
Received 29 November 2022, accepted 2 January 2023, date of publication 5 January 2023, date of current version 11 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3234933

NCDE: In-Network Caching for Directory Entries
to Expedite Data Access in Tiled-Chip
Multiprocessors
JAE EUN SHIM 1, (Student Member, IEEE), MINGU KANG2, (Student Member, IEEE),
AND TAE HEE HAN 3, (Senior Member, IEEE)
1Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, South Korea
2Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea
3Department of Semiconductor Systems Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Tae Hee Han (than@skku.edu)

This work was supported in part by the National Research and Development Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science and ICT (MSIT) under Grant 2020M3H2A1076786; in part by the Ministry of Trade, Industry
and Energy (MOTIE) under Grant 20011074; in part by the Institute of Information & Communications Technology Planning & Evaluation
(IITP) funded by the Korean Government (MSIT) through the Artificial Intelligence Graduate School Support Program, Sungkyunkwan
University, under Grant 2019-0-00421; and in part by the MOTIE and KEIT (Development of System Level Design and Verification for in
Storage Processing Architecture Based on Phase Change Memory) under Grant 20010560.

ABSTRACT The processing of data-intensive applications, followed by an unprecedented amount of data
traffic, drives explosive accesses to the memory subsystem. The overloaded memory subsystem experiences
increased data access latency. To expedite data access, a network caching technique that leverages network-
on-chip (NoC) virtual channels (VCs) as an expanded memory subsystem has emerged. Previous network
caching studies focused on utilizing VCs on the NoC’s local input port as a victim cache to reduce local data
access latency. In contrast to previous studies, we explore the opportunity of mitigating problems associated
with shared data access via in-network caching for directory entries (NCDE), which can utilize every input
port’s VCs to hold directory entries. NCDE exploits VCs as the victim and prefetch buffers of the directory
entries, each reducing directory eviction-induced invalidations and simplifying the cache-to-cache (C2C)
data transfer. The effectiveness of NCDE was evaluated using a gem5 full-system simulator, and the results
show that the average memory access time (AMAT) and workload execution time were reduced by 7.69%
and 5.82%, respectively. As a cost for accelerating the data access latency, implementing NCDE incurs a
negligible router area overhead of 1.56%.

INDEX TERMS Directory-based cache coherence protocol, directory caching, network-on-chip, sparse
directory, virtual channel (VC) utilization.

I. INTRODUCTION
Many-core architecture has been highlighted as a vital com-
ponent of high-performance computing (HPC) platforms
owing to its high parallel processing capability [1]. A
real-world example of a many-core architecture is the tiled-
chip-multiprocessor (TCMP), which integrates multiple tiles
comprised of processor cores and caches via network-on-chip
(NoC) [1], [2], [3], [4]. TCMP elevates parallel processing

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

capability by investing a large portion of the area budget to
increase the core count. Increasing the cache size is consid-
ered the single viable solution to cope with the increased
capacity miss rates in data-intensive applications [5]. In the
worst-case scenario, almost half of the cache lines are shared
as a result of using a large amount of data across a massive
number of cores. Frequent access to shared cache lines can
increase the cache data transfer rate by up to 27.40%, leading
to TCMP suffering from increased data access latency [6].

Various techniques that exploit NoC as a supplementary
buffer for the memory subsystem, referred to as network

3080 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-2568-2963
https://orcid.org/0000-0001-8508-7536
https://orcid.org/0000-0003-0810-1458


J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

TABLE 1. Summary of the previous studies addressing DE eviction.

caching, have been developed to accelerate data access [17],
[18], [19], [20], [21]. Several researchers have investigated
the possibility of exploiting virtual channels (VCs) of the
local input port as a sort of victim cache based on the
observation that VCs are underutilized in typical operating
scenarios of NoC [20], [21]. TCMP leverages parallelism
through multithreading, resulting in frequent access to shared
data [22]. Utilizing the local input port VC as a victim cache
is advantageous when data are re-referenced within the same
core; however, it exposes a weakness in shared data access.

Focusing on the unexplored opportunities associated with
shared data access in TCMP, we devised an in-network
caching for directory entries (NCDE) that holds directory
entries (DEs) in VCs. By utilizing VCs as victim buffer
and prefetch buffer for DEs, respectively, thus reduces DE
eviction-induced invalidations and simplifies the cache-to-
cache (C2C) data transfer. To the best of our knowledge,
NCDE is the first network caching method that employs VCs
as the victim and prefetch buffers for DEs. NCDE accelerates
shared data access and maximizes NoC resource utilization
by participating VCs at all input ports for network caching.

The eviction of a DE leads to invalidating the associated
private cache line because the coherence of the cache line
can no longer be guaranteed. As a result, DE eviction-induced
invalidations increase the miss rate of private caches and con-
sequently hamper the overall system performance of TCMP.
The performance-criticality of DE eviction was investigated
by Chaudhuri [12] through running multithreaded workloads
with varying directory sizes. The results indicate that by
reducing the number of DEs by 25%, the execution time
for the multithreaded workloads can be prolonged by up
to 10% due to the increased DE evictions, which causes
coherence cachemiss. The primary causes of the performance
degradation are an increased private cache miss rate and the
associated heavier network traffic. The fact that DE eviction-
induced invalidation is ignorant of memory locality causes
a substantial increase in data access latency. When the CPU
accesses the invalidated data, it experiences an expensive
miss penalty while retrieving up-to-date data from the shared
last-level cache (LLC) or, in the worst-case scenario, from
main memory, which also exacerbates network congestion.
NCDE helps to alleviate the challenges posed byDE evictions
with minimal hardware modifications and area overhead.

To sum up, NCDE exploits VCs as a victim and prefetch
buffer for DEs to reduce DE eviction-induced invalidations
and simplify the cache-to-cache (C2C) data transfer. Through
NCDE, shared data access, which frequently occurs in TCMP,
can be expedited while maximizing NoC resource utilization
by engaging every input port’s VCs for network caching. The
remainder of this paper is organized as follows. Section II
discusses and contrasts NCDE against related work, and
Section III addresses the necessary background of directory-
based cache coherency in TCMP associated with NCDE.
Section IV illustrates the implementation of NCDE from the
perspective of NoC router architecture and operation algo-
rithms. Section V presents the simulation results and analysis
under various conditions. Finally, concluding remarks are
drawn in Section VI.

II. RELATED WORK
There have been several research efforts, referred to as net-
work caching, that projected NoC in the context of supporting
memory subsystems to facilitate faster data access [17], [18],
[19], [20], [21]. The work of Mizrahi et al. [17] is notable for
conducting one of the earliest attempts at exploiting NoC as a
supplementary medium for the memory subsystem. Mizrahi
et al. advocated that NoC can be included in the memory
hierarchy by placing a cache-like buffer on the NoC routers.

Eisley et al. [18] proposed a network caching technique
to simplify the C2C data transfer. Implementing virtual tree
links throughout NoC removes directory lookup from the
direct route to the valid data. However, the virtual tree-based
method requires significant changes to the NoC design, such
as adding a buffer to implement the function of the direc-
tory within the router. Augustine et al. [19] focused on the
congestion caused by burst requests to a particular last level
cache (LLC) slice. The NoC router features a separate router
buffer cache (RBC) for storing LLC lines to eliminate an
LLC queuing delay. Additionally, the similarity of the page
granularity access was leveraged to select the LLC line to
be stored in the RBC. However, this approach did not fully
exploit the performance improvement opportunity because it
addressed only the LLC queue delay, whichwas accompanied
by an area overhead caused by the RBC.

Although previous network caching methods differ in their
specific areas of focus, they generally require additional

VOLUME 11, 2023 3081



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

buffer space in the router. LSR-FD, which exploits VCs as
victim buffers for a private cache, is an area-efficient net-
work caching [20]. Evicted private cache lines are stored in
the local input port VC to respond to local accesses with a
reduced private cache miss penalty. However, LSR-FD was
intended to accelerate local data access, thereby exhibiting
a shortcoming when executing multithreaded applications.
In addition, because the evicted cache lines were selected to
be placed in the VC, a scenario in which the VC depth is less
than the cache line size was not considered.

