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ABSTRACT This paper is concerned with the issue of input-output finite-time stability (IO-FTS) for
a class of nonlinear discrete time-varying systems. A time-varying observer-based sliding mode control
method is proposed. In order to mitigate the transmission burden, an adaptive event-triggered mechanism
is proposed by adjusting the threshold. Taking consideration of the effect of time-delay phenomenon and
time-varying system matrices, a time-varying Lyapunov functional is designed. Based on the designed
Lyapunov functional and IO-FTS theory, sufficient conditions are established for the error estimation system
and closed-loop state estimation system. Moreover, the proposed observer-based sliding mode control
method makes sure the reachability of the quasi-sliding mode surface in finite steps. And conditions in terms
of recursive linear matrix inequalities (RLMIs) are attained to ensure IO-FTS during both reaching phase
and sliding mode phase. An algorithm is provided to solve the RLMIs and obtain the time-varying observer
gains. Finally, the effectiveness and superiority of the proposed method is demonstrated by an industrial
continuous-stirred tank reactor system.

INDEX TERMS Discrete time-varying system, adaptive event-triggered mechanism, observer-based sliding
mode control, input-output finite-time stability.

I. INTRODUCTION
In practice, time-varying systems represent effective tools
to describe different types of dynamical systems contain-
ing some time-varying attributes, such as, periodic systems,
sampled-data systems and switched systems, etc., see for
instance, [1], [2], and [3]. Moreover, aperiodic sampling in
networked control systems (NCSs) often results in that NCSs
are transformed to discrete time-varying systems (DTVSs).
Accordingly, it is of great significance to study DTVSs, and
they have gained increasing attention. Observer-based finite-
time H∞ control of nonlinear DTVSs was studied in [4].
The issue of finite horizon fault detection of linear DTVSs
was discussed in [5]. The consensus control problem was
studied for a discrete time-varying multi-agent system in [6].
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On the other hand, one fact has been observed that, in NCSs,
there are some sampled data packets that the information
carried by them is less fluctuating than the last transmitted
sampled data packets. This kind of transmission may intro-
duce some unnecessary communication burden. In response
to these problems, the event trigger mechanism (ETM) is
proposed, for example, [7], [8], and [9]. Compared with time-
triggered mechanism, ETM can reduce the network resource
occupancy as well as maintaining the control performance.
However, most of the proposed ETMs are designed with
fixed thresholds that is not easy to give them proper values
in advance, which is named as traditional ETM (TETM) in
this paper. To deal with this, the adaptive event-triggered
mechanisms (AETMs) with adjustable trigger conditions are
proposed in [10] and [11]. It has been proved that AETM can
save more network resources. Therefore, a critical issue is
yet to be addressed when considering DTVSs, that is, can we

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 3555

https://orcid.org/0000-0002-4349-5096
https://orcid.org/0000-0003-0961-8758


M. Chen: Input-Output Finite-Time SMC of DTVSs Under an AETM

propose an AETM to save more resources while preserving
the desired control performance? To the author’s best knowl-
edge, there are few relevant results focus on DTVSs, which
motivates our present study.

Since sliding mode control (SMC) was proposed in 1977,
due to some appealing features of rapid transient response,
robustness, and simplicity of implementation, it has become
an effective method for suppressing disturbances in com-
plex systems. Some SMC results of uncertain nonlinear
systems, especially on advanced and optimization based algo-
rithms were given in [12]. For continuous systems, there are
many research results using SMC methods, see [13], [14],
and [15]. Due to the emerging digital technologies, many
practical systems are treated in the structure of discretized
forms and then discrete-time SMC (DSMC) has become an
increasingly hot topic, see, for instance [16] and [17]. In
[18], the SMC design problem for discrete-time piecewise
nonhomogeneous Markov jump nonlinear systems was dis-
cussed. In [19], dissipative-basedDSMCof switched stochas-
tic hybrid systems was discussed. And in [20], an optimal
SMC approach was used to study the consensus of nonlinear
discrete-time high-order multi-agent systems. In addition,
there are many situations where the state variables can not
be measured. In response to this issue, the dynamic and static
output feedback SMCmethods were studied in [21] and [22],
respectively. Ma et al. discussed the observer-based adaptive
sliding mode control problem for a kind of stochastic jump
systems in [23]. Nevertheless, it is witnessed that the study of
observer-based sliding mode control for DTVSs has not been
fully spread, which becomes to the second motivation of this
research.

