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ABSTRACT Nowadays, the dependency on high-performance digital mobile connectivity is not limited
to human usage but also the intelligent objects increasingly deployed to serve the needs of Internet of
Things (IoT) applications. However, the current network planning technique limitation has constrained the
real potential of mobile digital connectivity development. This situation has hindered sustainable Internet-
oriented economic and technological development. The 3rd generation partnership project (3GPP), through
its specification release 18 (Rel.18), has included and leveraged the potential capabilities of machine learning
(ML) technologies in advanced mobile network planning. The main objective is to enhance mobile network
planning performance and reduce complexity. To materialize this aim, we propose a novel ML-based Online
coverage Estimator (MLOE) tool developed based on Random Forest (RF) ML algorithm. It uses seven
unique features to predict the mobile network performance through reference signal received power (RSRP).
Accordingly, the results showed that MLOE outperformed traditional empirical techniques and previous
works. The final trained RF algorithm has achieved an outstanding root mean square error (RMSE) of 2.65 dB
and a coefficient of determination (R2) of 0.93. With the dynamic and fast-growing mobile technology,
MLOE has been deployed on an online platform usingMATLAB R©WebApp Server, which offers a modular
and scalable architecture.

INDEX TERMS Machine learning,MATLAB,mobile networks, path loss, received signal strength indicator,
RSRP, web application.

I. INTRODUCTION
Despite the recent technological advances, issues related to
unsatisfactory mobile network services are still challeng-
ing, as highlighted by the Malaysian Communications and
Multimedia Commission (MCMC) [1]. Among the contribut-
ing factors to the latter issue is the current network plan-
ning techniques’ limitation. According to [2], [3], [4], and
[5], the traditional empirical techniques primarily applied
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in the industry are inaccurate. Meanwhile, the deterministic
techniques are not practical to apply on real-world opera-
tional scales due to their complexity, requirement for high-
resolution topographic maps, intense reference information,
and high computing power.

Aiming to address the latter issues, 3GPP, through its
Rel.18, has included and leveraged the potential capabili-
ties of ML techniques to enhance mobile network planning
performance and reduce complexity [6]. In this regard, four
main objectives were outlined. The first is focused on iden-
tifying a common ML framework, including the functional
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requirements of ML architecture. Secondly, to identify areas
where ML could improve the performance of mobile net-
work planning functions. Thirdly, to identify what is required
for an adequate ML model characterization and description,
establishing proper notation. Then, evaluate ML-based tech-
niques to understand the attainable gains and complexity
requirements.

In principle, ML techniques are less complex than tradi-
tional empirical methods in producing a propagation model.
In the former method, the researcher has to find the appropri-
ate rules and algorithms to produce the required forecast out-
put quality. Because of this, most propagation models based
on traditional empirical techniques are inflexible due to the
constraints faced [5]. On the other hand, in theML technique,
this process is automatically done by the computer system
based on the characteristics of input parameters and response
variables that have been set. Fig. 1 shows the comparison
of the working principles of ML techniques and traditional
empirical techniques in producing a prediction model.

FIGURE 1. Traditional algorithms versus ML Models.

Accordingly, this study will review and identify the most
practical and optimum ML algorithm for developing MLOE
for RSRP-based prediction. RSRP is one of the 4G and
5G networks’ key performance indicators (KPI) that telco
companies utilize to understand and evaluate the performance
and coverage of their network [7], [8]. While the specifica-
tion of RSRP in 4G and 5G are not similar, RSRP, in both
technologies, serves the same function of performing cell
selection/reselection and handover process [9].

In the meantime, this study will also examine several
features to evaluate their suitability for RSRP prediction.
Finally, we have utilized the MATLAB Web App server for
the MLOE deployment, which is publicly accessible via the
Internet. Fig. 2 describes the overall concept of execution of
this study.

As Malaysia’s 5G mobile network is still under develop-
ment and testing, this study focused on utilizing the exist-
ing 4G network. This is also in line with the direction of
Malaysia’s government through the Jalinan Digital Negara
(JENDELA) plan. The plan has enforced the 3G network
services termination by late 2021 to empower 4G networks

FIGURE 2. Overall execution concept of this study.

for bridging the digital divide, especially between rural and
urban areas [10].