NCDE utilizes VCs as an extended buffer space for DE and
can resolve frequent shared data access in the multithreading
operation of the TCMP. NCDE deploys VCs as a victim
and prefetch buffers for DE to reduce directory eviction-
induced invalidation and facilitate C2C transfer. In addition,
by using VCs residing in all input ports, the NoC resource
utilization is increased. Furthermore, because the packet-type
DE is smaller than the cache line size, the requirement of the
VC depth to apply the method can be relieved (Section IV
illustrates the numerical analysis regarding the size of the
packet-type DE).

An inefficient DE eviction that is unaware of memory
locality will invalidate the private cache line more often than
is required, which will ultimately result in a in TCMP per-
formance degradation. The earlier studies that attempted to
reduce DE eviction-induced invalidation can be categorized
into three parts, as presented in Table 1.

The methods of the first category focused on saving the
directory area. Because the conflict miss in the directory
is the primary reason for the DE eviction, the occurrence
of DE eviction-induced invalidation is closely related to the
size and organization of the directory. Therefore, relaxing
the area requirement for the directory can effectively reduce
invalidations caused byDE evictions. The objective of studies
in the first category [7], [8], [9] is to reduce the number or size
of DEs. However, these methods must tolerate the imprecise
representation of coherence information caused by uniting
multiple DEs into a single DE or encoding DE data. NCDE
can reduce DE evictions while maintaining the accuracy of
coherence information by using VCs as the victim buffers for
DEs.

Second, several architectural supports from the memory
hierarchy were investigated to mitigate DE eviction-induced
invalidations, such as expanding the directory with LLC [11],
[12] or DRAM [10]. These approaches are beneficial in
reducing invalidations owing to DE eviction with a neg-
ligible area overhead; however, they complicate the mem-
ory access procedure, thus increasing the directory access
latency. Meanwhile, NCDE does not complicate the data
access mechanism, since it leverages VCs, which are network
resources that do not directly affect the memory hierarchy.

The third category maintains cache coherence with the
operating system (OS) support. In this context, the use of
cache coherence-aware page mapping [13], thread migra-
tion [14], and private cache self-invalidation [15], [16] can
mitigate the problem of DE eviction-induced invalidation.

FIGURE 1. Basic TCMP architecture. The tiles of the TCMP architecture
consist of a single core with a router. Each core has an L1 private cache
and uses the L2 cache as a shared last level cache (LLC).

However, thesemethods involve the overhead ofmodification
in OS kernel and/or application software. In addition, the
lengthy processing time of the software-based solution is also
a drawback.

III. DIRECTORY IN TCMP
Fig. 1 shows the configuration of a basic NoC-based TCMP,
which is used as a reference architecture to explain the nec-
essary background. As shown in Fig. 1, a TCMP typically
comprises tens of tiles in a 2D-mesh topology, each of which
includes a router and processing element (PE). For cache
coherence maintenance, a directory-based cache coherence
protocol is preferred for a TCMP owing to the benefit of
scalable traffic volume [23].

A. SPARSE DIRECTORY
Compared with the traditional directory, which strictly allo-
cates a DE for each physical address with the granularity
of the cache line, the sparse directory, which is organized
as a tagged set-associative structure, is more area-efficient.
Consequently, the sparse directory structure is a cost-effective
strategy for TCMPs, which cannot devote a significant por-
tion of the area budget to the memory subsystem. The sparse
directory is sliced according to the number of tiles within
TCMP and then distributed to each tile. Each directory slice
is responsible for an equal portion of the available physical
address space, similar to shared and distributed LLCs. Each
entry consisting of sparse directory slices is configured as
depicted in Fig. 1. During sparse directory lookups, TAG is
used to ensure that the upper portion of a physical address
matches, analogous to its function in normal cache lookups.
STATE and SHARER, tracked by the sparse directory entry,
specify the global coherent state of the cache line and the tile
containing the cache line, respectively. Finally, when STATE
is M (modified) or O (owned), OWNER indicates a private
cache with the ownership.

3082 VOLUME 11, 2023



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

TABLE 2. Notations used in directory-based cache coherence protocol.

DE eviction necessarily invalidates the associated L1
cache lines. This type of invalidation degrades TCMP per-
formance because it is unaware of memory locality [12],
[24]. Configuring the associativity of the sparse directory
to match the aggregated associativity of the L1 cache (core
count × number of L1 cache associativity) can completely
prevent DE eviction; however, it prolongs latency with sig-
nificant area overhead. Therefore, a certain amount of DE
eviction-induced invalidation has to be tolerated as a cost of
adopting a sparse directory structure. NCDE utilizes VCs as
victim buffers for DE to mitigate this fundamental problem
stemming from the area-efficiency of sparse directories. This
is an area-efficient solution becauseVCs, which already exist,
are leveraged as an additional buffer for sparse directory
expansion.

B. DIRECTORY-BASED COHERENCE MESSAGE
TRANSACTION
The coherence message transaction in the directory-based
cache coherence protocol is illustrated using an example of
the L1 cache read miss being handled through C2C data
transfer. This type of coherence message transaction is the
target to be simplified by utilizing VCs as a prefetch buffer
for DE. Therefore, the basic procedure is discussed with the
corresponding notations prior to the detailed explanation of
NCDE. Table 2 summarizes the notations used in this study,
based on the popular work of Sorin et al. [25].

Fig. 2 shows a coherence message transaction regarding
messages and related REQ,HOME, and RESP. REQ in Fig. 2,
which experienced an L1 cache read miss, initiates coher-
ence message transactions through the GETS message. The
message transaction procedure can be described as follows:
À GETS message is transmitted to HOME with a directory
slice to acquire owner information that possesses up-to-date
data of the address, Á HOME forwards the received GETS
message to RESP, Â DATA is transmitted from RESP to
REQ, and Ã HOME is notified that the request is completed
through UNBLOCK.

Hit_timeC2C = tGETS + T
lookup
DIR + tFWD−GETS

+T lookupL1 + tDATA (1)

FIGURE 2. Example of coherence message transaction of the C2C data
transfer, which handles L1 cache read miss.

The example of C2C data transfer is formulated in equa-
tion 1 for the analysis from the perspective of latency. Herein,
Hit_timeC2C refers to the overall latency required by REQ
to receive DATA after generating GETS. Hit_timeC2C can

be further broken down into five terms, where TlookupDIR and
TlookupL1 denote the latency consumed by interrogating the
directory slice and L1 cache, respectively. Meanwhile, tGETS ,
tFWD−GETS , tDATA denote the message transmission latencies
taken by GETS, FWD-GETS, and DATA, respectively. Mes-
sage transmission latency is the time consumed by the packet
of the message while traversing NoC.

The occupancy of terms representing message transmis-
sion latency in (1) grows with the core count because the
expected value of the hop count increases [26], [27], [28].
Therefore, in a systemwith a large core count, such as TCMP,
the underlying NoC plays an important role in C2C data
transfer. As TCMP frequently accesses shared data owing
to multithreading, C2C data transfer commonly occurs [29],
[30]. Consequently, the impact of reducing such message
transmission latency contributes to shortening the shared data
access latency in the TCMP.

IV. NCDE
The design goal of NCDE can be summarized as directory-
based network caching that focuses on shared data access and
resource utilization by leveraging VCs in TCMP architecture.
Specifically, NCDE utilizes every input port’s VC to reduce
the inherent DE eviction-induced invalidation and simplify
the C2C data transfer. The implementation efforts to achieve
these design goals are categorized into three parts: defining
the packet format for directory entry (PDE), PDE-aware VC
for effectively exploiting a VC that holds PDE, and operation
of NCDE unit to utilize VCs for DEs. Each method for
exploiting VCs as victim buffer and prefetch buffer is referred
to as victim directory caching (victimDC) and prefetch direc-
tory caching (prefetch DC). First, an overview of NCDE is
provided, and a detailed illustration of the three implementa-
tion efforts is presented.

VOLUME 11, 2023 3083



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

FIGURE 3. Procedure of victim DC in TCMP: (a) basic flow of PDE by
victim DC, (b) local input port of router in PE14.

A. OVERVIEW OF NCDE
Two-level cache hierarchy with directory-based MOESI
coherence protocol is considered a memory subsystem of the
baseline architecture for explaining NCDE design. NoC of
the baseline architecture is assumed to adopt 2D mesh topol-
ogy with wormhole flow control and uses VC. Representative
TCMP models [1], [2], [3], [4] were referred to configure
a baseline architecture that appropriately reflects the archi-
tectural characteristics of TCMP. The baseline architecture
uses 128-bit flit as modern NoCs does, in purpose to provide
amenable interconnection latency considering data transfer of
a cache line granularity (generally 64B) [2], [31], [32].