It is noticed that most of the above mentioned literature
about SMCmethod was considered during infinite time inter-
vals. In fact, FTS proposed by Dorato in [24] and developed
by Amato is a more practical concept [25]. It is applied in
some cases where the required state or output variable does
not exceed some a threshold during a fixed time interval,
for example, flight control [26], terminal guidance system
[27]. Another research frontier proposed based on FTS is
IO-FTS, which defines that if a class of norm-bounded input
signals is given within a specified time interval, the outputs
of the system do not exceed the specified threshold during
the time interval [28]. The issue of input-output finite-time
generalized dissipative filter was studied for a kind of DTVSs
in [29]. Based on the definitions of FTS and IO-FTS, an SMC
design method was proposed in [30] and [31], respectively.
In these two papers, FTS of the considered systems can be
guaranteed during both reaching and sliding mode phase.
Subsequently, FTS problem of uncertain neutral time-delay
systems was discussed via the SMC approach in [32]. How-
ever, with regards to DTVSs, the research of IO-FTS based
on observer-based sliding mode control method is still blank,
which also motivates the following study.

Based on the above discussion, in this paper, the problem
of IO-FTS is addressed for a nonlinear DTVS considering

time-delay phenomenon and an AETMby the observer-based
sliding mode control method. The main contributions are
highlighted as: (1) Threshold of the proposed AETM can be
adjusted. Thus, the network communication resources can be
saved while sacrificing system performance as little as possi-
ble. (2) The reachability of quasi-sliding mode is guaranteed
in finite steps and the upper bound of quasi-sliding mode
surface is given under the proposed event-triggered SMC law.
(3) Based on a time-varying Lyapunov functional, IO-FTS
conditions during both reaching and sliding mode phase are
obtained in terms of RLMIs. And the time-varying observer
gains can be solved by an algorithm.

A. NOTATIONS
Throughout this paper, N is the set of natural numbers. Rn

denotes the n-dimensional Euclidean space, and Rn×m is the
set of n × m real matrices. For a scalar N > 0, denote
a set as T = {0, 1, 2, . . . ,N }. For a symmetric matrix A,
A > 0 (A ≥ 0) means that A is a symmetric positive-definite
(semi-positive-definite) matrix. M+ denotes the set of posi-
tive matrix-valued sequence. C+ denotes the set of positive
scalars. For Rk ∈ M+, define W2(T ,Rk ) := {ωk ∈ L2,T :

∥ωk∥
2
T ,Rk

≤ α}, α ∈ C+ and ∥ω∥
2
T ,Rk

=
∑

k∈T ωT
k Rkωk . I

and 0 denote the identity matrix and null matrix of the appro-
priate dimension, respectively. The symbol ∗ means the sym-
metric terms in a symmetric matrix. Matrices without special
explanation are considered to have proper dimensions.

II. PROBLEM FORMULATION
Consider a nonlinear DTVS as:

xk+1 = Akxk + B(uk + fk ) + Dkωk
yk = Ckxk (1)

where Ak , Dk and Ck are time-varying matrix-valued
sequences, B is the input matrix with rank(B)=m. xk ∈ Rn

is the state vector, yk ∈ Rr stands for the system measured
output, uk ∈ Rm is the controlled input, and ωk is the
disturbance input satisfying ωk ∈ W2(T ,Rk ).
Assumption 1: fk ≜ f (k, xk ) ∈ Rm is a given nonlinear

vector function, which satisfies:

∥fk∥ ≤ σk∥yk∥ (2)

where σk ∈ C+ is a series of known scalars.
Assumption 2: For ∀k ∈ T , it is assumed that (Ak ,B) is

controllable and (Ck ,Ak ) is observable.
Then, we design an observer in the following form to

estimate the unmeasurable states:

x̂k+1 = Ak x̂k + B(uk + f̂k ) + Lk (ȳk − ŷk )

ŷk = Ck x̂k (3)

where x̂k is the estimation of the state, ŷk is the output of the
observer, ȳk is the plant output after the network, f̂k ≜ f (k, x̂k )
and Lk is the time-varying observer gain to be designed.
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A. MODELING BASED ON THE AETM
To alleviate waste of resources and avoid unnecessarily fre-
quent transmission, an event detector is adopted between the
sensor and observer as shown in Fig. 1 that describes the
control process.

