be studied and improved.

1) DATAPATH DESIGN

It focuses on how to implement the basic components
of a router and datapath enhancements to support novel
data transport techniques in the NoC. Previous works
address logic implementation techniques [6], [7], reliabil-
ity techniques [11], [12], [13], [14], implementations in
CMOS process [15], [16], broadcast and multicast support
[17], [18], high-radix router design [19], multiple injec-
tion and ejection ports scheme [20], novel switching
schemes [21], time-multiplexing schemes for VC [22] or
even integration of machine learning techniques for datapath
design [23], [24], [25], [26].

2) PIPELINE DESIGN

The analysis of how to improve the router pipeline stages
is studied in this area to get high-speed designs. There are
approaches to reduce the router latency to a single cycle using
speculative [27], [28], non-speculative [29], and prediction
strategies [30], and also the use of pipeline bypassing
techniques can achieve latency reduction [31], [32].

3) LINK DESIGN

Architectural and circuit-level techniques at the NoC links are
used to improve performance and save chip area. Examples
of these approaches are timing-error-tolerant [33], elastic
buffers [34], [35], [36], dual-function links [37], double-data-
rate links [38] and bidirectional links [5].

4) MEMORY ORGANIZATION DESIGN

This area covers memory management techniques to opti-
mize buffers. The most common techniques are central
memory, individual buffers, or schemes for VCs support
(6], [17], [34], [37], [39], [40], [41], [42], [43].

5) LOW POWER DESIGN
This design area is focused on techniques and methodologies
for energy-efficient architectures [44], [45], [46], [47].

I'The proposed taxonomy is considered for router and switch design.
However, most research work focuses on router design because functionally,
a router is a switch with a routing stage to determine the path of the packets.
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B. AD HOC APPROACHES

In the ad hoc approaches, several works generate archi-
tectures alternative to canonical designs, proposing new
strategies for managing and handling the packets within the
router to improve NoC performance.

There are modular designs where the router inter-
nally handles each dimension of the NoC independently
[54], [551, [56], [57], [58], [99], shared-buffers approaches
[60], [61], [62], path-sensitive with decomposed cross-
bar designs [63], [64], [65], bufferless approaches [70],
[71], [72], and other design alternatives such as decentralized
structure based on rings [66], pre-configured paths [67],
hybrid packet/circuit switching [68], and crossbar folding
with marching memory buffers [69].

C. LIBRARY-BASED APPROACHES

Instead of improving a baseline design or proposing new
ones, the library-based approaches use tools, frameworks,
or strategies to automate a design flow like the work in [73].
For router design, tools are used to tune the parameters of a
router architecture composed of a predetermined library of
building blocks [48], [49], [50]. Some works even include
the hardware synthesis of the entire NoC [9], [51], [52], [53].
These approaches aim to use high-level specifications such
as inter-core communication demands and design goals to
optimize performance.

D. MOTIVATION FOR A NEW DESIGN METHODOLOGY
From a methodological point of view, the common approach
for router design is to limit the architectural design space to
a few aspects through a baseline model (fixed architecture)
or a configurable library-based model (flexible architecture).
In fact, the architectures provided by these methods were
designed only to support generic protocols. All of this makes
sense because most research works focus on improving
performance. However, these approaches are inadequate for
dedicated NoC components design, i.e., systems requiring to
comply with particular NoC functionalities such as specific
data-link protocols, packet formats, interfaces, or config-
urable features. Examples of these systems are FCUDA-
NoC [53], VBON [18], and the NoC for the TeraFLOPS
processor [16].

The last two columns of Table 1 summarize how architec-
tural exploration is initiated and carried out when particular
functional requirements need to be met. Using approaches
based on canonical architectures provides a well-understood
and verified architecture. However, the canonical model was
designed to use wormhole with VCs and credit-based link-
level flow control. Therefore, the main drawback arises
in deciding which architecture blocks should be modified,
added, or even removed to comply with the functional
requirements.

The library-based approaches provide a flexible archi-
tecture; therefore, the architectural exploration will depend
on the available building blocks and their configurability
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TABLE 1. Taxonomy of the design approaches for routers and an overview of how their architectural exploration is carried out to meet particular

functional requirements.

How Architectural Explo- | How Functional Require-

NoC Router Design Approaches References ration Begins ments are Met
Datapath Design [6], [7], [11]-[26]
Based on canonical Pipeline Design [27]-32] Architecture blocks are
architecture Link Design [51, [331-[38] With a fixed architecture modified, added, or even

removed

modifications Memory Organization | _[6], [17], 1341, 137,
Design [39]-[43]
Low Power Design [441-[47]

Library-based approaches [9], [48]-[53]

It depends on the level of
configurability of the avail-
able building blocks

With a flexible architecture

Ad hoc approaches [54]1-[72]

No dependency on fixed or
flexible architectures

It depends on the designer’s
experience and creativity

level. For example, the switch from the xpipes library [74]
is highly configurable regarding the I/O ports, topology
(because it uses source routing), the number of VCs,
and the link buffer size, but its switching (wormhole)
and arbitration (round-robin) schemes are fixed. Thus, the
required specific functionalities might not be met, forcing
changing or modifying the initial functional requirements,
which is not desirable. Also, license costs and third-party
dependency should be considered.

Finally, although the ad hoc approaches do not depend
on baseline designs and achieve good performance results,
they lack a design methodology. There is a certain degree
of freedom to explore architectural alternatives in the
design space for specific requirements. However, the novel
architectures rely on the designer’s insight.

For these reasons, it would be ideal to have a suitable
approach for dedicated NoC components design that does not
rely on canonical architectures. It is also desirable to rely on
a strategy that allows addressing the architectural exploration
to meet a given NoC protocol and required customizations.

E. SUMMARY AND CONTRIBUTIONS

In this work, a methodology for dedicated NoC components
design and implementation is proposed. This approach is
based on a detailed adaptation of the top-down modeling to be
oriented to the NoC paradigm. Consequently, different levels
of abstraction are proposed, allowing the designer to focus
only on the component key functionalities according to each
level without worrying about other implementation details,
which the designer will add later.

The methodology begins with an abstract functional model
at the highest level. Then, this model will be iteratively
transformed into a new version with new functional design
aspects according to the next abstraction level. Hence, the
designer will decide which component functionality, such as
flow control strategy, routing algorithm, switching technique,
or microarchitecture composition, will be addressed accord-
ing to the given NoC protocol and level of granularity. In this
way, architectural exploration is based on the functional
requirements, progressively satisfied because they are added
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and detailed according to each abstraction level. In addition,
the proper functionality of the component is validated during
the component design process. Finally, the microarchitecture
model can be translated directly into a Hardware Description
Language (HDL). A switch intended to build star topologies
for a Software Defined Radio (SDR) system is used as an
example of the results that can be obtained using the proposed
methodology.
The main contributions of this work are:

o The study and analysis of NoC router design approaches
and their generalities related to the architectural explo-
ration to comply with specific functional requirements.
Although many efforts to improve NoC performance
involve various well-accepted techniques and practical
solutions having provided, however, these approaches
do not specialize in designing and implementing dedi-
cated routers without relying on fixed and flexible archi-
tectures that limit architectural design space exploration.

« A methodology for designing and implementing NoC
components such as switches and routers according to
their functional requirements, which are systematically
addressed in a top-down fashion. NoC-oriented levels
of abstraction are proposed to allow exploring the
architectural design space of the component in a
structured manner.

o The design and implementation of a switch component
for an SDR system using the proposed methodology.
The switch performance using traces of real workloads
and synthetic traffic patterns to analyze its operating
limits is also included. Furthermore, an evaluation of
area and frequency shows that the implemented switch is
comparable to other similar state-of-the-art components
designed using the traditional approaches.

The remainder of this paper is structured as follows:
section II describes the functional requirements for a
NoC switch component for an SDR system, such as the
one described in [75]; section III describes the proposed
methodology; section IV presents the experimental case of
the study based on the requirements presented in Section II;
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FIGURE 1. NoC basic architecture based on a switch. A set of
reconfigurable PEs communicates simultaneously with each other to
generate a multi-standard architecture. The host is responsible for tasks
management.

section V shows implementation results and a comparison
with literature approaches; finally, section VI presents the
conclusions obtained in this paper.

Il. REQUIREMENTS FOR AN SDR NoC SWITCH

In this section, a set of specifications and requirements
for a NoC switch component to create hardware/software
applications for digital communication systems under the
SDR concept is presented in order to discuss the challenges
when designing these kinds of components.