As such, the contributions of this study can be summarized
as follows
• Describes an extensive measurement campaign consist-
ing of a physical layer dataset with over 14,464 data
samples collected in various outdoor environments using
Keysight NemoHandy drive test solution, available pub-
licly through an open-source GitHub repository at [11].

• Insight into the trained Random Forest (RF) model
behaviour is gained through model-agnostic methods,
especially to validate the impact of utilizing new types of
features, i.e., AZoffset and Tiltoffset for RSRP prediction.

• The performance of the final trained RF model is evalu-
ated against traditional empirical techniques and previ-
ous works done by [5], [12], [13], [14], and [15].

• Describes a comprehensive MLOE development
methodology for mobile network planning and opti-
mization where the final proposed tool can be accessed
online freely at [16].

The rest of the paper is organized as follows: Section II
discusses the recent progress in ML-based propagation mod-
elling. Section III presents the methodology of the study.

The results of the study are discussed in Section IV.
Finally, Section V concludes the article.

II. RECENT PROGRESS IN ML-BASED
PROPAGATION MODELLING
Recently, ML techniques have been actively explored by
researchers from various fields, includingmobile telecommu-
nications [17], [18], [19], [20]. The latter is because ML tech-
niques that focus on data and algorithms have proven their
capabilities in many fields of application, such as medicine,
automotive, economics, banking and many other fields [21],
[22], [23], [24]. In addition, ML-based models can improve
their accuracy over timewithout having to be specifically pro-
grammed [25]. Therefore, it coincides with the development
trend of mobile network technology which is dynamic and
rapidly evolving [26], [27], [28], [29].

Predicting mobile network coverage based on specific fea-
tures is categorized as a regression-type supervised machine
learning technique [12], [30]. This field of study, especially
for the ground-to-ground (G2G) mobile networks, has been
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explored by [5], [12], [13], [14], and [15] using a real-world
dataset. In the latter studies, most ML models’ prediction
accuracy was around 4 dB to 8 dB, depending on the type
of environment studied. While each study reported different
findings, it was found that the Random Forest (RF) ML algo-
rithm consistently showed the best prediction performance.
RF was also found to be more efficient regarding training
duration and prediction speed than other ML models such as
Artificial Neural Network (ANN), Support Vector Machine
(SVM) and Gaussian process regression (GPR) [12], [15].
On the other hand, RF is also very well known for its robust-
ness and powerful capabilities, especially not susceptible to
sample and feature disturbances also noise [12], [13], [15].
Hence, RF has been selected as the basic framework in this
study which is in line with the study objectives to develop a
practical and optimal RSRP prediction model for use in real-
world operations.

In [15], we have listed the features utilized in the previous
works. According to domain knowledge, among identified
features that highly affect the performance of mobile network
signal propagation are the antenna tilt angle, azimuth angle,
position and location [31]. Therefore, in Table 1, we have
assessed and summarized the pros and cons of the features
utilized in previous works, which finally led to determining
the features to be utilized in this study.

Previous works never tested the trained RF model outside
the study area. This may be because the ML technique, which
falls under the empirical category, tends to be inaccuratewhen
applied outside the study area. Therefore, this study will test
the performance of the final trained RF model inside and
outside the study area and compare it with the prediction
results from the traditional empirical propagation models.

Most of the time, the wireless planning tools in the desktop
version are inflexible. This is because it was developed based
on a conventional framework. However, the innovation of
mobile network planning through an online platform, such
as pioneered by CloudRF [32], is a game changer in telecom-
munications. In addition to its advantage of being accessible
anywhere, the flexible and scalable development architecture
makes upgrading the system much easier and simpler. At the
same time, sharing the latest update or information with end
users will be more effective.

Meanwhile, the burden of data processing and analysis
is entirely on the server side, which gives the user a huge
advantage. End users do not need to worry about processing
power and storage capacity requirements. They only need
to ensure the Internet connectivity is stable. This kind of
development framework is more user-oriented. Therefore,
the service package offered is usually suited to most end
users’ preferences and financial capabilities. The identical
framework has been applied by Internet giant companies such
as Amazon, Microsoft, and Google in their cloud computing
services [33], [34], [35].