Fig. 3 depicts the overall procedure of victim DC with the
perspective of the flow of PDE and the corresponding router.
TCMP’s sparse directory must tolerate a certain amount of
DE eviction-induced invalidation. Fig. 3a shows the proce-
dure when the DE of tag 0xa0 in PE14 is evicted, which
transitions to I (invalid) state. Because the corresponding DE
was S (shared) state with sharer cache lines in PE7 and PE62,
these cache lines must be invalidated before the DE to be
evicted if the victim DC is not adopted. Victim DC, which
holds evicted DEs on the VCs of the local input port, can
handle DE eviction without sending an invalidation message

to the sharer cache lines. Because the evicted DE is actually
exported from the sparse directory slice to the local input port
VC, sharer cache lines can be managed. Fig. 3b depicts the
corresponding router of PE14 holding the PDE in the VC of
the local input port after the DE of tag 0xa0 is evicted.

Fig. 4 depicts the overall prefetch DC procedure from
the perspective of the flow of the PDE and corresponding
router. A C2C transfer inherently requires a maximum of
3-hop message transactions, and the message transmission
latency of each transaction tends to be proportional to the
core count [26], [27], [28]. The prefetch DC aims to shorten
the message transmission latency for C2C data transfer by
simplifying message transactions. To facilitate the message
transactions, the request for the shared data of the L1 cache
is predicted and the corresponding DE is transmitted to the
router of the PE containing the predicted L1 cache.

The PDE is stored in the input port VC, which is used
for entering the router (the west input port in the example in
Fig. 4b). Input ports, except the local port, can be utilized for
the prefetch DC, and a total of four input ports are available in
the case of the 2D mesh topology. When the expected request
occurs in the predicted REQ (p-REQ) in PE14, coherence
information originally acquired from HOME is provided at
the router in advance. By virtue of the coherence information
provisioned from the PDE, a detour for the directory lookup
is not required, and the request traverses directly to RESP.
Fig. 4a shows an example of a prefetch DC, with the DE of
tag 0xb0 being transferred to the predicted REQ (p-REQ) in
PE14. Since the DE is inM (modified) state, there must be an
apparent owner; in this case, the L1 cache in PE7 is the owner.
The PDE containing ownership information is transmitted to
the router of PE14. Fig. 4b depicts the router of PE14, which
stores the prefetched PDE in its west input port VC.

B. PACKETIZED DIRECTORY ENTRY
While implementing the network caching for the DE,
we focused on piggybacking on the behavior of the existing
router architecture; for this purpose, the directory entry is
stored in VC in the form of a packet. In contrast to the
cache line, the packetization of DE is handled only by NCDE.
Therefore, defining the format of PDE is necessary.

For a PDE head flit, it does not differ from non-PDE
packets. The body flit should contain the DE, and the size
of the components in DE determines the number of flits
for the payload of PDE. DE contains SHARER VECTOR,
STATE, OWNER, and TAG. As the head flit already includes
the address handled by the message, TAG does not need to
be included in the payload of PDE. In directory-based two-
level MOESI protocol, STATE is three bits. The number of
bits allocated to the remaining DE components depends on
the core count and is as follows: core count = N, SHARER
VECTOR = N bits, and OWNER = dlog2 Ne bits.
Assuming a flit size of 128 bits, the payload of the PDE in

systemswith a core count of 118 (STATE (3 bits)+ SHARER
VECTOR (118 bits) + OWNER (7 bits) = 128 bits) or
less can fit into a single flit. Message passing [33] will

3084 VOLUME 11, 2023



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

FIGURE 4. Procedure of prefetch DC in TCMP: (a) basic flow of PDE by
prefetch DC, (b) west input port of router in p-REQ.

be preferred over directory-based cache coherency protocols
when the core count exceeds 118. Therefore, we believe it is
reasonable to consider the PDE’s size as two flits (including
a head flit). Meanwhile, a packet of cache line data requires
five flits (including a head flit). Even expanding to the case
where the PDE consists of 3 flits, the capable core count is
up to 245. Regarding the core count of practical directory-
based TCMP, PDE’s superiority in size compared with cache
lines is reasonable. Although a 128-bit flit is assumed to
clarify the comparison of packet sizes, the comparison is valid
without loss of generality because the underlying size of the
cache line (generally 64B) and the required bit length for
each component of the DE remain the same. Compared with a
packet containing cache data that requires five flits, including
a head flit, the PDE is much smaller. Therefore, the use of the
PDE can widen the application range in terms of VC depth.

C. PDE-AWARE VC
Since the PDE can be smaller than the VC depth, empty
buffers may be obtained in the VC used for NCDE. To effi-
ciently utilize buffer space in VCs, PDE-aware VC is
employed. PDE-aware VC enables the PDE to occupy only
a portion of the buffers in VC rather than consuming the
entire VC. Hence, a single VC can be simultaneously used
for network caching and on-chip communication. In order to
leverage the free space, the flits of the non-PDE packet can

FIGURE 5. Router architecture including PDE-aware VC in each input port.

be accommodated in the VCwhere the PDE resides. An addi-
tional multiplexer, referred to as PDE-aware mux, on each
VC is responsible for selecting the flit that will proceed to
the next stage in the router pipeline. As indicated in Fig. 5,
a PDE-aware VC demands a PDE-aware mux. The 128-bit
wide 3× 1 PDE-aware mux selects the flit to advance to the
successive router pipeline stage. When a PDE enters the VC
and is recognized by the NCDE unit, the PDE-aware mux’s
select signal is set to the next buffer in the VC. The NCDE
unit generates the select signal of the PDE-aware mux. While
working parallel with the route computation unit, the occu-
pancy of each buffer of VC and the related status of the flits
is forwarded to the NCDE unit. The number of PDEs residing
in the VC is computed using the flit’s forwarded information
to generate PDE-aware mux’s select signals. For example,
with a five-flit VC depth and a two-flit size PDE, as shown
in Fig. 5. The number of available buffers in VC to pass the
flit is three. Because there is only one PDE in Fig. 5, the flit
in the third buffer in the VC is routed through the PDE-aware
mux. A one-flit size normal packet in the VC’s third buffer
can proceed with the router pipeline ahead of the PDE.

To guarantee the versatility of a single VC, the maxi-
mum number of PDEs per VC, referred to as MAX_PDE,
is defined in (2). According to (2), the PDE does not occupy
the entire VC. For example, 2-flit size PDE with 5-flit VC
depth, MAX_PDE is 2. Because NCDE cannot operate if
PDE size exceeds the VC depth, we exclude this case from
(2). However, cache data transfer over the interconnection
inevitable in a system with many core counts, such as TCMP,
and thus NoC employs an input buffer that is amenable to the
cache line size [34]. In general, the PDE size is smaller than
the typical cache line size of 64B; therefore, it is not a typical
case where the VC depth is smaller than the PDE size.

MAX_PDE

=

 1, if PDE size == VC depth

d
VCdepth
PDE size

e − 1, if PDE size < VC depth
(2)

VC depth: maximum number flits for VC
PDE size: number of flits required for PDE

VOLUME 11, 2023 3085



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

TABLE 3. Description of packet types based on NCDE flag bits.

FIGURE 6. Head flit compositions including additional flag bit vector
(NCDE flag); other meta data for routing are not descripted since they are
unrelated to the working of NCDE.

D. OPERATION OF NCDE UNIT
Within an NoC router, the NCDE unit attached to the route
computation unit is responsible for identifying the PDE enter-
ing the router, holding it in the VC, and controlling the overall
process of victim DC and prefetch DC. Such operations of
the NCDE unit are performed based on the NCDE flag of the
head flit, as shown in Fig. 6. The route computation unit in
each NoC router decodes the head flit to obtain data related
to route decisions, such as SRC and DEST. By additionally
allowing the extraction of the NCDEflag included in the head
flit decoding process, it can be provided to the NCDE unit
under the conventional operation of the router. To implement
the NCDE unit, extracting the NCDE flag bits adds overhead
to the route computation (RC) unit. The RC unit requires an
additional hardware resource to transfer the NCDE flag bits
and ADDR decoded from the head flit to the NCDE unit.
Table 3 lists all types of packets based on the NCDE flag.
These notations are used identically to refer to the NCDE flag
and corresponding packets.