The required SDR system addresses multi-core SoCs
composed of heterogeneous processing elements (PEs)
containing reconfigurable signal processing (SP) algorithms,
e.g., channel encoding, data detection, etc. This scheme
provides a reconfigurable HW-based library to implement
and simplify the design of communication systems.

Fig. 1 shows the NoC’s basic architecture. It comprises
a host that handles the NoC management, reconfigurable
PEs attached to Network Interfaces (NIs), and the switch
component that interconnects the NIs with the host.

This architecture is based on the concept of CoPNoC
(Co-Processing Network-on-Chip) [75], with the differ-
ence that the network topology used in this work is a
star topology, where a central switch will allow parallel
data transmission among PEs through a packet-switched
method. Therefore, this case study is adequate for the SDR
concept and Communication Systems on Chip (ComSoC)
[76], [77]1, [78], [791, [80].

Before discussing the details and challenges of the design
and implementation of the switch component, the NoC packet
definition, the NoC communication protocol, and the specific
requirements for this component are presented.

1) Packet Definition: Fig. 2 shows the packet structure. It is
composed of flits of 32 bits. The header stores destination
data (address and configuration for the PE) followed by a
packet type code used by the NI to process an upper-layer
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FIGURE 2. Packet structure required for the NoC of the SDR system.

protocol and a packet size field of 9 bits. The packet size field
specifies the data size in flits, having a maximum data size of
511 flits. Finally, the tail flit has the source address followed
by a cyclic redundancy check (CRC) for packet integrity.

2) NoC Link Signal Protocol: The nodes interconnected in
this NoC usually work with their local clocks to comply with
communication standards implemented in the SDR system.
Therefore, the communication protocol between network
components is based on a synchronous version of a two-
phase self-timed protocol, where a handshake is performed
to synchronize the transmission of flits. Fig. 3 shows two
network components communicating through the network
channel defined for this NoC and the waveform of a packet
transfer. The handshake is accomplished by exchanging the
Req and On/Off signals. Additionally, a start of packet (SoP)
signal is used to detect the header of a packet.

3) Specific Requirements for the Switch: In addition to the
generic functional requirements of the described network,
to provide flexibility with the number of nodes that the
switch will be able to establish communication, the number
of switch ports is required to be a parameter for the
synthesis process. Furthermore, the arbitration scheme must
be enabled for the selection of both round-robin and fixed
priority.

4) Design and Implementation Challenges: From the
requirements mentioned earlier, the design of a switch com-
ponent involves an exploration of the design space, ranging
from decisions on how to implement flow control, how to
process the packet and handle the specific communication
protocol, and how to provide the configurability for the
number of ports, to finally decide which microarchitecture
is the most suitable for this set of requirements and also how
to implement it into an HDL.

The design approaches available in the literature could not
be suitable for this type of design with specific requirements.
For example, approaches based on canonical designs require
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FIGURE 3. Data channel signaling needed to transmit a packet and its waveform. The RX block asserts On/Off signal to inform availability to receive a
new flit. Then, the TX block places a new flit in the Data bus and asserts the Req signal to start the handshake. Upon receiving the request, the RX block
reads the new flit and resets the On/Off signal to indicate that data has been received.

adapting the reference model by modifying, removing,
or adding blocks to meet the requirements. On the other
hand, the ad hoc designs lack a methodology as they
were developed to improve performance. The library-based
approaches could be a good option for designing a NoC
for a specific application. However, the configurability
of its basic building blocks limits the design exploration
space. For this reason, a top-down approach is proposed to
design and implement the architecture that fits the functional
requirements of an application.

lll. THE PROPOSED DESIGN METHODOLOGY

This section introduces the concept of abstraction in hardware
design for SoCs and how this approach can be utilized in the
NoCs domain to design and implement network components
such as routers and switches. Firstly, the purpose of
describing a system behavior at different levels of abstraction
to produce a final implementation is explained. Secondly,
the proposed abstraction levels to design NoC components
are introduced, and finally, the proposed methodology is
described.

A. ABSTRACTION IN HARDWARE DESIGN

Due to the heterogeneity and complexity in the digital design
area, a well-accepted approach is based on using one or more
models to describe the behavior of a system at a high level
of abstraction and then make decisions on its decomposition
into hardware and software [81]. From the previous idea,
Jantsch and Sander [82] expressed that the design process
has to offer a refinement methodology that allows bridging
the abstraction gap to yield an efficient implementation.

A typical example of this concept is transaction-level
modeling (TLM) [83], which proposes to separate com-
munication details between components from computation
details of the components so that the communication is made
by transactions (an abstraction of an information transfer).
Therefore, when the component to be designed requires
communicating with another system component, it will call
an interface function of an abstract communication channel.
In this way, unnecessary details of the implementation of
the communication and computation are hidden, which can
be added later. The refinement process in this modeling
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approach is carried out by three abstraction levels that
represent the time accuracy: un-timed, approximate-timed,
and cycle-timed. Therefore, a model closer to the final
implementation will be obtained if a refinement step is made
in the computation or communication processes to get a more
realistic timed approximation.

These kinds of methodologies are suited for designs requir-
ing a high-level model that allows designers to evaluate and
discuss the system before providing design implementation
details. For this reason, the approaches based on modeling at
different levels of abstraction are appropriate for designing
NoC components that need to meet specific requirements.

B. LEVELS OF ABSTRACTION FOR NETWORKS-ON-CHIP
COMPONENTS

NoCs are architectures that provide communication between
PEs using packet-switching methods. Therefore, the models
generated for a particular network component to be designed
should abstract the communication details (interface sig-
naling, protocols for sending and receiving packets) at the
higher-level models. Then, new NoC aspects will be inte-
grated through a refinement methodology to obtain a closer
approximation to the final implementation. The refinement is
based on adding details on how the component should handle
packets at each level of abstraction. Fig. 4 shows the proposed
levels of abstraction and the relationship between the models
generated for designing NoC components.

1) PACKET LEVEL

It is the highest level of abstraction. The component
functionality is modeled, abstracting all the communications
details through packet-by-packet transfers. Therefore, the
buffers of the network component will be allocated in units
of packets. This assumption simplifies the description of
the component because it is only necessary to describe
a black-box system with an algorithm that describes the
functionality of a component that receives a packet in a
single transaction rather than a complex functional algorithm
that processes a packet in flit-by-flit transfers. This level
allows the designer to generate a simple black-box model
that encapsulates the internal processing of the component
designed.
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FIGURE 4. Design space exploration for NoC components. The
specification model is transformed from a high abstraction level into a
implementation model at the lowest abstraction level.

2) FLIT LEVEL

The intermediate level of abstraction. The main feature
of this level is that transactions are performed in flit-by-
flit transfers. Therefore, this level allows exploring flow
control mechanisms. This process involves transforming the
packet-level model into a new version with new design
aspects that allow a packet to be processed in flit-by-flit
transfers. Moreover, new iterations are performed on this
abstraction level to transform the black-box model into a
white-box model. In this way, the blocks that will make up the
microarchitecture and the NoC link signaling protocol will be
added systematically.

This level of abstraction aims to get a microarchitecture
model that fits the system requirements. Each microarchitec-
ture block will be defined until it can be directly translated
into an HDL. That is, a clear definition of a control machine
and variables for a datapath definition exist.

3) CYCLE LEVEL

The lowest level of abstraction. The blocks of the latest model
generated in the flit abstraction level will be driven by a signal
that represents a clock source. In this way, the model behavior
will have an execution time like the Register-Transfer
Level (RTL).

C. THE PROPOSED METHODOLOGY

The methodology is based on the generation of different
models of the component to be designed according to
the levels of abstraction shown in the previous section.
Hence, starting with a high-level model at the packet level,
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the subsequent models will be based on the predecessor
model, adding new implementation details as allowed by
the characteristics of the previous model and the abstraction
level. Thus, each model will be spawned around the design
space and levels of abstraction, as shown in Fig. 4. Taking
this into account, the steps of the methodology are as
follows:

1. Definition of System Requirements. The first step is to
understand the problem. It is required to know the scope
and limitations of the component to be designed to make
decisions throughout the design process. Therefore, a set
of requirements that specify the design must be defined.
Anything out of there will be the designer’s choice.