However, a survey of research articles related to ML found
that less than 10% of studies discuss the deployment of
ML models, and far fewer of them successfully deploy ML

TABLE 1. A summary of the pros and cons of features utilized in previous
works.

models into real-world applications [36]. This is because
deploying ML models in a real operational environment
is critical and challenging [37]. ML models successfully
deployed at the production level can only increase operational
efficiency or develop new value propositions [38].

III. METHODOLOGY
To develop an accurate RSRP prediction model, the features
must be able to describe precisely the receiver (Rx) location
in reference to the location of the transmitter (Tx) antenna.
Other than that, the features also must be able to describe
the signal propagation status and the characteristics of the
operational environment. Therefore, the level of signal atten-
uation experienced before arriving at the Rx location can be
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predicted more precisely. In this study, the MLOE devel-
opment activities were carried out based on the workflow
described in Fig. 3. Explanation regarding each step in the
following workflow is briefly described as follows:

FIGURE 3. MLOE development workflow.

A. DATA ACQUISITION
Two types of raw data were acquired, which are: (i) the
4G mobile network base station (BS) technical specifica-
tions; and (ii) the real-world 4G RSRP data. The real-world
4G RSRP data was obtained through measurement cam-
paign activities conducted in 14 areas around the Klang
Valley, Malaysia, representing dense urban, urban, suburban,
and open area environments using hardware and software
described in Table 2. The measurement campaign was con-
ducted at a vehicle speed below 40 km/h to minimize the fast-
fading effect due to the Doppler shifts [4], while maintaining
the speed limit regulation in respective areas.

The measurement campaign was done for two purposes:
(i) to generate the RF model training dataset and (ii) to
generate a test dataset for the final trained RF model. For
model training, the data collected in Putrajaya are only used
(refer to Fig. 4). It consists of 10 transceiver BS antennas.
Putrajaya is a unique region with multiple environmental
categories [39], [40]. Meanwhile, for final trained RF model
testing and evaluation purpose, 12 transceiver BS located
inside and outside of Putrajaya have been identified (refer to
Table 3 ). The details information regarding the test location
and distribution of test points are available in the open-source
GitHub repository at [41].

TABLE 2. Parameters of measurement campaign setup.

FIGURE 4. Distribution of drive test data around Putrajaya.

Although there are several test locations outside Putrajaya
with different types of land use and environmental character-
istics, the selection of these locations is purposely to analyse
the trained RF model generalization capability. This model
prediction performance would then be compared to the tradi-
tional empirical propagation models. These tests would also
identify whether the final trained RFmodel experiences over-
fitting, where the trained model tends to produce very poor
prediction performance on the test area located outside the
study area. Thus, the assumption is that if the prediction per-
formance inside and outside training areas is minimal, then
the trained model would have the potential to provide reliable
prediction capabilities in Malaysia’s harsh tropical/irregular-
terrain environments and other similar context areas.

VOLUME 11, 2023 3099



M. F. Ahmad Fauzi et al.: MLOE: Advancing Mobile Network Planning and Optimization

TABLE 3. List of final trained RF model test locations.

B. FEATURES GENERATION AND DATASET PREPARATION
To create the dataset for model training purposes, the raw
data mentioned earlier was utilized to generate seven unique
features as follows:

1) DISTANCE
The distance (D) is the separation distance in meters between
BS and user equipment (UE) at the Euclidean plane. It is used
to estimate the UE position referenced to the position of the
BS antenna on the x-axis. The calculation of D is based on
the spherical law of cosines [43], [44].

2) AZIMUTH OFFSET ANGLE
The azimuth offset angle (AZoffset) represents the absolute
angle formed at the horizontal plane between the BS antenna
pointing direction and the location of UE. It is used to esti-
mate the UE position referenced to the position of the BS
antenna on the y-axis. In the meantime, AZoffset is also used
to estimate the UE position within the coverage area of the
BS antenna main lobe in the horizontal plane. The received
signal strength will be stronger if the UE position is near the
BS antenna boresight [45], [46]. The calculation of AZoffset
is given in (1).