Similar to non-PDE packets, the PDE passes through
the route computation (RC) stage when entering the router
pipeline. A two-stage NoC router pipeline (stage 1: RC,
stage 2: VA and SA) is considered, in which the NCDE unit
works parallel to the RC. The NCDE unit performs PDE
identification and store, hit, and discard operations based on
the acquired NCDE flag. The store process of the PDE first
identifies the NCDE flag as Victim PDE or Prefetch PDE
(‘‘1.’’ in Fig. 7). If the incoming packet is a PDE, the head
flit of the PDE is flushed from the router pipeline (‘‘2.’’ in
Fig. 7). The PDE remains stalled in the VC by flushing the

FIGURE 7. Flow chart of the operation of NCDE unit in identifying PDEs
and holding them in the VC.

FIGURE 8. Victim DC procedure based on coherence message
transactions.

head flit from the router pipeline register. The control signal
of PDE-aware mux in that VC is set to pass the subsequent
packets (‘‘3.’’ in Fig. 7). For a subsequent incoming packet,
the flit of that packet is passed to the router pipeline. The
details for the remaining parts of Fig. 7 differ in whether the
PDEwas generated for performing victimDCor prefetchDC.
Therefore, the operation of the NCDE unit for the remaining
parts is presented separately.

1) VICTIM DC
The victim DC scheme primarily focuses on decreasing
the directory eviction invalidations, thereby reducing the L1
cache miss rate. That is, the victim DC scheme indirectly
increases the size of the directory by postponing the eviction
of the entries selected for replacement. Fig. 8 shows the
process of the victim DC from the perspective of a message
transaction. For ease of understanding, the notation of the
coherence messages required by NCDE follows the notation
of the corresponding packet. For example, ‘‘À Victim PDE’’
in this figure refers to the message that induces Victim PDE
type packets. The notations in Fig. 9 also follows this.
• Store

When an eviction of DE occurs due to a conflict miss, and
if SHARER VECTOR or OWNER of the DE is not a null

3086 VOLUME 11, 2023



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

vector, it is elected as the target of the victim DC. The entry
selected as the target postpones the progress of DE eviction-
induced invalidation, and sharer cache lines associated with
that DE survives. The target DE from the directory slice is
created as a packet with the NCDEflag ofVictim PDE. Mean-
while, the processor’s access toward the sharer cache lines,
which has survived DE-eviction invalidation, is performed
while oblivious to whether a Victim PDE was evicted. These
survived cache lines can provide data to the processor, but a
directory lookup is required for operations such as write and
writeback. Just as the PDE remains in the directory slice, the
coherence message for directory lookup is transmitted to the
tile to which the Victim PDE initially belonged. In order to
handle request messages for directory lookup, Victim PDE
should be stored in the local input port VC of the router
connected to the tile to which it originally belonged (À in
Fig. 8).
• Hit

When a request to the address of Victim PDE occurs,
including a request from the survived sharer cache lines, Vic-
tim PDE should return to the sparse directory slice to com-
plete the required coherence action. The return of Victim
PDE is referred to as hit, and for the NCDE unit to deter-
mine whether a hit occurred, all request message packets
for directory lookup have NCDE flag set to DIR REQ.
When DIR REQ enters the DEST router, which is attached
to the tile of the corresponding directory entry, NCDE unit
checks whether Victim PDE can hit the request based on the
addresses of the packets (Á in Fig. 8). If a Victim PDE exists
whose address matches DIR REQ, NCDE unit modifies the
NCDE flag of Victim PDE to Victim Hit and swaps SRC and
DEST. Subsequently, the PDE-aware mux is passes Victim
Hit. Because DEST was altered to the current router, Victim
Hit traverses to the local output port and, returns to the
directory slice (Â in Fig. 8).
• Discard

With the assistance of PDE-aware VC, Victim PDE is free
of occupying the entire buffer space in a certain local input
port VC. However, a new Victim PDE can be created while all
VCs of the local input port store PDEs asmuch asMAX_PDE,
and in this circumstance, the oldest existing Victim PDE is
discarded by prioritizing to the newly created Victim PDE.
Because all Victim PDEs are formerly selected as replace-
ment victims, the Victim PDE to be discarded must resume
the deferred invalidation to remove all private cache lines of
the corresponding address. After changing the NCDE flag
to Victim Discard, it returns to the tile by swapping of SRC
and DEST. However, the invalidation operation is handled
by the memory subsystem controller without returning to the
directory slice. When the PDE size equals the VC depth,
i.e., when a non-PDE packet cannot be handled concurrently
with a PDE in a single VC, an additional policy of discard
is triggered. In this case, the oldest PDE is removed, and the
remaining steps of the discard proceed in the same way as
when a new Victim PDE enters.

FIGURE 9. Procedure of prefetch DC based on coherence message
transactions: (a) existing message transactions for handling GETS with
C2C data transfer and, (b) proposed message transactions for handling
GETS with C2C data transfer.

2) PREFETCH DC
Prefetch DC primarily aims to shorten the procedure of
C2C data transfer, which requires a considerable amount
of traversal through NoC because the detour for directory
lookup must be included in the route destined toward the
valid data [26], [27], [28]. Prefetching a DE to the predicted
REQ (p-REQ) tile discards detours corresponding to forward
message transactions in the total traverse for fetching up-to-
date data. Simplifying C2C data transfer contributes to the
shared data access expedition by curtailed L1 cache miss
penalty. Fig. 9b shows the process of prefetch DC from the
perspective of the message transaction.

In particular, prefetch DC provides coherence information
to the invalidated cache lines that stem from the store oper-
ation. When a store operation occurs, sharer cache lines are
invalidated prior to the store operation to maintain coherence.
After all invalidations are completed, the store operation is
performed, and the cache line acquires ownership. Mean-
while, with a subsequent load operation from the invalidated
cache line, which is referred to as the load after store (LAS)
sequence, GETS message for the load operation should first
traverse to HOME and then to RESP, as shown in Fig. 9a.
By providing coherence information in advance, the detour
for directory lookup is excluded from the C2C transfer

VOLUME 11, 2023 3087



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

procedure, as shown in Fig. 9b, which results in a direct
traverse to RESP.
• Store

The DE being opted for a target of prefetch DC converts
to PDE with DEST set as p-REQ. In the LAS sequence,
the tiles that contain the cache line invalidated by the store
operation are p-REQ. Prefetch PDE is injected following the
invalidation message packet, both destined for p-REQ. The
process of entering the router of p-REQ and being stalled in
the VC is identical to that of Victim PDE.
• Hit

The request type that Prefetch PDE can respond to is
GETS. The coherence message transaction for C2C transfer
in which prefetch DC is not applied is shown in Fig. 9a,
and Fig. 9b shows the case in which prefetch DC excludes
the detour for the directory lookup. GETS message packets’
NCDE flag is marked by Prefetch REQ. As the first step to
arrive at HOME, Prefetch REQ enters the router through a
local input port. The NCDE unit checks whether a Prefetch
PDE can process the GETS message based on the address of
the packet. When an address match occurs, the corresponding
PDE’s NCDEflag is modified from Prefetch PDE to Prefetch
Hit and enters to p-REQ. Prefetch FWD is generated accord-
ing to the information of the RESP location contained in
the Prefetch Hit in the memory subsystem controller of
p-REQ. Prefetch FWD performs the very same function as
FWD-GETS in Fig. 9a, except that SRC is REQ instead
of HOME. Prefetch FWD induces RESP to send DATA to
p-REQ.
• Discard

Similar to the victim DC, if there is no available space in
the VC for a new PDE, one of the existing PDEs is fired.
However, unlike Victim PDE, Prefetch PDE does not require
any action after the discarding. Therefore, no NCDE flags are
needed to indicate it. In the case of PDE size being equal to the
VC depth, which requires consideration of conflict between
PDE and non-PDE packets, is also identical to the victim DC.
As in victim DC, discarding Prefetch PDE must consider the
case where the PDE size and VC depth are identical. In this
case, non-PDE packets cannot be handled simultaneously
with PDE in a single VC, and an additional policy takes effect.
That is, the oldest PDE is removed when a non-PDE packet
is injected, while every VC is blocked with PDEs.
• Prefetch miss

Prefetch PDE can cause a race condition because the
antecedent entry apparently resides in the directory slice.
A race condition occurs when the ownership of the cache
data changes, while Prefetch PDE waits for Prefetch REQ.
Consequently, Prefetch FWD, which is conducted according
to the operation process of ‘‘Hit,’’ is transmitted to the out-
dated RESP (referred to as former RESP) rather than to the
current owner. If cache line is retrieved from the former RESP
or the valid cache data cannot be found, several message
transactions are added in ‘‘Hit.’’ Whether the visited RESP
is the former RESP can be determined through the state of
the cache line. The cache state of the RESP that operates

TABLE 4. Simulation configuration.

the store in the LAS sequence is initially M (modified)
state. Subsequently, the only state that can transition while
maintaining ownership is O (owned). Therefore, if the cache
state of the RESP where the Prefetch FWD arrives is not M
or O, the operation of the prefetch DC is failed. Instead of
reporting to p-REQ that prefetch DC has failed, the former
RESP sends the message directly to HOME to guarantee a
certain level of C2C transfer latency, even in the case of
failure. In this process, the memory subsystem controller of
the former RESP regenerates the GETS message based on
the information of the Prefetch FWD. After GETS arrives at
HOME, the process of fetching up-to-date data from the real
RESP is the same as that in Fig. 9a.