2. Packet Level Model. Once the designer knows the design
requirements, a black-box model at the packet level will
be described. To simplify the algorithm and understand the
basic functionality of the component, the communication
between components will be carried on packet-by-packet
transfers through transactions described in procedures called
send and receive, as shown in Fig. 5. This model allows
the designer to verify the basic component functionality
and describe the fundamentals of the algorithm that will
be detailed in subsequent models. Furthermore, in this
early design stage, the functionality of different routing
algorithms can be explored and evaluated based on a metric,
if necessary. However, suppose latency and throughput are
used as metrics at this abstraction level. In that case, the
simulation results must be carefully analyzed since ideal
assumptions are made in this model to keep its description
simple. These performance evaluations are discussed later in
Section V-C3.

Component to be designed Sink/Source

Algorithm

receive()

FIGURE 5. Generic packet level model. The main algorithm of the
component to be designed receives and sends a packet P through the
send and receive procedures.

3. Flit Level Model, Black Box. In this model, an extension
of the functionality of the packet-level model algorithm must
be added, taking into account that transactions are carried out
in flit-by-flit transfers, as shown in Fig. 6. Therefore, the new
algorithm must have flow control details to allocate buffer
resources and channel usage to each flit of a packet. The send
and receive procedures are redefined to send and receive a
packet flit. At this level of abstraction, at least the following
models must be generated.

4. Flit Level Model, White Box. Based on the black-box
model algorithm at the flit level, an analysis of the
decomposition of the basic processing blocks of the algorithm
must be performed. The functions defined in the previous
model can help to define which blocks will constitute the
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Component to be designed

Sink/Source

receive()

FIGURE 6. Black-box model at flit level. Each packet is sent and received
on a flit-by-flit basis.

first approximation of a microarchitecture. Fig. 7 shows
an example of the decomposition of an algorithm into
blocks. At this point in the design, evaluating flow control
alternatives that fit the component requirements is possible.
For example, if block B1 in Fig. 7 corresponds to an arbiter
functionality, and it is not defined which arbitration scheme
must be implemented in the requirements defined in step 1,
simulations can be performed, and based on a metric, decide
which alternative is better.

Component to be designed

Sink/Source

==

;

FIGURE 7. Decomposition of the algorithm in processing blocks.

5. Flit Level Model, White Box with Communication
Protocol. The signals and processing required for the
communication protocol will be added to the new model,
as shown in Fig. 8. In this model, the relationship of
the communication protocol signals with the blocks of the
microarchitecture of the previous model must be described
to perform the protocol correctly. An advantage of adding
the communication protocol details in this design step is that
only the blocks related to the communication protocol will
be modified. All other blocks in the microarchitecture will
remain the same.

Component to be designed

Sink/Source

1 Interface signals §

Interface signals §

FIGURE 8. Integration of the signals of the NoC communication protocol.
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6. Cycle Level Model. In this model, each block of the
microarchitecture of the last obtained model will be driven
by a signal that will represent a clock source. Also, it must be
decided which blocks will not be driven by the clock source,
i.e., combinational blocks. Another decision is whether or
not a combinational block should have a registered output.
Simulations can be performed to analyze the effects of these
decisions, which could have repercussions on the latency of
the NoC. This level of timed precision allows finding timing
issues between blocks of the microarchitecture to correct
them before implementing the component.

7. Translation to HDL. In the final step of the methodology,
each microarchitecture block will be implemented using an
HDL. For this, the control statements and the manipulation of
the model variables of each block will be used to define the
Finite State Machines (FSMs) and the datapath. Furthermore,
in case part of the functionality of any block corresponds to a
well-known datapath component, such as memories, arbiters,
or crossbars, they can be implemented based on techniques
of the literature.

IV. EXPERIMENTAL CASE STUDY: A SWITCH
COMPONENT

In this section, the proposed methodology is applied to the
design and implementation of the NoC switch explained in
Section II. The steps mentioned above in Section III-C will
be applied, and the generated models according to the NoC
abstraction levels will be discussed.

A. DEFINITION OF SYSTEM REQUIREMENTS
According to Section II, the requirements for the switch
component are the following:

o Support for building parameterizable star topologies.
The number of switch ports must be defined according
to a parameter.

« Selectable arbitration method between round-robin and
priority fixed.

o Use of a specialized interface with a synchronous
handshaking protocol to connect PEs working with
different clock domains.

o Support for the NoC link signal protocol and the packet
specification.

These requirements will be used as a starting point to
define the packet-level model. Then, based on the character-
istics of subsequent abstraction levels and the requirements,
decisions will be made to define new implementation details
of the switch.

B. PACKET LEVEL MODEL

This model defines which information of the packets will
be used to determine the output channel assigned to each
incoming packet. Since the switch only supports the star
topology, it is not necessary to perform a routing algorithm.
Only the direction stored in the header’s field Dest Addr
determines the output channel of the incoming packets.

VOLUME 11, 2023
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The models developed with this methodology are
described and simulated in the OMNet++ tool [84],
a component-based C++ discrete event simulator.
In OMNet++, the objects called messages represent events
such as the arrival of packets or flits. Also, the messages
can represent user-defined control commands to implement
delays, timers, processing times, etc., for events that will
be executed at a later point in time. This flexibility
allows modeling any kind of behavior at different levels of
abstraction. Any message arrival to a module is processed
by a generic procedure called handleMessage, which does
nothing by default; thus, the designer must redefine this
procedure to add the desired processing algorithm of the
incoming messages.

The handleMessage procedure for the switch at the packet
level is described in algorithm 1. Its input is a message
representing an incoming packet to the switch or an incoming
control event that indicates that a stored packet has been
processed and will depart from the switch. The result of this
algorithm is an outgoing packet pkt_out that will be sent
through its corresponding output port. Another result of this
algorithm can be a scheduled control event e that will be
delivered to the handleMessage procedure itself according
to a packet processing time. Messages used in this way are
called self-messages in OMNet++.

Algorithm 1 checks whether the incoming message is
a packet or a scheduled control event. If the received
message is a packet (lines 1-8), its destination address is
get using the gerDestAddr procedure, which only takes the
value of the packet header’s field Dest Addr. The output
port selected for this packet is computed according to its
destination address; furthermore, a modulo operation limits
the maximum number of reachable output ports according to
the number of ports of the switch. The getInputPort procedure
gets the corresponding input port where the packet arrived.
The storePacket procedure stores the incoming packet in the
buffer associated to the input port of the received packet. The
processingTime procedure calculates the packet processing
time 7" as:

T =t,+L/b, (1)

where 7, is the header processing latency in cycles, L is the
packet length in flits, and b is the link bandwidth. The term
L/b determines the serialization latency. We assume that a
header requires two clock cycles to be processed, and the
ideal bandwidth of the links is one flit per clock cycle without
making a handshake. This consideration is for keeping the
model as simple as possible. Finally, each switch queue
will have a capacity for a single packet because the data is
processed with packet granularity.

The schedulePacket procedure grants access packets to
their desired output port. Furthermore, this procedure gener-
ates a self-message e that will be scheduled according to the
packet processing time T of the packets. If the message is a
control event (lines 10-12), the information about the packet
that has been processed is obtained via the getEventInfo
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procedure. Then the stored packet is removed from the buffer
using the popPacket procedure, and finally, it is sent to its
corresponding output port through the sendPacket procedure.

Algorithm 1 HandleMessage Procedure at the Packet Level
Input: Message msg, that can be an incoming packet or an
event for sending a stored packet.
Output: Outgoing packet pkzr_out or a scheduled event e.
1: if msg is a packet then
2: pkt = msg
3 dest_addr = getDestAddr(pkt)
4 output_port = dest_addr mod num_ports
5: input_port = getInputPort(pkt)
6: storePacket(pkt, input_port)
7
8
9

time = procTime(pkt)

: e = schedulePacket(output_port, input_port, time)
: else

10: [output_port, input_port] = getEventInfo(msg)

11: pkt_out = popPacket(input_port)

12: sendPacket(pkt_out, output_port)

13: end if

This model provides a first idea of what the switch
will need for its implementation. For example, line 4 of
algorithm 1 shows a high-level description of how the output
channel should be computed. For this component, it is directly
calculated. However, if the component to be designed is a
router, a routing algorithm could be defined and tested by
simulation.

C. FLIT LEVEL MODEL: BLACK BOX

At this level of abstraction, the packet is processed with a
granularity of flits. Therefore, the black-box model has to
manage the buffers and channels in units of flits. This model
can explore different flow controls that allocate resources
in units of flits; the most common are wormhole and VC.
Wormbhole flow control was chosen over VC because the
packet header specified for this NoC lacks a specified field
to handle different information flows. Also, wormhole flow
control is simple and allows the switch to have a reduced
amount of storage.