AZoffset= |AZant−AZue| (1)

where, AZant refers to the BS antenna azimuth angle. Mean-
while, AZue refers to the UE azimuth angle calculated using
the arctan2 function [47].

3) ELEVATION ANGLE
The elevation angle (ELEV ) is referred to the angle formed
between the horizontal plane and the observed line from
UE to the BS antenna. ELEV is used to estimate the UE
position with reference to the position of the BS antenna on
the z-axis. Other than that, ELEV is also used to describe the
characteristics of the UE’s position on the undulating Earth’s
surface. Even at the same separation distance between the
BS and the UE, the ELEV value will differ according to
the actual position of the UE either in the highlands or in the

valleys. The calculation of ELEV is given in (2).

ELEV = tan−1 ((hant − hue) /D) (2)

whereas hant is the antenna height and hue is the UE height.
Both height values are referred to above sea level (ASL). D
is the value of the separation distance between Tx and Rx
as described in (1). The web-based radio planning tool called
CloudRF [32], which is equippedwith 10meters resolution of
terrain and clutter information, has been utilised to generate
the values of hant and hue.

4) TILT OFFSET ANGLE
The tilt offset angle (TILToffset) is the angle formed between
the boresight of the BS antenna and the observed line from
UE to the BS antenna on the vertical plane. TILToffset is
used to estimate the UE position in the beam of the main
lobe of the BS antenna on the vertical plane. Based on the
Pythagorean theorem, the value of the observation angle from
the BS antenna to the UE from the horizon is equal to ELEV .
Meanwhile TILTant is equal to the sum of the mechanical
and electrical tilt angle of the BS antenna. Therefore, the
calculation of TILToffset is given in (3).

TILToffset = |ELEV−TILTant |) (3)

5) ENVIRONMENT CATEGORY (CLASS)
At the same specification of BS, the extent of mobile net-
work coverage will vary according to its operating environ-
ment [48]. The transmitted signal will be reflected more
frequently in urban areas compared to suburban and open
areas. As a result, the signal attenuates much faster in urban
areas. Because of that, the dataset in this study was classed
accordingly into three categories: urban, suburban, and open
areas. Even though the RF algorithm is insensitive to the
dataset’s variance [49], for computational simplicity, this cat-
egory was coded as 1, 2 and 3 to represent urban, suburban,
and open areas, respectively.

6) FREQUENCY BANDS (FQ)
The frequency band, also called radio frequency, is the air
interface medium that carries information from the transmit-
ter (BS antenna) to the receiver (UE). Different frequency
bands have different characteristics and capabilities. Low-
frequency bands give larger coverage, but the transmitted sig-
nal capacity is low. In contrast, the high-frequency band can
carry high-capacity applications such as video calls, online
movies and more. But the downside is the limited coverage.
In this study, two 4G mobile networks frequency bands are
studied, i.e., 1800 MHz dan 2600 MHz.

7) SIGNAL PROPAGATION STATUS (OBS)
The propagation of mobile signals is greatly affected by the
surrounding objects. This is due to the nature of radio waves
that will be scattered, reflected, refracted, or absorbed when
interacting with any object in its path [50]. As a result, it
affects the signal power level at the UE location. Therefore,
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FIGURE 5. Position of calculated features.

the features related to signal propagation status were included
in this study. Due to the limited information, the signal prop-
agation status in this study was categorised roughly into two
classes, which are line-of-sight (LOS) and non-line-of-sight
(NLOS). This feature was extracted using the CloudRF radio
planning tool, which is also embedded with high-resolution
3D building maps from OpenStreetMap [51]. The signals
propagation status was coded as 0 and 1 to represent LOS
and NLOS, respectively.

The abovementioned features are illustrated in Fig. 5 and
summarized in Table 4 for a clear explanation and
comparison.

Before proceeding to the model training and refinement
activities, the training dataset must undergo a data-cleaning
process to eliminate outliers. This cleaning process was car-
ried out using an interquartile range (IQR) score [52]. A total
of 16,310 points of the training dataset were used in this
process. As a result, 1,846 outliers’ data were detected and
eliminated. The same IQR score is then utilised to clean the
test dataset. The aim is to ensure that the final trained RF
model is tested within the studied data range. Details about
IQR scores used in this study are available publicly through
an open-source GitHub repository [53].