FIGURE 1. The schematic of the NCS with an AETM-based observer.

It is assumed that sensors are time-triggered and the mea-
sured instant is denoted as l ∈ N. The measurement output is
only transmitted when the following condition is satisfied:

(yks+l − yks )
T�k (yks+l − yks ) ≥ γkyTks�kyks (4)

where s ∈ N, ks + l is the current measurement instant,
yks+l = y(ks + l) is the current measurement output, ks is the
instant when an event happens and yks is the transmitted state
output.�k ∈ M+ are weightingmatrices to be designed. γk is
a series of scalars determined by the following condition:

γk+1 =


λ1γk , if ∥ye∥2 > ϵ

λ2γk , if ∥ye∥2 < ϵ

γk , if ∥ye∥2 = ϵ

(5)

where ye = yks+l − yks , λ1 = 1 −
2
π
atan(ς∥ye∥2), λ2 =

1 −
2
π
atan(−ς∥ye∥2), atan(·) is the arctangent function. It is

assumed that γk ∈ [γm, γM ], γm and γM are the lower and
upper bounds of γk , respectively, and ϵ, ς ∈ C+.
Remark 1: In (5), when γk is a constant, the adaptive

event-triggered condition (4) is reduced to a TETM. When
γk = 0, it is the time-triggered case.
Remark 2: Using the property of arctangent function, we

can see that if ∥ye∥2 > ϵ, it holds that γk+1 = λ1γk . Since
0 < λ1 < 1, thus γk+1 < γk . It means that smaller γk
will be used in the next event judgement, which leads to high
tranmission frequency. Oppositely, if ∥ye∥2 < ϵ, it holds that
γk+1 = λ2γk . Since λ2 > 1, thus γk+1 > γk . Then, larger
γk will be selected in the next judgement, the communication
bandwidth usage can be saved.
Remark 3: It should be noticed that introducing an ETM

may sacrifice some SMC performance. However, the pro-
posed AETM is adjusted by the transmission error, which can
help improving the performance while reducing the network
utilization.

B. INDUCED-TIME DELAY MODELING
Let dks denote the transmission delay at triggered instant ks
with the assumption dks ∈ [0, dm]. dm is a positive scalar.
Considering the triggered condition (4) and during the hold-
ing interval [ks + dks , ks+1 + dks+1 ), it holds that,

(yks+l − yks )
T�k (yks+l − yks ) < γkyTks�kyks (6)

Based on [8] and [33], denoting I = [ks+dks , ks+1+dks+1 ),
the following two cases should be discussed.

Case I. If ks+dm+1 ≥ ks+1 +dks+1 , define the time delay
function dk as:

dk = k − ks, k ∈ I

Thus, dks ≤ dk ≤ ks+1 − ks + dks+1 ≤ dm + 1.
Case II. If ks + dm + 1 < ks+1 + dks+1 , two intervals [ks +

dks , ks+dm] and [ks+dm+ l, ks+dm+ l+1] are considered.
Since dks ≤ dm, an integer ’q’ can be found satisfying:

ks + q+ dm < ks+1 + dks+1 − 1 ≤ ks + q+ dm + 1

Denote

I0 = [ks + dks , ks + dm + 1),

Il = [ks + dm + l, ks + dm + l + 1), l = 1, 2, . . . , q− 1,

Idm = [ks + dm + q, ks+1 + dks+1 ).