In order to use wormhole flow control, each input port
has an associated control state called channelState to track
the status of the current packet being processed. The finite
state machine (FSM) related to each input port is shown in
Fig. 9. The FSM will remain in the IDLE state when no packet
is processed. Access to an output port will be requested if
a new packet is received, and the FSM will change to the
WAIT_GRANT state. Then, the FSM will remain in this state
until the output port has been granted. Subsequently, the FSM
moves to the ACTIVE state, and after the packet has been
sent, the FSM will return to the IDLE state.

The handleMessage procedure for the switch at the flit
level is described in algorithm 2. Each incoming flit is stored
according to its arrival input port (lines 1-4). If the input
channel state is IDLE and the incoming flit is a header,
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!'new pkt
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FIGURE 9. FSM associated with each input port of the switch. This FSM is
used to track the current status of each packet being processed in the
switch.

arequest will be performed to try scheduling the new flit to its
requested output channel through the scheduleFlit procedure.
This procedure returns a scheduled event e for sending the
stored flit and a variable called grant that will be used to
assign a new state to the corresponding channelState using
the processChannelState procedure (lines 5-9).

The scheduleFlit procedure is similar to the schedule Packet
procedure. It creates an event (self-message) to send a flit,
but now it considers each input port state. If an output port is
already assigned to a packet of an input channel, the other
input channels will have to wait until the output channel
is released. Therefore the waiting input ports will have
assigned the WAIT_GRANT state.The checkWaitingChan-
nels procedure is used to allocate a recent output channel
released to a new packet stored on an input port waiting for a
grant.

The handleMessage procedure of this model has a similar
structure to the packet level model (an if statement to store
incoming packets and an else statement to process the event
for sending a flit). Notice that the newly added procedures
provide the necessary processing to handle the flow control
selected. The storeFlit, popFlit, and sendFlit procedures have
the same functionality as their equivalents of the packet level
model, but now the messages are handled like flits. The output
port computation remains unchanged.

The flit transfer time from the switch to its destination will
be specified using the scheduleFlit procedure. This delay is
set to two clock cycles, considering ideally that one clock
cycle is used to traverse the switch datapath and another
for link traversal. Furthermore, it will be considered that the
header flit adds an extra clock cycle for requesting its desired
output port. In order to get a first and rough approximation
to the link signal protocol to provide buffer backpressure,
an On/Off variable is used to determine when the downstream
node is ready to receive the next flit from the switch. If the
On/Off variable is enabled, a new flit will be transferred, and
the On/Off variable will be disabled. When the downstream
node receives the incoming flit, it will enable the On/Off
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variable to inform availability to receive the next flit. This
behavior would be an abstraction of the handshake that will
be detailed in later models.

Algorithm 2 HandleMessage Procedure at the Flit Level,
Black Box
Input: Message msg, that can be an incoming flit or an event
for sending a stored flit.
Output: Outgoing flit flit_out or a scheduled event e.
1: if msg is a flit then
f=msg
input_port = getInputPort(f)
storeFlit(f, input_port)
if f is header and channelState[input_port] = IDLE
then

6 dest_addr = getDestAddr(f)
7: output_port = dest_addr mod num_ports
8 [e, grant] = scheduleFlit(output_port, input_port)
9: processChannelState(input_port, grant)
10: end if
11: else
12: [output_port, input_port] = getEventInfo(e)
13: flit_out = popFlit(input_port)
14: sendFlit(flit_out, output_port)
15: if channelState[input_port] = IDLE then

16: [e, grant] = scheduleFlit(output_port, input_port)
17: processChannelState(input_port, grant)

18: else

19: e = checkWaitingChannels(output_port)

20: end if

21: end if

D. FLIT LEVEL MODEL: WHITE BOX
The blocks that make up the white-box model are defined
based on the procedures defined in the black-box model
described above. The algorithm of the handleMessage
procedure of algorithm 2 provides a structure on how the
switch should process the flits. Firstly, each incoming flit is
stored in a buffer. Then, a channel state is processed according
to three elements: the arrival port of the flit, the message (that
can be either a flit or event to send a flit), and the result of
the scheduleFlit procedure. Therefore, the flit buffering and
the algorithm of the processState procedure can be integrated
into a block to process received flits. The kind of behavior of
this block is similar to an input port of a generic router.
Secondly, since the processState procedure needs to know
when it can send a flit, it is in communication with the
scheduleFlit procedure, so this function corresponds to the
behavior of an arbiter that grants an output port only to an
input port. Also, the scheduleFlit procedure generates the
event to send a flit stored and enables the input port to update
its channel state. The event to send a flit is an abstraction
of the interconnection of an input and an output port that
processes the sendFlit procedure. Therefore, the arbiter block
should control an interconnection block that will be called the
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crossbar. The checkWaitingChannels procedure is integrated
into the arbiter block since it only checks which input ports
have requested the released output port. Next, it calls the
scheduleFlit procedure to decide on a new granted input port.
Notice that the arbiter can be implemented with round-robin
and the priority fixed schemes required. Fig. 10 shows the
main blocks of the white-box model and the relationship with
the procedures of the black-box model.

scheduleFlit()
checkWaitingChannels()

‘ sendFlit()

processChannel State()
storeFlit()
popFlit()

Arbiter

T

FIGURE 10. Main modules of the white-box model at flit level and their
relationship with the black-box model functions.

The communication among blocks of the white-box model
is made through messages. The block Input Port sends
messages representing requests to the Arbiter block and
receives a message when a grant is generated to its requested
output port. Also, the Arbiter block sends a control
message to configure the Crossbar block according to the
granted ports. The Crossbar block only forwards incoming
flits to a specific Output Port block.

The model of each block is described according to the
algorithm of the procedures they represent. Furthermore, if
necessary, the modules’ control can be implemented using
FSMs. OMNet++ provides a class and macros to build and
debug FSMs. For example, for the Input Port block,
an FSM was designed according to the states and behavior
defined in the black-box model.

The white-box model has the same functionality and flit
delay as the black-box model. The only difference is the
white-box model shows the internal block architecture. Thus,
the designer establishes how the flits and control events
interact between blocks without internal timing details. For
this reason, the flit delay is established as the same as defined
in the black-box model, and the Arbiter block computes it
when a new flit is authorized to depart from the switch.

E. FLIT LEVEL MODEL: WHITE BOX WITH
COMMUNICATION PROTOCOL

At this point of the design, the implementation details
required for the communication protocol are added. Each
signal of the protocol is added to the model, and it is
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defined which blocks of the microarchitecture of the previous
model will drive these signals and how they will be used to
send and receive flits. According to Section II, the protocol
communication uses an On/Off flow control to indicate
when the receiver is ready to receive a new flit, and then
the handshake is performed. Therefore, the Input Port
and Output Port blocks will perform this handshake.
On the other hand, the Arbiter block will require to
know the availability to send a new flit of each Output
Port block to generate grant signals to the Input Port
blocks that generate requests. Hence, adding a status signal
from each Output Port to the Arbiter block will be
necessary. Fig. 11 shows the modifications added to the
microarchitecture of the previous model.

According to the buffer occupancy and the NoC link signal
protocol, the Input Port block drives the On/Off output
signal. If the buffer is not full, this block will perform a
handshake to receive a new flit. The SoP and Req signals
are used to perform the protocol and notify when the Data
input signal is valid. Similarly, the Output Port block will
be able to send a new flit when the input signal On/Off is
enabled and will notify the Arbiter block (blue dotted line
in Fig. 11) of this availability.

In this model, the link traversal time for a flit is provided by
a functional approximation of the handshake delay performed
using the protocol signals. When the handshake is carried out,
one clock cycle is considered between each signaling event.
The flit traversal delay within the switch is one clock cycle,
as the predecessor model with the extra cycle for flit header
processing.

Arbiter

FIGURE 11. Modifications to the white-box model when the
communication protocol is integrated. New internal connections (blue
dotted lines) are added to inform the Arbiter of the status of the
handshake protocol.