C. MODEL TRAINING AND REFINEMENT
MATLAB 2020a Regression Learner was used to train the
RF model. The training process was performed using 10-fold
cross-validation (CV), a resampling method for the training
and validating process, mainly to prevent overfitting [5], [14],
[15]. Evaluation matrix, Root-mean-square error (RMSE)
and coefficient of determination (R2) were used to evaluate
the performance of the trained model. The calculation of
RMSE and R2 is given in (4) and (5), respectively.

RMSE =

√√√√√ 1
nsample

nsample−1∑
i=0

∣∣yi−ŷi∣∣2 (4)

TABLE 4. List of features and explanations.

R2
= 1−

∑i
i=1

(
yi−ŷi

)2∑i
i=1 (yi−ȳi)

2
,where ȳ=

1
i

i∑
i=1

yi (5)

where nsample is the total number of samples, yi is actual
value, and ŷi is the predictive value. According to [12], if the
RMSE less than 7 dB, it is considered acceptable for urban
environment. While 10 to 15 dB is acceptable for suburban
and rural area.

During themodel training session, important feature analy-
sis is performed using the feature selection function available
in MATLAB Regression Learner. This analysis is to identify
and remove non-influential features. This kind of analysis
also has been utilised by [5], [12], and [15] in their works.

Hyperparameter tuning is the final process in the model
training session, where a model will be tuned in more detail to
obtain themost optimal performance results. For this purpose,
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the RF model was tuned using the Optimizable Ensemble
function, also available in MATLAB Regression Learner and
the results are shown in Fig. 6. The newly generated values
of RMSE and R2 are equal to 2.65 dB and 0.93, respectively.
Therefore, the accuracy of the final trained RF model was
increased by 0.58 dB and model variability increased by
0.03. As a result, the final trained RF model hyperparameter
settings have 499 learners, two minimum leaf sizes, and five
predictors to sample.

FIGURE 6. The final trained RF model hyperparameter settings.

The final trained RF model is then exported to the
MATLAB workspace for interpretation and evaluation.
In summary, the ML model training and refinement activities
were implemented based on the flow chart shown in Fig. 7.

D. MODEL INTERPRETATION AND EVALUATION
ML model like RF is often referred to as black box model
because it is difficult to interpret how the model makes pre-
dictions [54], [55]. Interpretability tools help to overcome this
issue and reveal how the features contribute to the predictions.
In the meantime, interpretability tools can validate whether
the model uses the correct principle for its predictions based
on domain knowledge. Besides, it can also find model biases
that are not immediately apparent.

In this study, we utilised a partial dependent plot (PDP),
a type of Model-Agnostic Method, which aims to show
the marginal effect that features have on the predicted out-
come [54], [56]. PDP is a global interpretation tool that can
explain how a trained model makes predictions for the entire
data set. The partial dependence function for regression is
defined as (6) [54]:

f̂ xs (xs) = Exc
[
f̂ (xs,xc)

]
=

∫
f̂ (xs,xc) dP (xc) (6)

whereas xs are the features for which the partial dependence
function should be plotted and xc are the other features used
in the ML model f̂ .
From the PDP graph, we extract the X and Y values and

calculate the standard deviation (SD) as defined in (7) [57].
The most important features will show higher SD values.

SD =

√
1

N − 1

N∑
i=1

|Ai−µ|2 (7)

FIGURE 7. The flowchart of the implementation of model training and
refinement activities conducted in this study.

where µ is the mean of A:

µ =
1
N

N∑
i=1

Ai (8)

Two approaches have been taken to assess and evaluate
the performance of the final trained RF model. In the first
approach, the prediction performance of the final trained RF
model was compared to the prediction performance of the RF
models developed in the previous works, as listed in Table 1.

Meanwhile, in the second approach, the prediction perfor-
mance of the final trained RF model was compared to the
prediction performance of several traditional empirical prop-
agation models that are available in CloudRF, i.e., COST231,
SUI, ECC-33 and ITM. The assessment and evaluation were
carried out using the test datasets prepared earlier. Based on
the literature review, COST231, SUI, ECC-33, and ITM have
been widely used in wireless network planning, as listed in
Table 5.
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TABLE 5. List of previous works using propagation models COST231, SUI,
ECC-33 and ITM.