V. EVALUATION
A. SIMULATION SETUP
NCDE was evaluated using an event-driven gem5 simula-
tor [35]. The gem5 simulator was modified to include the
required NCDE functionalities, which can be categorized into
the NoC and memory subsystem domains, corresponding to
Garnet and Ruby in gem5. To implement NCDE-based router,
Garnet has been customized as follows:
• In order to include the NCDE flag bits in the head flit

of the packets, the existing ‘‘Flit’’ and ‘‘Network Inter-
face’’ parts of Garnet source code have been adapted.

• We updated Garnet’s ‘‘Input Unit’’ and ‘‘Virtual Chan-
nel’’ to function as PDE-aware VC.

• The NCDE unit, which is in charge of the PDE flow
control, is implemented as a part of Garnet’s ‘‘Input
Unit’’ connected with the PDE-aware VC and the exist-
ing router computation unit.

The following changes are applied to Ruby to implement
the sparse directory, DE eviction, and coherence message
transactions needed by the victim/prefetch DC:
• We made some adjustments to the MOESI CMP direc-

tory protocol that Ruby offered to create a simula-
tion environment that uses the directory-based MOESI
cache coherence protocol.

• TheMOESI CMP directory protocol’s cache and direc-
tory controller is augmented with new events, actions,

3088 VOLUME 11, 2023



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

and transitions to support DE eviction-induced invali-
dation.

• To implement additional coherence message transac-
tions by victim/prefetch DC, events, actions, and tran-
sitions are added to the cache controller and directory
controller in the MOESI CMP directory protocol.

Table 4 lists the system configurations used in the eval-
uation. The simulated architecture is structured as a TCMP
composed of 16 identical tiles, each with a single ×86 core,
private L1 cache, LLC slice, and sparse directory slice, which
are connected by a 4×4 2D mesh NoC. The NoC-based
TCMP baseline architecture for the simulations was con-
structed using publicly available representative models from
industry and academia [1], [2], [3], [4]. Other additional
details were derived from leading journals and conference
proceedings [10], [20], [22] in the field to reflect the char-
acteristics of TCMP appropriately and ensure the fairness
of experimental results. TCMPs commonly have a two-level
cache hierarchy due to the large core count, limited on-
chip area, and associated implementation cost. In the case
of the cache coherence protocol, Mittal [22] stated that the
directory-based MOESI protocol is advantageous concerning
the multithreading of TCMP, which can be confirmed again
from the adoption of Xeon Phi [36]. VC depth was set to 5-flit
size for a comparison with LSR-FD.

The number of DEs was matched to be identical to the
total number of entries in the L1 caches aggregated over all
TCMP cores. Meanwhile, the number of ways in the sparse
directory are opted to those of the LLC, to mimic an eligible
shared memory structure. This sparse directory configuration
has been empirically established to perform sufficiently close
to an unbounded sparse directory [12]. To be clear, this sparse
directory configuration was not chosen to provide an undue
advantage to the proposed idea. This is challenging because,
with a sufficient number of DEs, the victim DC has less of an
opportunity to improve on performance.

For a fair comparison, we established the baseline architec-
ture as in previous studies, including the processor, cache, and
most of the NoC configuration. Therefore, the number of DEs
and the VC depth are considered the primary factors in NCDE
performance. Since victim DC helps prevent DE eviction-
related performance drops, its effectiveness is expected to
grow as the number of DEs, which affects the occurrence
of DE eviction, decreases. In particular, L1 cache miss rate
can be lowered thanks to the effect of victim DC attenuating
the adverse effects of DE eviction-induced invalidation. In the
case of VC depth, it is related to the opportunity for NCDE
to be performed. By utilizing VCs as the victim and prefetch
buffers for DEs, NCDE expedites data access in NoC-based
TCMPs. In this regard, the potential for NCDE performance
increases with VC depth. NCDE also has the advantage of
supporting a wide range of VC depths because it stores
PDEs, which are more compact and adaptable than cache line
data. Section V-D supplemented an additional analysis of the
performance gain of NCDE with varying the number of DEs
and VC depth.

To evaluate and analyze the improvement in memory sub-
system performance while data are shared, we used multi-
threaded workloads from the PARSEC 3.0 benchmarks [6].
Linux kernel 4.19.83 version takes the role of thread schedul-
ing, process management, etc. Running multithreaded work-
loads represented a typical situation for a TCMP, which
leverages thread-level parallelism with large core counts.
Although every workload from PARSEC can be multi-
threaded, the dependence on shared data access varies.
Among the workloads shown in Table 4, canneal, ferret, and
x264 can be classified as communication-intensiveworkloads
that demand a high level of data sharing and exchange,
whereas swaptions has the lowest demand for communica-
tion [6]. For communication-intensive workloads, the portion
of shared data access of the overall data access and occurrence
of C2C data transfer is higher compared with other work-
loads. Because NCDE focuses on accelerating shared data
access, we can expect NCDE to show superior performance
gains in communication-intensive workloads.

B. PERFORMANCE IMPROVEMENT
We considered the following five architectures for evaluation:

• w/o-NC: A Vanilla architecture without any network
caching method applied.

• LSR-FD [20]: An architecture which utilizes local
input port’s VCs as a victim buffer for evicted L1 cache
lines.

• NCDE-all: The proposed architecture implementing
both victim and prefetch DCs.

• NCDE-v: A decoupled architecture from NCDE-all
with only victim DC implemented.

• NCDE-p: A decoupled architecture from NCDE-all
with only prefetch DC implemented.

A TCMP without network caching (w/o-NC) is the basic
architecture that does not use any network caching method,
and LSR-FD is the counterpart architecture that utilizes local
input port’s VCs as a victim buffer for evicted L1 cache
lines. LSR-FD is the most appropriate comparison target for
evaluating NCDE-all, regarding its usage of VC, in addition
to being one of the most recent and notable studies. NCDE-all
is an architecture that implements all proposed ideas. In con-
trast, the NCDE-v and NCDE-p architectures also deploy
PDE-aware VC and NCDE units like NCDE-all, but their
functions are restricted to performing only victim DCs and
prefetch DCs, respectively. Consequently, the memory sub-
system controllers of NCDE-v and NCDE-p are designed
to perform additional coherent message transactions derived
from each victim DC and prefetch DC, respectively. With the
configuration of the NoC in Table 4, the packet for cache
data consists of 5 flits. Therefore, network caching for the
L1 cache lines of LSR-FD consumes every buffer in a single
VC. Meanwhile, MAX_PDE is 2; thus, NCDE-v, NCDE-p,
and NCDE-all can utilize a single VC to hold two PDEs. PDE
is advantageous in terms of latency from the perspective of
efficient memory resource utilization and traffic management

VOLUME 11, 2023 3089



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

FIGURE 10. Comparison of workload execution time normalized to
w/o-NC.

in NoC-based TCMP because it is much smaller than a
cache line data. Simulations were performed with various VC
depths, including a 5-flit size for a direct comparison with
LSR-FD.