F. CYCLE LEVEL MODEL

A module that acts as a clock source is generated to add
a cycle-timed precision to the last model at the flit level,
which periodically sends an event that will trigger the
handleMessage procedures of the microarchitecture blocks.
The Input Port and Output Port use state machines
to perform their processing and need variables to store
temporal values. The Arbiter block also uses internal
variables to track the priorities assigned in each arbitration
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round. Therefore, according to its internal processing, all
blocks but Crossbar were selected to be sequential for
this microarchitecture. The Crossbar block could have
registered outputs, but the drawback would be to have an extra
clock cycle in the switch traversal of each flit.

from Arbiter block
1
(Input Port — Cycle Level: )
handleMessage()
. grant : 5
. =
) |4
; o< 2
o [ Input Port — Flit Level: --» arb_req > 5 2
< =
[=i
Bb— handleMessage()
@ =
= == 1 | 1l
g > it > g
£ 4 J3
Y, =
. J
clk

FIGURE 12. Cycle level model of the Tnput pPort block. All received
signals from the extern modules will be processed by the handleMessage
procedure of the Input Port block at the flit level in each clock cycle.

The basic structure of the blocks at the cycle level is
based on using the latest handleMessage procedure of each
block at the flit level. However, these procedures will be
triggered when a clock cycle event is received. Each block
will store the incoming/outgoing messages from/to other
blocks to achieve this behavior. For example, Fig. 12 shows
the structure of the Input Port block at the cycle level.
The handleMessage procedure at the flit level from the
Input Port block will process all incoming messages
and generate the corresponding outgoing messages. However,
these messages will be registered in variables in each
clock cycle. Therefore, with these input/output registers, the
structure of a generic sequential circuit (processing logic with
input and output registers) is added to the model. For the
synchronization of the handshake control signals, an extra
delay of one cycle was added to the Req and Xon signals to
model the behavior of a signal crossing a clock domain using
a standard two flip-flop synchronizer [85].

OMNet++ supports object-oriented programming and the
use of polymorphism. Therefore, it allows the cycle-level
model to inherit the procedures from the latest model at the
flit level. Then, the handleMessage procedure of the model at
the clock cycle level will be able to use the handleMessage
procedure model at the flit level, as is shown in Fig. 12.

G. TRANSLATION TO HDL

The Input Port, Output Port, Crossbar, and
Arbiter models are translated to an HDL. Verilog standard
was used for this case study. The HDL code is obtained
easily (without using an automatic tool in this paper) because
the details of each block microarchitecture have already
been defined throughout the design process; input/output
signals, control statements, and variables manipulation to
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perform its processing. Fig. 13 shows the microarchitecture
obtained according to the switch cycle-level model, which
only shows an Input Port and an Output Port. The
control unit of the Input Port and Output Port
blocks is already detailed in their FSMs from the OMNet++
models. Since the bitwidth of the control signals between
modules grows according to the number of ports, encoders
and decoders are used to reduce the bitwidth. Also, a FIFO
buffer is needed, which in the literature already exists
efficient implementations. The Crossbar was implemented
using multiplexers, and the Arbiter block was built using
variable priority iterative arbiters [6], one for each Output
Port of the switch. Furthermore, a block was added that
manages round-robin priorities associated with each Input
Port.

V. RESULTS

In this section, the proposed methodology is analyzed
and compared in qualitative and quantitative terms. First,
comparing the generalities of the literature approaches with
the proposed approach is made to identify similarities and
differences. Later, the design and implementation of the case
study are analyzed in terms of latency, throughput, and area.

A. DESIGN APPROACHES COMPARISON

Many authors have designed different router architectures to
improve a metric of interest. The findings of this work suggest
that there exist three router design approaches explained in
Section I. Each approach implies certain particularities and
methods to design a router microarchitecture and, if possible,
its implementation. Therefore, four characteristics involving
router design are proposed to make a qualitative comparison
between design approaches. (1) Strategy for architectural
exploration. Each methodology has a procedure to decide
which NoC design aspects will be addressed. (2) A defined
design flow. A design flow is a sequence of steps or
processes to perform the design cycle. (3) The use of
frameworks or tools to automate the design flow. (4) Gen-
eration of the design implementation. Some works only
focus on designs with cycle-level accuracy without hardware
implementation.

Table 2 shows a comparison between the design
approaches of the literature and the proposed methodology.
Approaches based on canonical architectures allow selecting
a specialized router design aspect, such as buffer organiza-
tion, low power, pipeline, datapath, or link design, which
will be the design starting point. On the other hand, the
library-based approaches allow choosing and configuring
a predetermined set of features covering different router
design aspects. A well-known case is the xpipes library [74],
which allows selecting the number of ports, the number of
VCs, and buffer size. Therefore, regarding to architectural
exploration, these two approaches are limited to a specific
design aspect and the level of configurability of the building
blocks. Furthermore, both have a defined design flow, and
some works have a hardware implementation. Also, a great
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FIGURE 13. The switch microarchitecture obtained by using the proposed methodology.

TABLE 2. Router design approaches generalities.

Approach Architectural Exploration Design Flow | Automation :—il(;)arrldware Implementa-
Eli:d on Canonical Architec- Limited to a specialized area Yes No Some works
Library-based Limited to configurability of the basic building Yes Yes Yes

blocks
Ad hoc According to requirements No No Some works
The proposed methodology According to requirements Yes No Yes

advantage of library-based approaches is the possibility of
generating tools that automate their design flow because
they can adopt algorithmic strategies to select the optimal
configuration values for their building blocks.

Alternatively, ad hoc approaches are free to explore any
design alternatives, and as a result, the architectures designed
are novel to improve NoC performance. Nevertheless, this
flexibility in exploring the design space comes at the expense
of an undefined design flow and relies on designer’s vision
and understanding.

It should be emphasized that the design choices made
in the above approaches are evaluated with cycle-accurate
results because they are focused on improving performance.
In contrast, the proposed methodology considers the need to
explore the design space without limiting it to a specialized
design area or a set of configurable building blocks. The
freedom of exploration will be according to the functional
system requirements. Therefore, this exploration approach
differs from the state-of-the-art because the design choices
are taken to functionally meet the specified requirements
according to the processing granularity of each abstraction
level rather than being made to improve performance.
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However, suppose a determined functionality (flow con-
trol, routing algorithm, arbitration, etc.) cannot be associated
with a requirement, and the designer has the freedom to
select it. In that case, evaluations can be performed at the
corresponding level of abstraction based on a metric to
decide which alternative is better. Nevertheless, a careful
performance analysis must be made at high levels because
ideal assumptions are made. This performance analysis is
discussed later in Section V-C3.

Additionally, a top-down approach is employed, which
allows defining a design flow to establish the steps to carry
out the design and implementation of the required compo-
nent. It is noteworthy that this kind of approach focused on
the NoC design according to the system requirements, with
a flexible exploration design space, is similar to generic SoC
design approaches. However, the proposed work adapted it to
be NoC oriented through the proposed abstraction levels to
model the component to be designed. The abstraction levels
are oriented to the characteristics of the NoC communication,
providing a structured approach to tackle design aspects
without thinking about the implementation details in the early
stages.
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B. PERFORMANCE RESULTS

In this section, the switch performance under different
synthetic traffic patterns and traces of real workloads is
evaluated. Simulations are performed using the cycle-level
model described in Section IV-F. The NoC topology is a
star (as is shown in Fig. 13), and the NoC parameters are
the number of ports of the switch, arbitration type, size
of the input buffers, packet size, and the operation frequency
of the switch (CIkSW) and terminals (CIkT). The terminals
replace the PEs and act as a sink and source for the NoC
packets for statistics recollection.

1) SYNTHETIC TRAFFIC

Three network traffic patterns [6] were used: (1) uniform
random, where each terminal is equally likely to send packets
to each destination, (2) bit-complement, a permutation
where each source terminal sends traffic only to a single
destination, the destination is computed complementing each
bit of the address of the source terminal and (3) hot-spot,
where the probability of sending a packet to the hot-spot
terminal is greater than the probability of sending a packet
to the other terminals, for this experiment, the hot-spot
terminal corresponds to the terminal with address zero, and
its probability is 0.4. The remaining traffic is distributed
uniformly among the other terminals.

The performance impact of the switch is explored with
the above three traffic patterns, using a different number
of ports and different operating frequencies according to
the configurations shown in Table 3. The CIkSW frequency
value is 50 MHz because it is the frequency available by
the oscillator of the Altera field-programmable gate array
(FPGA) device where the switch was synthesized and tested.
The different CIKT settings are used to know the performance
that can be achieved using frequencies slower or faster than
the switch.

The metrics used to evaluate the performance are the
average latency of the received flits and the throughput in
flits/cycle, both in terms of the operating frequency CIkT.
In order to maintain homogeneity in the initialization of sim-
ulations and considering that each frequency configuration
will determine different rates at which packets are received,
a warming period of 10,000 cycles was used. This allows to
reach a steady-state for all configurations. A measurement
phase of 50,000 cycles was chosen to collect at least five times
more samples in each run than those discarded in the warm-
up phase. For statistic soundness, 15 repetitions were made
with different random seeds.