E. WEB-BASED ML MODEL DEVELOPMENT AND
DEPLOYMENT
The development and deployment of MLOE is conducted
according to the three stages described in Fig. 8.

FIGURE 8. The development stages of the web app.

In the first stage, the Graphical User Interface (GUI) was
designed into threemain sections: (i) Features calculation and
generation function; (ii) RSRP ML-based prediction model;
and (iii) Features specification description and other rele-
vant references. Using a MATLAB script file, the GUI was
designed, programmed, and linked to the final trained RF
model.

In the second stage, the GUI functions, data, and settings
that define the final web application were compiled into a
deployment format. In the third stage, the compiled project
file was deployed in an application server with MATLAB
Web App Server program and the appropriate MATLAB
Runtime version. MATLABRuntime is a collection of shared
libraries and code that enables the packaged MATLAB appli-
cations to be utilized on a device without the MATLAB
program installed. Therefore, the end users can accessMLOE
through a web browser using HTTP or HTTPS protocols.
The source code for the development of MLOE is available
publicly through an open-source GitHub repository at [70].

IV. RESULTS AND DISCUSSIONS
A. FEATURES IMPORTANCE
The training result of the RF model with all features equal to
3.23 dB and 0.90 forRMSE andR2, respectively.Meanwhile,
the feature selection analysis results are shown in Table 6.
All features used in this study influence the RSRP prediction
process based on the results. However, the level of influence
of each feature on the RSRP prediction process is varied.
Therefore, the PDP analysis will reveal in detail the level of
influence of these features.

In Fig. 9, the PDP revealed the feature Distance is nega-
tively correlated to the response variable. This trend coincides
with the domain knowledge, where the larger the separation
distance between BS and UE, the weaker the received signal

TABLE 6. Analysis results of the features selection process.

FIGURE 9. Partial dependence plot for distance.

strength at the UE location. There is a considerable variation
in the response variable for distance values varies from 0 to
1200 meters, contributing to 4.34 dBm SD. At 400 meters
to 600 meters, the RSRP values will decrease drastically.
However, the RSRP remained unchanged when the distance
value reached 900 meters and above.

The response variable is also negatively correlated with the
AZoffset as shown in Fig. 10. This result is also coincidingwith
the principle of domain knowledge, where the received signal
strength at the UE location gets weaker when its position is
away from the boresight of the BS antenna. The variation
of RSRP value is also substantial, especially when AZoffset
in the range of 10 degrees to 20 degrees, and 50 degrees to
70 degrees. In the range of 20 degrees to 50 degrees, the rate
of change in the RSRP value is only within 2 dB, while above
70 degrees, it was found that the rate of change in the RSRP
value is very low, which is close to the zero value. Overall,
the SD value for AZoffset is equal to 5.56 dBm, which is the
highest compared to the other features applied in this study.
Therefore, it is considered that the feature AZoffset is the most
important and influential feature of this study.

In contrast with the PDP analysis result for ELEV feature,
as shown in Fig. 11. The graph slope trend showed a posi-
tively correlated, which means the closer UE is to the BS, the
better signal strength will be received. This coincides with the
principle of domain knowledge. A drastic change in the RSRP
value can be seen in the range of 3 degrees to 7 degrees. In the
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FIGURE 10. Partial dependence plot for azimuth offsets angle.

FIGURE 11. Partial dependence plot for elevation angle.

range of 11 degrees to 25 degrees, the RSRP values remain
in an upward trend, within the range of 4dBm.

As for TILToffset feature, the graph trend is more towards
a negative correlation. However, the graph slope (Fig. 12) is
not too steep compared to the other feature, i.e., D, AZoffset
and ELEV . This result coincides with the domain knowledge
where the farther the UE location from the BS antenna bore-
sight on the vertical plane, the received signal strength will
get weaker. The SD for the AZoffset is 0.69 dBm, which means
the influence level on the changes in RSRP value is not very
high. Between 0 to 13 degrees, the variation of RSRP values
is within 1 dBm. However, from 10 degrees to 13 degrees, the
RSRP values decreased drastically within 2 dBm. This may
be due to the reduction in the receiving signal strength when
transitioning from the main lobe to the side lobe. After that,
the RSRP values remain unchanged.