Based on the above discussion, dk and δk are given as:

dk =


k − ks, k ∈ I0
k − ks − l, k ∈ Il, l = 1, 2, . . . , q− 1
k − ks − q, k ∈ Idm

δk =


0, k ∈ I0
yks+l − yks , k ∈ Il, l = 1, 2, . . . , q− 1
yks+q − yks , k ∈ Idm

Then, it holds that 0 ≤ d1 ≤ dk ≤ dm + 1 ≜ d2. d1 and
d2 are the lower and upper bounds of dk , respectively.
Thus, yks can be rewritten as

ȳk = yks = yk−dk − δk (7)

where yk−dk ≜ y(k − dk ) = Ckxk−dk .
Then, the error estimation system is obtained as follows:

ek+1 = Akek − LkCkek−dk + LkCk x̂k − LkCk x̂k−dk
+B(fk − f̂k ) + Dkωk + Lkδk (8)

where ek−dk = xk−dk − x̂k−dk .

C. SLIDING SURFACE AND SLIDING MODE CONTROLLER
We design the following sliding function as follows:

Sk = Gx̂k (9)

where G = BTX , X > 0 thus GB is nonsingular.
To this end, an appropriate observer-based sliding mode

control law is given as follows:

uk = −(GB)−1GAk x̂k − (GB)−1GLk (ȳk − ŷk )

− σksgn(Sk ) (10)
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Using SMC law (10), the closed-loop state estimation sys-
tem can be obtained as follows:

x̂k+1 = G[(Ak − LkCk )x̂k + LkCk x̂k−dk + LkCkek−dk
−Lkδk ] + Bf̂k − Bµk (11)

where G = I − B(GB)−1G and µk = σksgn(Sk ).
In the following, the definition of IO-FTS proposed in

[28] is extended for the overall closed-loop system composed
of (8) and (11).
Definition 1: (IO-FTS) For a given positive scalar N ∈ N,

a class of input signal W2 defined on T , a matrix-valued
sequence Rk ∈ M+, and an output constraint scalar β > 0,
the overall system (8) and (11) is IO-FTS with respect to
(W2,Rk , T ), if for all k ∈ T , it holds that:

ωk ∈ W2 H⇒ ŷTk Rk ŷk + (yk − ŷk )TRk (yk − ŷk ) < β

III. MAIN RESULTS
In this section, based on the discrete-time sliding surface
constructed in (9) and an event-triggered SMC law in (10),
IO-FTS conditions are given in Theorem 1 and reachability
for the quasi-sliding mode surface is analyzed in Theorem 2.
Synthesis of the time-varying observer is given in Theorem 3.
For the following proof process, we give some denotations

as:

ϱi = [0 · · · 0︸ ︷︷ ︸
i−1

I 0 · · · 0︸ ︷︷ ︸
13−i

], i = 1, 2, · · · , 13,

d12 = d2 − d1, ηTk = [x̂Tk eTk ],

ξTk = [ηTk ηTk−d1 ηTk−dk ηTk−d2 δTk ωT
k µT

k f̂ Tk f Tk − f̂ Tk ].

A. IO-FTS ANALYSIS OF SLIDING MODE DYNAMICS
The IO-FTS of the overall closed-loop system composed
of (8) and (11) is given in the following theorem.
Theorem 1: For given scalars d1, d2, α, β,N ∈ C+,

matrix-valued sequence Rk ∈ M+, and input disturbance
in W2, the overall system (8) and (11) is IO-FTS under
AETM (4) and SMC law (10), if there exist matrix-valued
sequences Pk ,Q1k ,Q2k ,Q3k , �k ∈ M+, and a scalar ν ∈

C+, such that following conditions hold:3k + 33k + 34k + 35k 3T
1k 3T

2k
∗ −P−1

k+1 0
∗ ∗ −P−1

k+1

 < 0 (12)

diag{CT
k RkCk ,C

T
k RkCk} < Pk

(13)