Fig. 14 shows the results of these experiments. According
to the latency results (Figs. 14a to 14c), it is observed that
the permutation traffic has the best saturation throughputs>
because there is never contention between packets; all
switch resources are allocated to each source-destination pair

Zsaturation throughput is defined as the injection rate when the network
is saturated. Generally, it is measured as the injection rate when the average
latency is three times the zero-load latency [17], [86].

4424

TABLE 3. NoC configurations for the simulations using synthetic traffic.

Parameter Description

Operation CIkT = 50 MHz, CIkSW = 50 MHz

frequencies CIKT = 20 MHz, CIkSW = 50 MHz
CIKT = 100 MHz, CIkSW = 50 MHz

Number of ports | 4,8, 16

Arbitration Round-Robin

Input buffer size | 4 flits

Packet size 5 flits

without conflict. On the other hand, hot-spot traffic shows
the worst saturation throughputs. This behavior is expected
because slightly less than half of the traffic is sent to a single
destination. So there will be a higher number of contentions
for that output port because there is only one path to reach it.

The performance under uniform traffic is between that
obtained with permutation and hot-spot traffic. Although
performance under uniform traffic does not have high
saturation throughputs like permutation, its performance does
not drop considerably as hot-spot traffic when the number of
switch ports increases beyond four ports.

Regarding the results using different operating frequencies
for CIKT, the reported curves have similar behavior with
different saturation throughputs according to the relationship
between CIkT and CIkSW. Fig. 15a shows the saturation
throughput in bits per clock cycle of the terminal for each
experiment according to the number of the ports used (4P,
8P, and 16P) and the different operating frequencies used:
case 1 (C1) where CIKT = CIkSW, case 2 (C2) where CIKT
> CIkSW and case 3 (C3) where CIKT < CIkSW.

Although it seems case C3 has the best saturation
throughput and case C2 the worst, it must take into account
that CIkT in case C3 has a frequency of about half of the
CIkSW, and CIKT frequency is double the CIkSW in case C2.
Therefore, using the same ratio between CIkT and ClkSW
described above, different saturation throughputs in Mbps
can be obtained according to the clock frequencies used. For
example, Fig. 15b shows the saturation throughputs in Mbps
using the values of the clock frequencies reported in Table 3.

It can be noticed that traffic patterns such as permutation
with a 4, 8, and 16-port switch, traffic of up 300 Mbps can
be injected before the NoC is saturated; on the other hand,
the worst performance is under hot-spot traffic with a 16-port
switch with saturation throughputs between 30 and 50 Mbps.
Also, the saturation throughput of case C3 in all simulations
is approximately 30% lower than cases C1 and C2, which
have similar saturation values. This performance degradation
is because the CIKT is slower than CIkSW. Therefore, the time
elapsed between data flit transfers through the handshake is
less than CIkT frequencies equal to or greater than CIkSW.

The accepted traffic curves (Figs. 14d to 14f) have similar
behavior in all experiments. It can also be observed that the
throughput drops drastically after saturation under hot-spot
traffic patterns with an 8, and 16-port switch. This behavior
under hot-spot traffic is expected since each terminal sends
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FIGURE 14. Latency and throughput curves of the switch using uniform (U), hot-spot (HS) and permutation (P) synthetic traffic patterns, the number of

ports considered are 4 (4P),8 (8P) and 16 (16P).

40% of its traffic to only one destination. Consequently, in the
worst case, when all terminals send a packet to the hot-spot
destination, they will have to wait at most n arbitration rounds
(due to the round-robin scheme) to be granted the desired
output port, where 7 is the number of ports of the switch.

Fig. 16 shows how the latency and throughput curves
of the switch using round-robin (RR) and the switch
using the priority-fixed (PF) scheme compare. Results for
the 8-port and 16-port switches are presented because
significant differences were noted under hot-spot traffic.
Figs. 16¢c and 16d show that the accepted traffic under the
hot-spot pattern with PF does not drop drastically compared
to RR. This result is because the terminal with priority will
always send more packets to the hot-spot terminal without
interruption. Thus, this terminal will receive more packets
on average at the cost of generating starvation with the other
terminals.

In addition to the above results, a simulation to evaluate
the NoC performance using different packet sizes in a NoC
with eight terminals is presented. Table 4 shows the packet
sizes the terminals send to their destinations in this scenario.
The simulation results are presented in Fig. 17; a comparison
is provided against the previous experiment when the packet
length is fixed. The zero-load latency with uniform and
hot-spot traffic is five cycles greater on average than the
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obtained under permutation traffic. Also, under hot-spot and
uniform traffics, the average latency increases asymptotically
at low injection rates. This result shows that using large
packet sizes degrades the performance of this NoC using a
switch component. This behavior is because the larger the
packet sent by a terminal, the longer the switch resources will
be used to send a packet. Hence, the waiting time of the other
terminals that want to send a packet to the same destination
will increase.

The accepted traffic curves show an interesting finding for
hot-spot traffic. With major injection rates than the saturation
throughput using hot-spot traffic (0.7 flits/cycle/node), the
network throughput of the experiment that uses fixed-length
packets is 30% less compared to the experiment that uses
variable-length packets. However, these results must be
interpreted with caution because the throughput reported is
the average per node. Therefore, a more careful analysis
based on reporting the minimum throughput across all
network flows (source-destination pairs) is shown in Fig 18.

As can be observed, in the experiments using variable-
length packets, the minimum throughput drops drastically
to zero after reaching saturation, revealing a fairness
problem. Furthermore, the simulations reported that the
minimum throughput is from the flows that generate the
smallest packets (the first two terminals), showing that
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FIGURE 15. Saturation throughputs for different synthetic traffic patterns.
The number of ports considered are 4 (4P),8 (8P) and 16 (16P). Three
different cases are considered: CIkT = CIkSW (C1), CIkT > CIkSW (C2), and
CIKT < CIkSW (C3).

these flows are throttled after saturation despite using the
round-robin arbitration scheme. This throttling is because to
the round-robin scheme provides an equal service regarding
the number of times one requester is served. However, when
using variable-length packets as in the above experiment,
terminals that send packets with the largest size will send
more flits than terminals that send packets with the smallest
sizes. In consequence, a weighted round-robin scheme should
improve the fairness problem.

TABLE 4. Packet sizes configured for terminals.

Terminal address | Packet size
0,1 5 flits

2,3 63 flits

4,5 100 flits
6,7 210 flits
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FIGURE 17. Latency and throughput curves of the switch using

uniform (U), hot-spot (HS) and permutation (P) synthetic traffic patterns.
Comparison between experiment using packets of variable-length (VL)
against experiment using fixed-length (FL) packets.

2) TRACES OF REAL WORKLOADS

The NoC performance was evaluated using real traffic traces
from the MCSL suite [87], which provides traffic information
of different real applications optimized for regular NoC
architectures such as torus, mesh, and fattree. The MCSL
suite includes multiprocessor System-on-Chip (MPSoC)
applications, which are used in heterogeneous architectures.
For this reason, these benchmark applications are adequate to
evaluate the proposed work.

The authors of the MCSL suite model each real application
using Task Communication Graphs (TCG) to provide com-
munication dependencies between the tasks of an application.
Then, algorithms are applied to get task mapping and
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FIGURE 18. Minimum throughput across all flows of the switch using
uniform (U) and hot-spot (HS) synthetic traffic patterns. Comparison
between experiment using packets of variable-length (VL) against
experiment using fixed-length (FL) packets.

schedule for a target NoC topology according to each task’s
dependencies and processing times. Finally, they simulate the
application optimized for the NoC topology and generate a
file with the recorded traffic pattern.

Another aspect of the traffic patterns is that the packets
injected into the NoC by the processing blocks (PBs)
will depend on each task processing time, schedule, and
dependencies on other tasks. Therefore, each task will not be
executed in its assigned processing block until it has received
the data required to start its execution. Then, when each task
finishes its execution, it will send its processed data to the
tasks that depend on it.

The MCSL suite provides traffic patterns for applications
such as a Fast Fourier Transform (FFT) of 1024 samples,
Reed-Solomon (RS) coder and decoder, sparse matrix solver,
etc. Each of them has a specific number of tasks and
communication links according to its modeled TCG. Each
link indicates that a packet will be sent from a source task
to a destination task. Table 5 shows the characteristics of
the applications taken from the MCSL suite used for the
simulations of this work and the statistics of the packet
lengths that the tasks of each application produce.