For environmental category features (refer to Fig. 13),
a large gap in the RSRP value separates class 3 (open area)
from class 2 (suburban) and class 1 (urban). The SD for
this feature is equal to 5.03 dB, the second highest after the
Azimuth Offset. So, it is proven that the type of environment

FIGURE 12. Partial dependence plot for tilt offset angle.

FIGURE 13. Partial dependence plot for environment category.

is an essential and influential feature in the RSRP prediction
process. This coincides with the domain knowledge principle,
where signal propagation attenuation in open areas is much
lower than in suburban and urban areas. However, for Class
2 and Class 1, the difference is not too significant. This is
likely due to the less dense urban topology characteristics
in Putrajaya. Therefore, more training dataset for a different
type of urban topology is required to understand its influence
better.

For the operating frequency features (refer to Fig. 14),
it was found that the gap in the response variable during
the RSRP forecasting process is relatively straightforward
in differentiating between the 1800 MHz and 2600 MHz
bands. The generated SD value of 1.33 dBm shows that the
frequency bands feature is important and influential to the
RSRP prediction process. PDP results show that the signal
propagation performance on the lower frequency band is
better, in line with the domain knowledge.

Based on the PDP analysis results in Fig. 15, the signal sta-
tus features do not significantly contribute to the RSRP pre-
diction process. The gap between LOS and NLOS categories
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FIGURE 14. Partial dependence plot for frequency bands.

FIGURE 15. Partial dependence plot for signal status.

is around 0.5 dBm, contributing to 0.26 SD. Therefore, this
feature is the least influential in this study. Perhaps due to the
rough classifying of the signal status characteristics, which
does not consider the difference in the number of obstacles
and the die electric properties of each obstacle, the contribu-
tion of this parameter is seen as not very prominent compared
to the contribution from the other features. However, it’s still
contributing to the final RSRP prediction process by a small
margin.

Overall, it can be concluded that features applied in this
study are influential based on priority order, as shown in
Table 7.

B. ML-BASED PREDICTION MODEL
In Fig. 16, the prediction performance of the final trained
RF model was compared to the prediction performance of
the RF model produced in previous works. It was found that
the performance of the final trained RF model in this study
is better than that of the RF model developed in previous
works. After the hyperparameter tuning process, the final

TABLE 7. Priority order of influence features.

FIGURE 16. Comparison of final trained RF model performance with the
RF model produced in the previous works.

FIGURE 17. Comparison of final trained RF model performance with the
traditional empirical propagation models using test dataset in an urban
area.

trained RF model has achieved 2.65 dB and 0.93 of RMSE
and R2 respectively. This indicates that the features applied
in this study are very suitable and influential for the mobile
network path loss study. Compared to the features applied in
the previous works, the combination of features in this study,
especially for D, AZoffset , ELEV and TILToffset is capable of
mapping more precisely the actual position of the UE in the
main lobe beam of the BS antenna.

In Fig. 17 to Fig. 19, the prediction performance of the
final trained RF model was compared to the prediction
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FIGURE 18. Comparison of final trained RF model performance with
traditional empirical propagation models using test dataset at the
suburban area.

performance of traditional empirical propagationmodels, i.e.,
COST231, SUI, ECC-33 and ITM using the test datasets.

Overall, the performance of the final trained RF predic-
tion model showed better performance than the traditional
empirical propagation model in urban areas (refer to Fig. 17).
As expected, the RMSE of the final trained RF model was
below 7 dB in the study area and increased when tested out-
side Putrajaya. However, the differences were not significant
in the test area of Cyberjaya and Selangor. Meanwhile, the
difference was almost three times for the test areas in Bukit
Bintang and SOGO, which fall under the dense urban area
category. The latter was expected because the landscape plan-
ning and urban design in both test areas differ from Putrajaya.