where

3k = diag{Q1k + Q2k + Q3k + d12Q1k − Pk ,

Q1k + Q2k + Q3k + d12Q1k − Pk , −Q2(k−d1),

−Q2(k−d1), −Q1(k−dk ) + γkCT
k �kCk ,

−Q1(k−dk ) + γkCT
k �kCk ,

−Q3(k−d2), −Q3(k−d2), (γk − 1)�k ,

− β̃Rk , −ν−1I , 0, 0},

31k = [G(Ak − LkCk ) 0 0 0 GLkCk GLkCk
0 0 − GLk 0 − B B 0],

32k = [LkCk Ak 0 0 − LkCk − LkCk
0 0 Lk Dk 0 0 B],

33k = 2γkϱT5 C
T
k �kCkϱ6 − 2γkϱT5 C

T
k �kϱ9

− 2γkϱT6 C
T
k �kϱ9,

34k = σ 2
k ϱT1 C

T
k Ckϱ1 − ϱT12ϱ12,

35k = 2σ 2
k ϱT1 C

T
k Ckϱ1 + 2σ 2

k ϱT1 C
T
k Ckϱ2

+ σ 2
k ϱT2 C

T
k Ckϱ2 − ϱT13ϱ13.

Proof: Define a time-varying Lyapunov functional as
follows:

V (k) =

5∑
i=1

Vi(k) (14)

where

V1(k) = ηTk Pkηk ,

V2(k) =

k−1∑
i=k−dk

ηTi Q1iηi

V3(k) =

k−1∑
i=k−d1

ηTi Q2iηi

V4(k) =

k−1∑
i=k−d2

ηTi Q3iηi

V5(k) =

−d1−1∑
j=−d2

k−1∑
i=k+j

ηTi Q1iηi

with Pk = diag{Pk ,Pk} and Qιk = diag{Qιk ,Qιk}, ι =

1, 2, 3.
Defining 1V (k) = V (k + 1) − V (k), it can be obtained

that

1V1(k) = ηTk+1Pk+1ηk+1 − ηTk Pkηk
= x̂Tk+1Pk+1x̂k+1 + eTk+1Pk+1ek+1

− x̂Tk Pk x̂k − eTk Pkek
= ξTk 3T

1kPk+131kξk + ξTk 3T
2kPk+132kξk

− x̂Tk Pk x̂k − eTk Pkek (15)

1V2(k) ≤ ηTk Q1kηk − ηTk−dkQ1(k−dk )ηk−dk

+

k−d1∑
i=k+1−d2

ηTi Q1iηi (16)

1V3(k) = ηTk Q2kηk − ηTk−d1Q2(k−d1)ηk−d1 (17)

1V4(k) = ηTk Q3kηk − ηTk−d2Q3(k−d2)ηk−d2 (18)

1V5(k) = d12ηTk Q1kηk −

k−d1∑
i=k+1−d2

ηTi Q1iηi (19)
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Based on Assumption 1, it holds that

f̂ Tk f̂k ≤ σ 2
k x̂

T
k C

T
k Ck x̂k

(f Tk − f̂ Tk )(fk − f̂k ) ≤ σ 2
k (x̂

T
k + eTk )C

T
k Ck (x̂k + ek )

+ σ 2
k x̂

T
k C

T
k Ck x̂k (20)

Considering (6), ∀k ∈ [ks+dks , ks+1+dks+1), it holds that,

γkyTks�kyks − δTk �kδk > 0 (21)

Define

Jk = 1V (k) − β̃ωT
k Rkωk − ν−1µT

k µk (22)

where ν ∈ C+ and β̃ = βα−1
− Nν−1mσ 2

k α−1.
Combining (15)-(21) and (7), it can be deduced that,

Jk ≤ξTk (3k + 33k + 3T
1kPk+131k + 3T

2kPk+132k

+ 34k + 35k )ξk
(23)

Then, by Schur complement lemma and (12), it can be
guaranteed that

1V (k) − β̃ωT
k Rkωk − ν−1µT

k µk < 0 (24)

Summing (24) over {0, 1, 2, · · · ,N − 1}, considering zero
initial condition and µT

k µk ≤ mσ 2
k , ∀ωk ∈ W2, it holds that:

V (k) < β̃

N−1∑
i=0

ωT
i Riωi + Nν−1mσ 2

k

= β̃∥ω∥
2
0,1,··· ,N−1 + Nν−1mσ 2

k

< β̃α + Nν−1mσ 2
k

< β (25)