TABLE 5. Summary of the applications modeled in the MCSL suite and
their packet lengths statistics.

App General Information Packet Length
Statistics (flits)
Application No. No. Avg. Max. Min.
tasks links Size Size Size
Robot 88 131 51 64 28
SPARSE 96 71 204 256 124
RS-32-28-8 dec | 182 392 3 3 3
RS-32-28-8 enc | 262 348 3 3 3
FPPPP 334 1145 54 66 28
FFT-1024 16384 | 25600 | 5.6 6 4
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The applications have a variety in terms of the number
of tasks and communication links. Applications like the RS
encoder and decoder only send small, fixed-size packets (3
flits). SPARSE sends a small number of packets, but the
average packet size is 204 flits. On the other hand, the FFT
is the most demanding application because it has the largest
number of packets to send to the NoC.

The recorded traffic patterns optimized for a fattree
topology were used because, among the topologies available
in the suite, it is the most similar to the star topology studied in
this work. Traffic patterns for 4, 8, and 16 PB were used. The
switch configurations are round-robin arbitration and 8-flit
buffer size.

Fig. 19 shows the execution times of each application
normalized to the base case (4-port switch). It can be observed
that in most applications, as the number of ports increases, the
execution time reduces. The applications ROBOT, SPARSE,
and FPPPP have an average reduction of 30% in execution
time using an 8-port switch and a reduction of up to 50%
using a 16-port switch. The FFT has a reduction of 8% and
20% for a 4-port and 8-port switch, respectively. On the
other hand, the RS encoder execution time grows 18% and
30% using 8-port and 16-port switches, respectively, despite
having a medium number of tasks and communication links
compared to the other applications.

1.4 i =
l 4-Ports
D 8-Ports
l 16-Ports

1.2

Normalized execution time

L

FIGURE 19. Execution times normalized to the case base (4-Ports switch).

In all applications but the RS encoder, the execution time
is reduced. This result makes sense because the greater the
number of PB available for an application, the greater the
distribution of the tasks to take advantage of parallelism.
To analyze the results and why the execution time increments
for the RS encoder when the number of PB increases, the
spatial distribution of the packets for each application was
obtained, counting the number of packets delivered in each
output port of the switch.

Most applications distribute the generated packets among
all PBs, but there is a concentrated load on a few switch ports
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FIGURE 20. Amount of delivered packets on each switch output port
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in the packet distributions for the RS encoder. Fig. 20 shows
the packet distributions for the RS encoder and SPARSE
applications to compare configurations with 4, 8, and 16-port
switches. The packet distributions observed for the RS
encoder are similar to hot-spot traffic for configurations for
8-port and 16-port switches, i.e., most packets are issued to
the first four ports of the switch. By contrast, the packet
distributions of the SPARSE application do not present a
concentrated load compared to the RS encoder.

As explained in Section V-B1, the switch performance is
degraded under traffic patterns like hot-spot because there
is only a path available to deliver a packet to a determined
destination. Therefore, the performance degradation of the
8-port and 16-port switches using the RS encoder is
consistent with the findings of the switch performance using
hot-spot traffic.

3) FPGA SYNTHESIS RESULTS
Table 6 summarizes the frequency, area, and power con-
sumption results for a 4, 8, and 16-port switch using the

4428

TABLE 6. Hardware cost of the switch for different number of ports.

Logic Memory Max. Static Dynamic

S Freq. P P

Ports Cells Bits req ower ower

(MHz) (mW) | (mW)

1312 12

4 3 > 101 98.57 7.63
(1.1%) (0.01%)

8 3902 1024 73 98.81 16.27
(3.4%) (0.03%)

16 12386 2048 51 99.75 48.66
(10.82%) | (0.05%)

Quartus Prime Lite 21.1 tool for the FPGA Altera Cyclone IV
EPACE115F29C7. The reported values in percentage indicate
the amount of FPGA hardware resource utilization. The
switch is configured with a 4-flit buffer size and round-robin
arbitration. The switch area utilization grows because each
port added to the switch consists of an input and output port,
plus the extra overhead of the arbiters and the crossbar to
manage the new port. Also, to provide minimum logic cells
(LCs) utilization, input buffers are mapped on the FPGA
embedded memory.

Notice that the maximum operation frequency decreases as
the number of ports increases. This behavior results because
the priority variable arbiters of the switch are implemented as
a carry chain, which increases the logic levels of the critical
path (reported by the timing analyzer tool) when the number
of ports is increased.

For accurate dynamic power estimation, post-synthesis
netlist files are generated and used to perform gate-level
simulations. Realistic toggle rates of the design are extracted
from these simulations into a value-change-dump (VCD) file.
The testbench used in the gate-level simulations consists of
packet sources and sinks. The packet sources inject uniform
traffic, and the injection rate is set according to the cor-
responding saturation throughput obtained in Section V-B1
for 4, 8, and 16-port switch configurations of case Cl
(CIkT=CIkSW); this configuration provides an upper bound
estimation of power consumption under a worst-case with
synthetic traffic. The gate-level simulations are performed
in Questa Intel Starter FPGA Edition for the same warm-up
and measurement cycles defined in Section V-B1 using a
clock of 50 MHz. Only the toggle rates of the measurement
period are recorded in the VCD file to get dynamic power
consumption when the switch is in a steady state. Then, this
information is used in the Power Analyzer Tool included
in the Quartus Prime software to get the design’s static
and dynamic power consumption. The typical operating
conditions of the FPGA device selected are used for power
estimation.

According to the power results in Table 6, the static power
does not increase significantly despite the number of ports
configured. This result is expected since the static power
consumption is more influenced by the process technology
of the FPGA device selected and the operating conditions,
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TABLE 7. Hardware cost comparison between ProNoC router, ASIC-based
router and 5-port switch.

Component Logic Cells Max. Frequency
ProNoC router 1707 (1.49%) 130 MHz
ASIC-based router 1814 (1.58%) 138 MHz
The proposed design | 2251 (1.96%) 94 MHz

which determine the leakage in the transistors. On the other
hand, dynamic power consumption is influenced by the
switching activity of the FPGA resources when processing
data. In the case of the switch, while more ports are used,
more resources are used to store and forward flits, and
therefore, more signal transitions are caused, increasing the
dynamic power consumption.

In addition to the above hardware cost results, the proposed
design is compared against two Verilog open-source routers
presented in the literature to comprehend how close the
design is in terms of area regarding other works. The first
is a parameterized state-of-the-art router for ASIC-based
NoC [88], [89]. The second is the router from ProNoC [90],
an open-source tool for prototyping and validation for
FPGA-based NoC. Both were selected because they can be
configurated with wormhole flow control without VC, which
allows making a more fair comparison with the designed
wormhole switch configured with five ports.

The NoC unified parameters are 4-flit buffer size,
32-bit payload width, and round-robin arbitration. For
routers, dimension order routing is selected due to its simple
and inexpensive implementation [6]. Furthermore, because
ASIC-based NoC router buffers are not optimized to use the
FPGA’s embedded memory, a synthesis directive (ramstyle =
“logic”’) was enabled for the ProNoC router and the proposed
design. The directive forces the buffers to be synthesized
using only LCs, making a fair comparison in area utilization.
Table 7 shows the synthesis results of the compared designs.

The synthesis results indicate that the compared designs do
not exceed more than 2% of the total LCs available. However,
on average, the proposed design uses 27% more LCs than
ProNoC and the ASIC-based NoC routers. The maximum
operating frequency of the routers outperforms the switch by
42% on average.

The area differences can be explained because the
competitors’ routers use credit-based link-level flow control,
where simple counters keep track of buffer availability.
In contrast, the proposed design requires additional logic
on each port to perform the required handshake. On the
other hand, the frequency differences suggest the possi-
bility of improving frequency by optimizing the critical
path, which is affected by the priority variable arbiters.
Furthermore, it should be emphasized that a frequency
optimization stage was not imposed during the HDL
translation. For this reason, an easily parameterized arbiter
was chosen, and therefore other implementations were not
evaluated.
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C. DISCUSSION

1) SWITCH PERFORMANCE CONSIDERATIONS

According to the above switch performance results, using
the relationships studied in this work between CIKT and
CIkSW, it is recommended that CIKT be equal to or greater
than ClIkSW for the best throughput. If for some reason,
the frequency CIkT must be less than CIkSW, it should be
considered that the throughput will be 30% less compared to
using a CIKT value equal to or greater than CIkSW.