For the suburban test area (refer to Fig. 18), the perfor-
mance of the final trained RF prediction model in the study
area remains below 7dB. While the RF model prediction
accuracy for all test locations outside Putrajaya surprisingly
showed not more than 10 dB even though the build-up char-
acteristics in some test areas were different. This may be
due to structure height, density, and material properties in
suburban areas, which are less significant than in urban areas.
Meanwhile, it was found that the prediction performance of
the final trained RF prediction model in suburban areas is
more consistent than the traditional empirical propagation
models. The traditional empirical propagation model tends to
be inconsistent and less accurate, especially for SUI and ITM.

Likewise, in open test areas (refer to Fig. 19), the perfor-
mance of the final trained RF prediction model inside the
study area remains below 7 dB and outside the study area
remains below 10 dB. This indicates that the performance of
the RF prediction model is also better for open area categories
compared to the traditional empirical propagation models.

In conclusion, this study’s final trained RF prediction
model proved to predict the RSRP value more accurately than
the traditional empirical propagation models. Even outside
the study area, especially in suburban and open areas, the final
trained RF prediction model is seen as capable of providing
reliable prediction capabilities.

FIGURE 19. Comparison of final trained RF model performance with
traditional empirical propagation models using test dataset in open areas.

Meanwhile, a more detailed training dataset is required for
urban areas, especially for features that are more specifically
described on differentiation types of urban design and signal
propagation characteristics. Therefore, theML algorithmwill
be able to distinguish more precisely the type and properties
of the material that interact with the transmitted radio wave
signal.

C. WEB-BASED APPLICATION
Fig. 20 shows the final GUI ofMLOE, which can be accessed
openly through the Internet [16]. In the Calculator Function
Section, users need to enter the BS technical specifications
in Antenna/Tx Section, while the UE specifications are in
Mobile Equipment/Rx Section.With the information entered,
this calculator function will generate the output value of the
features on the Features Value column. Thus, to perform the
RSRP predictions process using the generated feature values,
the user needs to press the Value Transfer button to send the
generated values to the Prediction Model Section. However,
the Prediction Model Section can only accept the value of the
feature within the allowed range, which is equal to the IQR
score as described earlier. If the value transferred is outside
the allowed range, the value transfer process will be failed or
be incomplete.

In general, the RSRP prediction process can be imple-
mented in two approaches which are (i) predict the RSRP
value by using the calculator functio; and (ii) predict the
RSRP value by directly submitting the values of the required
features in the Prediction Model Section. The GUI will
directly interact with the final trained RF algorithm deployed
in MATLAB Web APP Server to produce the RSRP predic-
tion result.

In the Indicator and Description Section, there are three
separate tabs. The first tab explains the feature characteristics
and the related abbreviations. Meanwhile, the second tab
explains information regarding RSRP signal strength cate-
gories. Finally, the third tab included background informa-
tion regarding the ML algorithm and a disclaimer for user
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FIGURE 20. GUI of MLOE.

reference. At the same time, the author’s e-mail address and
YouTube page link for a tutorial video [71] were included for
user’ convenience.

Overall, MLOE can be utilised for mobile network plan-
ning before and after BS deployment. Before BS deployment,
this model can identify the best location for BS to be deployed
to achieve optimal coverage. Meanwhile, the model can be
applied after BS deployment to perform antenna adjustment
and fine-tuning, especially on the antenna azimuth and down-
tilting angle.

V. CONCLUSION
This article introduces and explains the concept and method-
ology of developingMLOE for predicting the coverage of 4G
mobile networks through RSRP. In this study, the MATLAB
App Designer was used to design and program the MLOE
before being compiled and deployed intoMATLABWebApp
Server. The usage of seven unique features in this study has
proven the capability to precisely describe the UE’s actual
location with reference to the BS antenna. As a result, it is
enhanced the prediction accuracy to 2.65 dB and 0.93 for
RMSE and R2 respectively. The performance of MLOE is
proven better than traditional empirical techniques and previ-
ous works. Finally, future work is to extend the MLOE func-
tion for 5G networks. Furthermore, the capabilities of remote
sensing satellite image data will be exploited to produce more
details and precise information related to the urban design dan
characteristics of signal propagation. Besides, the benefits
of MLOE can be further expanded by generating prediction
results in spatial format, which allows for seamless integra-
tion into existing mobile network planning and monitoring
systems.
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