Then, it is true that

V1(k) < β (26)

From (13) and (26), one can see that

ŷTk Rk ŷk + (yk − ŷk )TRk (yk − ŷk )

= x̂Tk C
T
k RkCk x̂k + eTk C

T
k RkCkek

< ηTk Pkηk
= V1(k) < β (27)

To sum up, the overall system (8) and (11) is IO-FTS with
respect to (W2,Rk , T ).
Remark 4: It is noticed that, in Lyapunov functional (14),

the Lyapunov matrices Pk , Q1k , Q2k , Q3k are time-
varying matrix-valued sequences. This design method greatly
improves the solvability of obtained conditions.

B. ANALYSIS OF REACHABILITY
In this section, we focus on the reachability of the
quasi-sliding mode surface of the overall closed-loop sys-
tem (8) and (11)’s trajectories in finite steps.
Theorem 2: Considering the overall system (8) and (11),

the state trajectories can be driven into a sliding region
S around the sliding mode surface (9) within finite steps
N ∗ by SMC law (10), and IO-FTS during the reaching

phase is guaranteed, if there exist matrix-valued sequences
Pk ,Q1k ,Q2k ,Q3k , �k ∈ M+, and a scalar ν ∈ C+, such
that (13) and the following conditions hold and the sliding
region S is given as follows:3̄k + 33k + 34k + 35k 3T

1k 3T
2k

∗ −P−1
k+1 0

∗ ∗ −P−1
k+1

 < 0 (28)

S ≜ {Sk | ∥Sk∥ ≤ S∗
k } (29)

where

3̄k = diag{Q1k + Q2k + Q3k + d12Q1k − Pk
+σ 2

k C
T
k (GB)

TCk ,Q1k + Q2k + Q3k + d12Q1k

−Pk , −Q2(k−d1), −Q2(k−d1),

−Q1(k−dk ) + γkCT
k �kCk ,

−Q1(k−dk ) + γkCT
k �kCk ,

−Q3(k−d2), −Q3(k−d2),

(γk − 1)�k , −β̃Rk , −ν−1I , 0, 0},

S∗
k ≜

√
2λmax [(GB)T ]m
λmin[(GB)−1]

σk +

√
2ε

λmin[(GB)−1]
, and ε > 0 is a

specified scalar satisfying ε =
λmax [(GB)−1]

2N ∥Gx̂0∥2 with x̂0
is the initial value of x̂k .

Proof: From (9) and (10), it can be obtained that

Sk+1 = GBf̂k − GBµk

Construct a Lyapunov functional as

Vsk = V (k) +
1
2
STk (GB)

−1Sk (30)

where V (k) is defined in (14).
Then, it can be derived that

1Vsk = 1V (k) +
1
2
STk+1(GB)

−1Sk+1

−
1
2
STk (GB)

−1Sk

= 1V (k) +
1
2
(f̂k − µk )T (GB)T (f̂k − µk )

−
1
2
STk (GB)

−1Sk

≤ 1V (k) + f̂ Tk (GB)T f̂k + µT
k (GB)

Tµk

−
1
2
STk (GB)

−1Sk (31)

Considering Jk defined in (22), one can obtain that

Jk + f̂ Tk (GB)T f̂k + µT
k (GB)

Tµk −
1
2
STk (GB)

−1Sk

≤ ξTk (3̄k + 33k + 3T
1kPk+131k + 3T

2kPk+132k

+ 34k + 35k )ξk + µT
k (GB)

Tµk −
1
2
STk (GB)

−1Sk

(32)

Since outside the region S, it is true that

|Sk∥ > S∗
k (33)
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Then, considering (31), (32) and (33), one can deduce that

1Vsk < −ε (34)

Thus, it means that state trajectories are strictly decreasing
outside the region S defined in (29).
Summing both sides of (34) from 0 to N ∗

−1, denoting Vs0
as the initial value of Vsk , it can be seen that

N ∗ <
Vs0
ε

≤

1
2λmax[(GB)

−1]

ε
∥Gx̂0∥2 (35)