1) WORKLOAD EXECUTION TIME
We discuss the overall reduction in workload execution time
to observe the effectiveness of NCDE-all. Normalized work-
load execution is the overall time consumed while running
each workload. Fig. 10 depicts every result normalized with
respect to w/o-NC, and the Average bar shows the geometric
mean of the results for all workloads. The average workload
execution time of NCDE-all was reduced by 5.82% compared
with w/o-NC, and by 1.77% compared with LSR-FD. With
each workload having differing characteristics, variations
in their results are observed. Both LSR-FD and NCDE-all
show significant improvements in freqmine of 7.01% and
7.40%, respectively. The ratio of read/write instructions to
total instructions of freqmine is approximately 49.5%, which
is the largest among the PARSEC benchmark suite [6]. The
memory access instruction dominance feature of freqmine
can be observed as a provision of abundant opportunity to
achieve execution time reduction by enhancing the mem-
ory subsystem, which is focused on by both LSR-FD and
NCDE-all.

Other remarkable results are from communication-
intensive workloads, which are expected to show the most
significant gap between LSR-FD and NCDE-all. Evidently,
NCDE-all is superior to LSR-FD based on the results from
canneal, ferret, and x264. Because LSR-FD achieves data
access acceleration by replying to L1 cache’s re-reference
to evicted cache lines, sharing those evicted lines hin-
ders the effectiveness of LSR-FD’s network caching. The
communication-intensive behavior of theseworkloads, which
accompanies several shared cache lines, violates the possibil-
ity of LSR-FD benefiting. Meanwhile, NCDE-all can lever-
age these characteristics, which can be seen in its reduction
of the workload execution time by 5.20%, 3.22%, and 6.19%
compared with LSR-FD and 7.00%, 6.12%, and 7.30%

TABLE 5. Comparison of workload execution time with the PARSEC
3.0 benchmark suite between w/o-NC, LSR-FD, and NCDE-all (in ms unit).

FIGURE 11. Comparison of average memory access time normalized to
w/o-NC.

compared with w/o-NC while running canneal, ferret, and
x264, respectively. LSR-FD outperforms NCDE-all while
running swaptions. The cause of this performance gap is the
exact opposite of the reason why NCDE-all is superior to
LSR-FD with communication-intensive workloads. In addi-
tion to the normalized data presented in Fig. 10, Table 5
provides the exact values for the execution time consumed in
w/o-NC, LSR-FD, and NCDE-all with selected benchmarks
from the PARSEC 3.0 suite. The results are represented inms
unit.

The improvement in the workload execution time must
have been affected by the reduction in data access latency
because both LSR-FD and NCDE-all aim to enhance the
performance of the memory subsystem. Therefore, in the
following, we analyze and compare NCDE-all with LSR-FD
with respect to data access latency.

2) AVERAGE MEMORY ACCESS TIME
The overall data access latency can be represented by the
average memory access time (AMAT) metric. It adequately
represents the overall performance enhancement of the mem-
ory subsystem. NCDE focuses on reducing the L1 cache miss
rate and penalty, which are the dominant terms in AMAT,
and its impact is demonstrated in Fig. 11. The effective-
ness of the congruence of the victim and prefetch DCs is
reflected by the reduced AMAT of the NCDE-all architec-
ture. NCDE-all outperforms LSR-FD by 2.45% and w/o-
NC by 7.69% in the geometric mean. Among the bench-
marks from PARSEC, the results from canneal, ferret, and

3090 VOLUME 11, 2023



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

FIGURE 12. Comparison of L1 cache miss rate normalized to w/o-NC.

x264 show a superior gap between LSR-FD and NCDE-all.
The communication-intensive behavior of the workloads
diminishes the opportunity for LSR-FD to benefit, whereas
NCDE-all can leverage it. To analyze the root cause of the
improvement that NCDE-all accomplished, we performed
simulations with NCDE-v and NCDE-p architectures, which
implemented solely only victim DC and prefetch DC, respec-
tively. Since each method benefits from a reduced L1 miss
rate and penalty, the corresponding results are provided.

3) L1 CACHE MISS RATE
The L1 cache miss rate is determined by the average miss rate
in each tile’s L1 cache, including both the instruction and data
caches. Because directory address allocation and request for
it have no relationship, averaging over all tiles reflects the
L1 miss rate without bias. The L1 cache miss rate directly
represents the effectiveness of the victim DC, because the DE
eviction-induced invalidations of L1 cache lines are reduced.
Fig. 12 depicts the L1 cachemiss rate normalizedwith respect
to the w/o-NC architecture. NCDE-v was 4.37% superior to
w/o-NC with respect in terms of the geometric mean miss
rate. LSR-FD was not evaluated because it targets victim
caching, which is an after-treatment for cache misses. Mean-
while, NCDE-v targets victim buffering for DEs, which can
contribute to reducing the number of cache misses.

4) L1 CACHE MISS PENALTY
The L1 cache miss penalty was derived from the average
of the total L1 cache miss penalties. The L1 cache miss
penalty directly represents the effectiveness of the prefetch
DC because it curtails detours for acquiring coherence infor-
mation during C2C data transfers. Fig. 13 depicts the L1
cache miss penalty normalized with respect to the w/o-NC
architecture. NCDE-p outperforms LSR-FD by 1.84% and
w/o-NC by 8.70% in terms of the geometric mean. For the
same reason as AMAT, the results for canneal, ferret, and
x264 show a more significant performance gain compared
with the others. This reflects that our method is effective
in mitigating problems stemming from shared data accesses.
In Fig. 11 and 13, NCDE-all and NCDE-p show 2.45% and
1.84% superior to LSR-FD in terms of AMAT and L1 cache
miss penalty, respectively. The lower performance gain of
NCDE-p in comparison to NCDE-all can be attributed to the

FIGURE 13. Comparison of L1 cache miss penalty normalized to w/o-NC.

absence of the victim DC function. As shown in Fig. 12,
NCDE-v reduces L1 cache miss rate, which LSR-FD nor
NCDE-p cannot affect. Through the evaluation results from
NCDE-all, NCDE-v and NCDE-p, we can ensure that victim
DC and prefetch DC are complementary.

The evaluation of the L1 miss penalty confirms that short-
ening the C2C data transfer latency using prefetch DC affects
the data access latency. In a NoC-based TCMP, the message
transmission latency tends to increase with the number of
cores, which can be considered an opportunity for a prefetch
DC. Therefore, we conducted an additional experiment to
determine the impact of NCDE-all as the number of cores
increases. Therefore, we conducted additional experiment to
determine the impact of NCDE-all as the number of cores
increases.

C. SCALABILITY
To prove the scalability of the NCDE-all, results regarding the
performance improvement are provided in a more extensive
scale system. There is a core count restriction to apply the
shared/distributed directory with 2D mesh based NoC in the
gem5 simulator: the number (core count) must be both a
power of two and a square. Therefore, the available core
counts following 16 are 64 and 256. However, systems with a
core count of 256 are generally configured as a cluster, which
is not the focus of our work. The core count of 64 is inade-
quate to fit our former evaluation model due to the limitation
on thread spawning. As an alternative, the Ruby random
generator provided by gem5 was used for evaluating NCDE-
all in a system with a core count of 64. The Ruby random
generator raises random memory access with a burst access
pattern; therefore, it effectively reflects the case in which
the memory subsystem is overloaded. The architecture we
configured for a Ruby random generator with 16 and 64 core
counts are referred to as 16 tiles and 64 tiles, respectively.
The tiles of both architectures consisted of a single core, as in
the configuration above. We generated 1,000,000 random
memory accesses for 16 tiles and 4,000,000 for 64 tiles.

The size of the L1 cache, LLC slice, and directory slice
belonging to a single tile of the 64 tiles architecture is
the same as that of the 16 tiles architecture. An identical

VOLUME 11, 2023 3091



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

TABLE 6. Comparison of workload execution time (in ms unit) between w/o-NC and NCDE-all with varying number of DEs.

TABLE 7. Comparison of the occurrence of DE eviction-induced invalidations (in million unit) with the PARSEC 3.0 benchmark suite between w/o-NC and
NCDE-all with varying the number of DEs.

FIGURE 14. Variation of execution time of NCDE-all with 16 and 64 tiles.

configuration, from the perspective of a single tile, maintains
the ratio of the hardware budget allocated to the memory
subsystem.

The higher the core count, the greater the expected influ-
ence of NCDE-all because the performance gain owing to the
operation of the prefetch DC is more advanced. Specifically,
the larger the core count, the higher the probability that the
hop count to go from REQ to HOME increases. We used
the execution time to provide the performance gain of the
NCDE-all while running memory access operations. Fig. 14
depicts the execution time normalized with respect to the
w/o-NC architecture. NCDE-all achieved a reduction in exe-
cution time by 4.84% and 6.21% for 16 tiles and 64 tiles,
respectively.