Different saturation throughputs can be obtained according
to the CIKT frequency used. For the clock frequencies shown
in Table 3, injecting traffic patterns similar to the permutation
is recommended to get a throughput of up to 300 Mbps,
which is the best scenario for the switch. Traffic patterns with
uniform distribution present throughput of up to 210 Mbps
with a 4-port switch, and with 8-port and 16-port switch
configurations, throughput decreases up to 10% compared
to using a 4-port switch. When traffic patterns similar to
hot-spot traffic are injected into the network, it should be
considered that a 4-port switch will have the best throughput
(up to 200 Mbps), and configurations of more than four
ports should be avoided as throughput can decrease up
to 50 Mbps.

Considering the overhead due to implementing hand-
shaking, the area cost of the 5-port switch is comparable
to the obtained with some state-of-the-art routers. On the
other hand, the switch area utilization grows linearly when
the number of ports configured increases. Therefore, the
maximum port configuration will depend on the features of
each technology. For example, with the Cyclone IV device
used in this work, if the internal clock of 50 MHz is used, the
maximum number of ports supported is 16, with an operating
frequency of 51 MHz and 10% of the total FPGA’s area
occupation. To improve the frequency results, it is suggested
to evaluate alternatives to the arbiter based on the carry chain
since this type of design increases the critical path when the
number of ports increases.

Nevertheless, it should be noted that with a 16-port switch,
the frequency drop is approximately 50% compared with
the 4-port configuration. Consequently, it is recommended
to consider another topology to connect 16 terminals, for
example, a 4 x 4 mesh. In general, if more than 16 ports are
needed, alternatives with mesh, torus, and other topologies
should be used because they support a higher number of
terminals, and their routers have a fixed maximum operating
frequency.

As the FPGA is an ideal prototyping tool for designs
described at RTL, some situations that would differ from
an ASIC should be stated. In an ASIC design, specific
constraints, such as input delay, output delay, and clock
requirement, are used to optimize a design. Instead, this
study only used the default clock timing constraint of 1 GHz.
Therefore, the tool made its best effort to get the maximum
frequency achievable for each switch configuration. Further-
more, the synthesis tool was used with the default option for
the best tradeoff between area and speed.
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Regarding the experiment with traces of real workloads,
most application execution times are reduced by increasing
the number of PBs available to process the application tasks.
However, this improvement is at the cost of greater area
utilization. Thus, depending on the area budgeted for the
NoC, a designer should consider the tradeoff between the
hardware cost of the switch and the execution time of an
application.

2) SIMULATIONS AND DESIGN VERIFICATION

The cycle-level model was used for performance simulations
over the RTL model because the simulator OMNet++
provides flexibility in building simulation setups, running
parallel simulations, and statistics recollection. Also, other
high-level models that interact with the designed cycle-level
model can be integrated for simulation. Therefore, it is
possible to make simulations where the terminals that
inject traffic are described at high levels of abstraction.
The communication with models described at lower levels
of abstraction is made through interfaces that handle the
communication timing.

On the other hand, an advantage of the proposed approach
is that through the simulations of each model, an exhaustive
verification of the design logic is made. The functionality
of the FSMs can be verified before implementing the whole
design.

3) PERFORMANCE AT EACH LEVEL OF ABSTRACTION

The proposed methodology aims to have a structural
approach to derive a microarchitecture according to the NoC
functional requirements. Each abstraction level helps the
designer progressively integrate different functionalities of
the component and then make a block organization to turn it
into a microarchitecture model. Therefore, at each abstraction
level, it is possible to get a performance approximation
related to the cycle-accurate results. Consequently, each new
performance approximation will be closer to the one obtained
at the cycle level. Latency and throughput curves obtained
throughout the switch design in Section IV are presented
and discussed. The simulations are performed for an 8-
port switch under the same synthetic traffic patterns and
NoC configurations explained in Section V-B1. The clock
frequencies of case C1 are employed. Performance results for
cases C2 and C3 are only relevant at the cycle level where the
link signal protocol has already been added.

Fig. 21 shows the latency and throughput results comparing
the packet and cycle level models. Due to the simple
considerations for the packet level model, its zero-load
latency overcomes the cycle level results approximately three
times. Consequently, the packet level model accepts more
packets than the cycle level model under each traffic pattern,
as shown in Fig. 21b. This behavior is expected because the
packet processing delay is ideal without using a specialized
link protocol. After all, the primary purpose of this model
is to provide a first functional understanding of how a NoC
component will process a packet format and how the output
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port is calculated without flit-level details. Therefore, the
findings at the packet level should be interpreted with caution.
The designer would use these first performance results
to understand how a determined topology with a routing
algorithm performs over a simple model without considering
a flit level congestion. For example, with these results, it can
be guessed how each traffic pattern will perform over the
following generated models through the design process.
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FIGURE 21. Latency and throughput curves of an 8-port switch at the
packet (PKT) and cycle (C) abstraction level. Uniform (U), hot-spot (HS),
and permutation (P) synthetic traffic patterns are considered.

=
o

B 18 —- UB || . —~ UB
] -+ H$-B < (.95| |+ HsB
16 — PB / g Vel pB
- - U-W | © - UW
g U 4 HSW T 02w
z12 —+ P-W | = — P-W
g L e o
510 :I}SE‘ I = 0.5 ::ﬂ((‘
g 8 — P-C || & — P-C
2 6 o 0.1

g °

! 2 0.05

£ 2 i

= 0 0

005 0.1 0.5 02 025 03
Injection rate (flits/cycle/node)

005 01 0.5 0.2 0.25 03
Injection rate (flits/cycle/node)

(a) Average Latency (b) Throughput

FIGURE 22. Latency and throughput curves of an 8-port switch using
flit-level black box (B), white box with the communication protocol (W),
and cycle (C) models. Uniform (U), hot-spot (HS), and permutation

(P) synthetic traffic patterns are considered.

The subsequent model transformations from the black-box
flit-level model present a closer approximation to the cycle
level, as is shown in Fig. 22. Both black-box and white-
box models at the flit level present the same performance
results because they have the same flit delay configuration.
Therefore, with this first performance at the flit level, it can
be inferred how the component performs assuming a simple
backpressure method with similar behavior to the required.
When the link signal protocol is added, the impact of the
handshake is reflected in the zero load latency with an
average increment of two cycles. Thus, there is throughput
degradation. Finally, in the cycle-level model, the impact
of synchronization of the switch microarchitecture and the
handshake with their respective clock sources is reflected,
showing the overall impact of the network congestion due to
the internal timing delay of the switch.
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In particular, the latency and throughput results at different
abstraction levels provide an incremental approximation
of the designed component performance. However, other
metrics could be suitable according to each abstraction
level. For example, latency and throughput only show an
ideal performance at the packet abstraction level because it
only considers the required topology and routing algorithm.
Nevertheless, the routing pressure metric [91] could be used
at this level for evaluating a routing algorithm because it only
requires measuring the number of packets processed by each
network channel.

The use of performance metrics through the proposed
design process will depend on whether a particular func-
tionality is not defined or cannot be deduced via the initial
requirements. Consequently, these analyses can be used as
an additional tool to evaluate functional and architectural
alternatives of the component when necessary.

VI. CONCLUSION

In this work, it is proposed a NoC components design
methodology based on a top-down approach with NoC-
oriented abstraction levels, using a switch as a case study.
This methodology allowed exploring the switch design
space at each level of abstraction according to the specific
functional requirements of an SDR system. In this way,
different NoC design aspects of the switch were addressed
systematically to define its microarchitecture. Implementa-
tion results show that the microarchitecture obtained using
this approach has an area utilization and frequency operation
similar to works in the state-of-the-art. The validation of the
designed switch was obtained by evaluating it under different
types of synthetic traffic and traces of real workloads.
The reported results show that the best performance of the
switch is obtained when the applied traffic is similar to
permutation traffic with a saturation throughput of 320 Mbps.
If the applied traffic is similar to a uniform distribution, the
saturation throughput decreases to 200 Mbps. Traffic patterns
such as hot-spot should be avoided because the saturation
throughput degrades 60% to 80% compared to permutation
traffic when the switch is configured with more than four
ports. While this work focuses on functional design, the pre-
sented methodology makes it possible to identify architecture
blocks that could improve a specific metric. Therefore, the
designer can evaluate modifications or alternatives on only
specific blocks for improving overall performance, which
represents a clear advantage over previous approaches.
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