Combining the definition of ε and (35), one can derive
N ∗ < N . It means that, for a finite-time interval [0,N ],
under the SMC law (10), the estimation state trajectory can be
driven onto the quasi-sliding mode surface of Sk within finite
step N ∗. The reachability is proved.
On the other hand, by condition (28), it is easy to see that

Jk < 0 can be guaranteed. Based on the proof in Theorem 1,
the overall closed-loop system composed of (8) and (11) is
IO-FTS during the reaching phase.
Remark 5: According to Theorem 1 and 2, it can be con-

cluded that trajectories of overall closed-loop system (8)
and (11) can be driven into the quasi-sliding mode region
S under the SMC law (10) and IO-FTS can be guaranteed
with respect to (W2,Rk , T ) by conditions (12), (13) and (28)
during both the reaching and sliding mode phase.

C. SYNTHESIS OF THE TIME-VARYING OBSERVER
Obviously, inequality (28) ensures (12). Thus (28) and (13)
can guarantee Theorems 1 and 2. In what follows, design of
corresponding observer-based sliding mode controller will be
discussed.
Theorem 3: Given scalars d1, d2, α, β ∈ C+, matrix-

valued sequence Rk ∈ M+, any scalars ιk ∈ C+, and
input disturbance in W2, select a matrix X > 0 such that
BTXB is nonsingular. The overall closed-loop system (8)
and (11) is IO-FTS during both the reaching and sliding mode
phase with respect to (W2,Rk , T ), if there exist matrices
Pk ,Q1k ,Q2k ,Q3k , �k ∈ M+, such that following conditions
hold: 3̄k + 33k + 34k + 35k 3T

1k 3T
2k

∗ 322 0
∗ ∗ 322

 < 0 (36)


−Pk 0 CT

k 0
∗ −Pk 0 CT

k
∗ ∗ −R−1

k 0
∗ ∗ ∗ −R−1

k

 < 0 (37)

where

322 = −2ι2k I + ιkPk+1.

Proof: For ιk ∈ C+ and Pk+1 ∈ M+, it holds that

(
1
ιk

− Pk+1)P
−1
k+1(

1
ιk

− Pk+1) ≥ 0

Thus, it is true that

−P−1
k+1 < −2ιk I + ι2kPk+1

Using Schur complement lemma, conditions (36) and (37)
can ensure Theorem 1 and Theorem 2, simultaneously.
And matrix inequalities (36) and (37) are RLMIs. Thus,
the time-varying observer gain Lk and triggered weighting
matrix-valued sequence �k can be designed by solving (36)
and (37) using Matlab Toolbox.

In the following, Algorithm 1 is given to solve RLMIs (36)
and (37).

Algorithm 1 The Procedure for Computing Lk
1: For given scalars d1, d2, ιk α, β, σk , N ∈ C+ and

matrix-valued sequence Rk ∈ M+, and select a matrix
X such that BTXB is nonsingular. Select initial values
for matrices P0,Q10,Q20,Q30,Q1(−dk ),Q2(−d1),Q3(−d2),
�0 satisfying (36), (37) and set k = 0;

2: Obtain Pk+1, Q1(k+1), Q2(k+1), Q3(k+1), Q1(k−dk ),
Q2(k−d1), Q3(k−d2), �k+1 and Lk by solving (36)
and (37);

3: For given ς, γm, γM , calculate λ1, λ2 and judge Eµ =

∥ye∥2 − ϵ. If Eµ > 0, γk+1 = λ1γk ; else if Eµ < 0,
γk+1 = λ2γk ; else γk+1 = γk . Set k = k + 1;

4: If k ≤ N , then go to Step 2, else stop.

IV. NUMERICAL EXAMPLE
In this section, we consider an industrial continuous-stirred
tank reactor system (CSTRS) in network environment [22],
[34]. In the CSTRS, chemical species A reacts to form
species B. Denote Cai and Ca as the input and output con-
centration of a key reactant A, T and Tc being the reaction
and the coolingmedium temperature, respectively. According
to [22], both parameter uncertainties and system nonlinearity
should be taken into consideration when model the CSTRS.
Since the system is in a network environment, we attempt to
use the proposed AETM in this paper to save communication
resources.