D. SENSITIVITY
For a fair comparison with related studies, the processor,
cache, and most NoC configurations were set equivalently.

Given the focus of the study, the number of DEs andVC depth
are therefore considered to be the most influential factors on
NCDE-all performance.

1) NUMBER OF DEs
First, an experiment was conducted to assess the data access
performance by varying the number of DEs, which affects the
occurrence of DE evictions. The number of DEs is denoted
by NR, where NR is the ratio of the number of DEs to the
total number of lines in the L1 cache across all tiles. NR
varies between 1, 1/2, and 1/4, which correspond to 4096,
2048, and 1024 DEs, and other parameters are listed in
Table 4. The performance gain achieved through NCDE-
all can be evaluated by workload execution time. Fig. 15
presents the normalized average execution time running the
selected PARSEC 3.0 benchmark suite (in Table 4) on w/o-
NC and NCDE-all with different NR values of 1, 1/2, and 1/4.
NCDE-all showed 5.82%, 7.58%, and 9.27% lower average
execution time than w/o-NC when NR is 1, 1/2, and 1/4,
respectively. Table 6 provides the exact values (in ms unit)
for the execution time results shown in Fig. 15.
The average L1 cache miss rates are depicted in Fig. 16,

where it can be seen that the performance gain of NCDE-all
increases asNR decreases. NCDE-all achieves 4.37%, 7.59%,
and 9.79% lower L1 cache miss rate with respect to w/o-
NC when NR is 1, 1/2, and 1/4, respectively. Table 7 pro-
vides exact values for the number of DE eviction-induced
invalidations for the benchmarks with different NR cases
in million unit. Victim DC’s design goal is to alleviate the

3092 VOLUME 11, 2023



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

FIGURE 15. Normalized workload execution time with varying number of
DEs.

FIGURE 16. Normalized L1 cache miss rates with varying number of DEs.

FIGURE 17. Sensitivity of NCDE with VC depth.

problem caused by DE eviction. Therefore, it is expected
that higher performance improvement can be achieved when
DE eviction is frequent, and this can be confirmed through
simulation result analysis of execution time, L1 cache miss
rates, and the occurrence of DE eviction-induced invalidation.
Table 7 shows that the difference between NCDE-all and
w/o-NC architecture increases as NR shrinks. This disparity
indicates that the effectiveness of NCDE-all escalates when
DE eviction is frequent. The coinciding tendency of perfor-
mance gain can also be observed in the results of L1 cache
miss rate and workload execution time (in Fig. 15 and 16),
which are triggered by the reduction of DE eviction-induced
invalidation.

TABLE 8. Area overhead of NCDE-all.

2) VC DEPTH
For all results discussed, 5-flit VC depth was considered,
as shown in Table 4. To show that our method has a wide
applicable range in terms of VC depth, the impact of varying
the VC depth on performance gain is provided. The VC
depth condition varies from 2, 3, and 4, and architecture
models with each condition are referred to as the 2-flit VC
depth, 3-flit VC depth, and 4-flit VC depth, respectively.
LSR-FD was not analyzed because applying it to such an
NoC is impossible; meanwhile, NCDE-all is applicable. The
workloads from Table 4 were used, and the geometric mean
of the workload execution times was chosen to present the
performance gain of the NCDE-all. Fig. 17 depicts the aver-
age workload execution time normalized with respect to w/o-
NC. NCDE-all reduced the execution time by 3.86%, 3.43%,
and 2.48% with VC depths of 4, 3, and 2 flits, respectively,
compared with w/o-NC. In decreasing the VC depth, the
opportunity for victim and prefetch DCs reduces, which can
be observed from the diminishing results. The result from
the 2-flit VC depth is notable, which shows only a 2.48%
reduction. Because PDE-aware VC is unavailable for use at
a 2-flit VC depth, the PDE occupies the entire buffer of the
VC it uses. Therefore, performing victim and prefetch DCs
can be considered as reducing the number of VCs, which can
slow down inter-tile communication.

E. AREA OVERHEAD ANALYSIS
Three additional bits in the header flit are required to support
the operation of the NCDE unit. However, even including
metadata for routing, data of the head flit does not exceed
128-bit of flit size. Therefore, NCDE flag bits can be accom-
modated in head flit without an additional increment in size
for the flit or channel. We synthesized router architecture
with NCDE-all using SAED 32nm cells [37] and Synopsys
Design Compiler [38] to demonstrate area overhead induced
by implementing NCDE. The logic synthesis results are
represented in Table 8. w/o-NCDE is a conventional router
to which NCDE is not applied, and NCDE-all is a router
in which NCDE is implemented. The RC unit requires an
additional hardware resource to transfer the NCDE flags,
and ADDR decoded from the head flit to the NCDE unit,
resulting in an extra 617 um2, or 0.29% area overhead. Each
PDE-aware VC requires a 128-bit 3×1 multiplexer and extra
wires to select the flit for the successive pipeline stage. As a
result, the size of the entire input buffer grows, leading to

VOLUME 11, 2023 3093



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

a 0.78% area overhead compared with the input buffer of
the w/o-NCDE. Consequently, implementing PDE-aware VC
and NCDE unit add a combinational area overhead on NoC
router of about 1.56% compared to the w/o-NC, which is
trivial amount compared with the performance gain achieved
as shown above.

VI. CONCLUSION
This study proposed a novel network caching method that
utilizes VCs as an opportunistic buffer for DEs. NCDE allevi-
ates problems stemming from shared data accesses, which is
strongly related to the multithreading of the TCMP architec-
ture. By utilizing VCs as both victim and prefetch buffers for
DEs, NCDE explores the reduction of DE eviction-induced
invalidations and simplification of C2C data transfers. As the
evaluations demonstrate, NCDE achieves a lower data access
latency with minimal router area overhead. Simulations with
varying numbers of DEs, VC depths, and core counts demon-
strate that NCDE has a wide applicability range in terms of
VC depth and has the potential to reduce a greater amount of
data access latency in TCMPs, which have a limited number
of DEs and a large core count.

REFERENCES
[1] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,

S. Hutsell, R. Agarwal, and Y.-C. Liu, ‘‘Knights landing: Second-
generation Intel Xeon phi product,’’ IEEE Micro, vol. 36, no. 2, pp. 34–46,
Mar./Apr. 2016.

[2] B. K. Daya, C.-H.-O. Chen, S. Subramanian, W.-C. Kwon, S. Park,
T. Krishna, J. Holt, A. P. Chandrakasan, and L.-S. Peh, ‘‘SCORPIO: A
36-core research chip demonstrating snoopy coherence on a scalable mesh
NoC with in-network ordering,’’ in Proc. ACM/IEEE 41st Int. Symp.
Comput. Archit. (ISCA), Jun. 2014, pp. 25–36.

[3] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote,
N. Borkar, and S. Borkar, ‘‘An 80-tile sub-100-W TeraFLOPS processor
in 65-nm CMOS,’’ IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 29–41,
Jan. 2008.

[4] T. Yoshida, ‘‘Fujitsu high performance CPU for the post-k computer,’’ in
Proc. Hot Chips, vol. 30, 2018, p. 22.

[5] J. M. Sabarimuthu and T. G. Venkatesh, ‘‘Analytical miss rate calculation
of L2 cache from the RD profile of L1 cache,’’ IEEE Trans. Comput.,
vol. 67, no. 1, pp. 9–15, Jan. 2018.

[6] C. Bienia, S. Kumar, and K. Li, ‘‘PARSEC vs. SPLASH-2: A quan-
titative comparison of two multithreaded benchmark suites on chip-
multiprocessors,’’ in Proc. IEEE Int. Symp. Workload Characterization,
Oct. 2008, pp. 47–56.

[7] V. Mekkat, A. Holey, P.-C. Yew, and A. Zhai, ‘‘Building expressive, area-
efficient coherence directories,’’ in Proc. 22nd Int. Conf. Parallel Architec-
tures Compilation Techn., Oct. 2013, pp. 299–308.

[8] D. Sanchez and C. Kozyrakis, ‘‘SCD: A scalable coherence directory with
flexible sharer set encoding,’’ in Proc. IEEE Int. Symp. High-Perform.
Comp Archit., Feb. 2012, pp. 1–12.