Take the state variable as xTk = [CT
a T T ], control input

as uTk = [T Tc CT
ai]. Considering the influence of disturbance,

the discrete model of CSTRS can be represented as system (1)
with the following system matrices:

Ak =

[
0.9719 + 0.05sin(k) −0.0013 + 0.02cos(k)

−0.0340 + 0.01e−k0.9328

]
,

B =

[
−0.0839 0.0232
0.0761 0.4144

]
,Dk =

[
0.1e−k 0

0 0.1e−k

]
,

fk =

[
0.01 + sin(k)
0.5 + cos(x21k )

]
, ωk =

[
0.5e−k

0.4sin(k)

]
,Ck = I .

For simulation purposes, under the influence of time-
varying parameters, disturbance and nonlinearity, our goal is
to design a time-varying observer-based sliding mode con-
troller such that the estimation ofCa and T can be bounded by
a given level. Give the parameters as γm = 0.47, γM = 0.74,
d1 = 1, d2 = 3, α = 1, Rk = I , N = 20. Let sgn(Sk ) =

Sk
∥Sk∥+10−3 for avoiding the chattering of signals.
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Solving the RLMIs (36) and (37), some of the time-varying
observer gain sequence Lk can be tabulated in Table 1. The
minimum value of β, denoted as βmin, is obtained as βmin =

4.40. Fig.2 depicts the trajectories of control signal uk . Fig.3
simulates the sliding mode surface function Sk . The simula-
tion of state estimation errors is shown in Fig.4. Fig.5 depicts
the trajectories of ŷTk Rk ŷk + (yk − ŷk )TRk (yk − ŷk ) and βmin,
from which we can see that ŷTk Rk ŷk + (yk − ŷk )TRk (yk −

ŷk ) < β can be guaranteed. That is, IO-FTS is ensured by the
proposed control method.

TABLE 1. Some of the observer gain sequence Lk .

FIGURE 2. Trajectories of control signal uk .

The triggered instants of the proposed AETM are simu-
lated in Fig.6, from which we see that 50% communication
resources are used and then the network resources are econ-
omized effectively. On the other hand, we suppose γk = γM
such that the AETM is reduced to TETM. The release instants
are simulated in Fig.7, from which we can see that 75%
communication resources are used under the TETM. From
Fig.6 and Fig.7, it can been seen that when the norm of state
estimation error tends to zero, the proposed AETM can save
more communication resources. Therefore, in terms of saving
network resources, the proposed AETM is more effective
than TETM.

In the end, to investigate the influence of event-triggered
parameters γk , values of γk are given as some constants.
We aim to obtain the value of βmin when γk takes different
values. The number of trigger instants Nt and values of βmin

FIGURE 3. Sliding mode surface Sk .

FIGURE 4. Trajectories of state estimation error ek .

FIGURE 5. The trajectories of ŷT
k Rk ŷk + (yk − ŷk )T Rk (yk − ŷk ) and βmin.

are given in Table 2. From Table 2, it can be seen that larger
triggered parameter γk can save more network resources but
derive larger value of βmin. That is to say, saving network
resources may sacrifice system performance to some extent.
In conclusion, the AETM method proposed in this paper can
economize the network resourcesmeanwhile sacrifice system
performance as little as possible.
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FIGURE 6. Release intervals and instants of the AETM.

FIGURE 7. Release intervals and instants of the TETM.

TABLE 2. Values of Nt and βmin by different γk .

V. CONCLUSION
This paper has studied the issue of IO-FTS for a kind of
nonlinear DTVSs by an observer-based sliding mode control
method. An AETM with an adaptive law has been proposed
to save network resources. The reachability of the quasi-
sliding mode surface has been guaranteed in finite steps
and the upper bound of the quasi-sliding mode surface is
obtained.Moreover, IO-FTS during both reaching and sliding
mode phase has been guaranteed by a series of RLMIs. And
a time-varying observer has been designed by solving the
RLMIs. A CSTRS has been given to verify the effectiveness
and superiority of the proposed method.
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