[9] H. Zhao, A. Shriraman, and S. Dwarkadas, ‘‘SPACE: Sharing pattern-
based directory coherence for multicore scalability,’’ in Proc. 19th
Int. Conf. Parallel Architectures Compilation Techn. (PACT), 2010,
pp. 135–146.

[10] W. Shu and N.-F. Tzeng, ‘‘NUDA: Non-uniform directory architecture
for scalable chip multiprocessors,’’ IEEE Trans. Comput., vol. 67, no. 5,
pp. 740–747, May 2018.

[11] S. Shukla and M. Chaudhuri, ‘‘Tiny directory: Efficient shared memory
in many-core systems with ultra-low-overhead coherence tracking,’’ in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 205–216.

[12] M. Chaudhuri, ‘‘Zero directory eviction victim: Unbounded coherence
directory and core cache isolation,’’ in Proc. IEEE Int. Symp. High-
Perform. Comput. Archit. (HPCA), Feb. 2021, pp. 277–290.

[13] C. Fensch and M. Cintra, ‘‘An OS-based alternative to full hardware
coherence on tiled CMPs,’’ in Proc. IEEE 14th Int. Symp. High Perform.
Comput. Archit., Feb. 2008, pp. 355–366.

[14] K. S. Shim, M. Lis, O. Khan, and S. Devadas, ‘‘The execution migration
machine: Directoryless shared-memory architecture,’’ Computer, vol. 48,
no. 9, pp. 50–59, Sep. 2015.

[15] M. Davari, A. Ros, E. Hagersten, and S. Kaxiras, ‘‘An efficient, self-
contained, on-chip directory: DIR1-SISD,’’ in Proc. Int. Conf. Parallel
Archit. Compilation (PACT), Oct. 2015, pp. 317–330.

[16] S. Kaxiras and G. Keramidas, ‘‘SARC coherence: Scaling directory cache
coherence in performance and power,’’ IEEE Micro, vol. 30, no. 5,
pp. 54–65, Sep. 2010.

[17] H. E. Mizrahi, J.-L. Baer, E. D. Lazowska, and J. ZahorJan, ‘‘Intro-
ducing memory into the switch elements of multiprocessor interconnec-
tion networks,’’ in Proc. 16th Annu. Int. Symp. Comput. Archit., 1989,
pp. 158–166.

[18] N. Eisley, L.-S. Peh, and L. Shang, ‘‘In-network cache coherence,’’ inProc.
39th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2006,
pp. 321–332.

[19] J. Augustine, R. K. J. Jose, and M. Mutyam, ‘‘Router buffer caching
for managing shared cache blocks in tiled multi-core processors,’’
in Proc. IEEE 38th Int. Conf. Comput. Design (ICCD), Oct. 2020,
pp. 239–246.

[20] A. Das, A. Kumar, J. Jose, and M. Palesi, ‘‘Opportunistic caching in NoC:
Exploring ways to reduce miss penalty,’’ IEEE Trans. Comput., vol. 70,
no. 6, pp. 892–905, Jun. 2021.

[21] A. Das, A. Kumar, J. Jose, and M. Palesi, ‘‘Exploiting on-chip routers
to store dirty cache blocks in tiled chip multi-processors,’’ in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2020, pp. 147–152.

[22] S. Mittal, ‘‘A survey on evaluating and optimizing performance of Intel
Xeon phi,’’ Concurrency Comput., Pract. Exp., vol. 32, no. 19, Oct. 2020,
Art. no. e5742.

[23] A. Ros, M. E. Acacio, and J. M. Garcıa, ‘‘Cache coherence protocols for
many-core CMPs,’’ in Parallel and Distributed Computing. 2010, p. 93.

[24] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, ‘‘Cuckoo directory:
A scalable directory for many-core systems,’’ inProc. IEEE 17th Int. Symp.
High Perform. Comput. Archit., Feb. 2011, pp. 169–180.

[25] D. J. Sorin, M. D. Hill, and D. A.Wood, ‘‘A primer on memory consistency
and cache coherence,’’ Synth. Lectures Comput. Archit., vol. 6, no. 3,
pp. 1–212, 2011.

[26] R. Iyer, L. N. Bhuyan, and A. Nanda, ‘‘Using switch directories to speed
up cache-to-cache transfers in CC-NUMAmultiprocessors,’’ in Proc. 14th
Int. Parallel Distrib. Process. Symp. (IPDPS), 2000, pp. 721–728.

[27] C. Hristea, D. Lenoski, and J. Keen, ‘‘Measuring memory hierarchy per-
formance of cache-coherent multiprocessors using micro benchmarks,’’ in
Proc. ACM/IEEE Conf. Supercomput. (CDROM), 1997, pp. 1–12.

[28] M. R. Marty and M. D. Hill, ‘‘Virtual hierarchies to support server consol-
idation,’’ in Proc. 34th Annu. Int. Symp. Comput. Archit., 2007, pp. 46–56.

[29] M. E. Acacio, J. González, J. M. García, and J. Duato, ‘‘A novel approach
to reduce L2 miss latency in shared-memory multiprocessors,’’ in Proc.
16th Int. Parallel Distrib. Process. Symp., 2002, p. 8.

[30] L. A. Barroso, K. Gharachorloo, and E. Bugnion, ‘‘Memory system char-
acterization of commercial workloads,’’ in Proc. 25th Annu. Int. Symp.
Comput. Archit., 1998, pp. 3–14.

[31] M. Galles, ‘‘Spider: A high-speed network interconnect,’’ IEEE Micro,
vol. 17, no. 1, pp. 34–39, Jan./Feb. 1997.

[32] A. Ejaz, V. Papaefstathiou, and I. Sourdis, ‘‘FreewayNoC: A DDR NoC
with pipeline bypassing,’’ in Proc. 12th IEEE/ACM Int. Symp. Netw.-on-
Chip (NOCS), Oct. 2018, pp. 1–8.

[33] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, ‘‘A high-performance,
portable implementation of the MPI message passing interface standard,’’
Parallel Comput., vol. 22, no. 6, pp. 789–828, 1996.

[34] L. Wang, P. Kumar, K. H. Yum, and E. J. Kim, ‘‘APCR: An adap-
tive physical channel regulator for on-chip interconnects,’’ in Proc.
21st Int. Conf. Parallel Archit. Compilation Techn. (PACT), 2012,
pp. 87–96.

[35] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, ‘‘The gem5 simulator,’’
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

3094 VOLUME 11, 2023



J. E. Shim et al.: NCDE: NCDE to Expedite Data Access in Tiled-Chip Multiprocessors

[36] R. Rahman, Intel Xeon Phi Coprocessor Architecture and Tools: The Guide
for Application Developers. Springer, 2013.

[37] R. Goldman, K. Bartleson, T. Wood, K. Kranen, C. Cao, V. Melikyan,
and G. Markosyan, ‘‘Synopsys’ open educational design kit: Capabilities,
deployment and future,’’ in Proc. IEEE Int. Conf. Microelectron. Syst.
Educ., Jul. 2009, pp. 20–24.

[38] P. Kurup and T. Abbasi, Logic Synthesis Using Synopsys. Springer, 2012.

JAE EUN SHIM (Student Member, IEEE)
received the B.S. degree in electronic and elec-
trical engineering from Sungkyunkwan Univer-
sity, Suwon, South Korea, in 2021, where he is
currently pursuing the M.S. degree in artificial
intelligence. His current research interests include
machine learning and computer architecture.

MINGU KANG (StudentMember, IEEE) received
the B.S. degree in electronic and electrical engi-
neering from Soonchunhyang University, Asan,
South Korea, in 2018, where he is currently
pursuing the M.S. and Ph.D. degrees in elec-
trical and computer engineering. His research
interests include machine learning and computer
architecture.

TAE HEE HAN (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in elec-
trical engineering from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 1992, 1994, and 1999,
respectively. From 1999 to 2006, he was with
the Telecom Research and Development Center,
Samsung Electronics, where he developed 3G
wireless, mobile TV, and mobile WiMax hand-
set chipsets. Since March 2008, he has been

with Sungkyunkwan University, Suwon, South Korea, as a Professor.
From 2011 to 2013, he was worked as a full-time Advisor on system ICs for
the Korean Government. His current research interests include SoC/chiplet
architectures for AI, advanced memory architecture, network-on-chip, and
system-level design methodologies.

VOLUME 11, 2023 3095


