
Received 7 December 2022, accepted 26 December 2022, date of publication 5 January 2023, date of current version 12 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3234622

Most Resource Efficient Matrix Vector
Multiplication on FPGAs
ALEXANDER LEHNERT 1, PHILIPP HOLZINGER 2, SIMON PFENNING 2,
RALF MÜLLER 3, (Fellow, IEEE), AND MARC REICHENBACH 1, (Member, IEEE)
1Chair of Computer Engineering, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany
2Chair of Computer Architecture, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
3Institute for Digital Communications, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany

Corresponding author: Alexander Lehnert (alexander.lehnert@b-tu.de)

This work was supported in part by the German Research Foundation Deutsche Forschungsgesellschaft (DFG) through the Project
Berechnungscodierung under Grant RE 4182/4-1 and Grant MU 3735/8-1.

ABSTRACT Fast and resource-efficient inference in artificial neural networks (ANNs) is of utmost
importance and drives many new developments in the area of new hardware architectures, e.g., by means
of systolic arrays or algorithmic optimization such as pruning. In this paper, we present a novel method for
lowering the computation effort for ANN inference utilizing ideas from information theory. Weight matrices
are sliced into submatrices of logarithmic aspect ratios. These slices are then factorized. This reduces the
number of required computations without compromising on fully parallel processing. We create a new
hardware architecture for this dedicated purpose. We also provide a tool to map these sliced and factorized
matrices efficiently to reconfigurable hardware. By comparing to the state of the art FPGA implementations,
we can prove our claim by lowering hardware resources measured in look-up-tables (LUTs) by a factor of
three to six. Our method does not rely on any particular property of the weight matrices of the ANN. It works
for the general task of multiplying an input vector with a constant matrix and is also suitable for digital signal
processing beyond ANNs.

INDEX TERMS Constant matrix multiplication, neural networks, computer architecture, reconfigurable
architectures, computational efficiency.

I. INTRODUCTION
Artificial Neural Networks (ANNs) are widely used today
in different application fields such as image processing [1],
[2], [3], [4], speech recognition [5], [6], [7] or predictive
maintenance [8], [9]. Compared to classical signal process-
ing algorithms, they can achieve a very high classification
quality without manual design of handcrafted algorithms.
While these outstanding features will enable to solve even
more and more complex problems, computational effort of
such ANNs could become very large and energy intensive.
This is especially true for inference in ANNs which mainly
relies on constant matrix vector multiplications (CMVMs)
and is the focus of this paper. Throughout the paper the terms
CMVM and constant matrix multiplication (CMM) are used
interchangeably. Next to ANNs also many digital signal pro-
cessing (DSP) algorithms rely heavily on CMMs [10], [11].

The associate editor coordinating the review of this manuscript and
approving it for publication was Alireza Sadeghian.

In the past, there were efforts to improve the computational
complexity of these operations [12], and also approximate
methods were explored [13].

With the goal of area, as well as power efficient archi-
tectures implementing CMMs of ANNs or DSP algorithms,
several approaches in the past were researched. Then can
roughly be divided into the three following domains.

1) Algorithm optimization such as quantization (use num-
bers with a limited bit width) and pruning (e.g. the
complete removal of neurons)

2) Specialized dataflow architectures such as systolic
arrays or coarse-grained reconfigurable arrays

3) Advances in technology such as crossbar arrays or
memristive memory cells

These approaches can be combined in a smart way, e.g.
with 1) the ANN is modified in a pre-defined way, which
an architecture 2) can utilize as a priori knowledge to build
very fast accelerator architectures. This is also true for DSP

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 3881

https://orcid.org/0000-0001-5111-4620
https://orcid.org/0000-0002-2912-0650
https://orcid.org/0000-0001-9903-4136
https://orcid.org/0000-0003-3780-9308
https://orcid.org/0000-0002-9687-6247

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

algorithms which are mainly using fixed matrices and thus
provide even more application-independent a priori knowl-
edge. We present 1) a decomposition algorithm to restructure
matrices based on a priori knowledge to then 2) provide an
architecture that makes use of the restructured information to
lower hardware cost while offering a high throughput. With
the goal of high throughput in mind, we refer to an efficient
design as one that is 1) resource-aware, i.e. minimizes hard-
ware cost, while maximizing 2) throughput and 3) energy-
awareness. Architectures are designed fully rolled-out to
preserve high throughput and are compared as such. Compet-
ing designs that exist for ANNs are, e.g., FINN [14], a design
framework for quantized neural networks, and for general
CMVM, e.g., approaches based on Canonically Signed Digit
(CSD) representation [13].

To optimize computation effort in ANNs, a close look to
their internal structure is necessary: The architecture of an
ANN consists of several layers. For the inference of an ANN,
the equation

a = φ(Wv+ b) (1)

has to be solved for each layer. Here and in the following,
W denotes the weight matrix, v the input vector, a the output
vector, b the bias vector, and φ the so-called activation func-
tion. While in current ANNs, the scalar functions φ involve
low computation effort (e.g. rectified linear unit (ReLU)),
as they operate element-wise, the matrix-vector multipli-
cation Wv remains computationally intensive. Therefore,
we will present in this paper a novel approach to optimize
exactly this calculation which also can be directly applied to
DSP algorithms based on CMMs. For this purpose, we solve
this problem also on the above-mentioned two levels, i.e. 1)
the algorithmic level and 2) provide a dedicated hardware
architecture.

The basic idea we propose is to vertically slice the unre-
stricted matrix into S submatrices

W = [W1|W2| . . . |WS] (2)

which are subsequently factorized into P matrix factors as
proposed in [15]

Ws ≈ Fs,P · · ·Fs,1Fs,0. (3)

In the application of ANNs, the matrices that are decomposed
are the weight matrices. As we will discuss in Section III
in full details, this decomposition (so-called computation
coding) will bring the following advantages:
• The matrices F1,1 to FS,1 do not require computations at
all.

• The matrices F1,1 to FS,P will be sparse with a well
defined structure.

• The matrices F1,1 to FS,P will only contain numbers
related to a power of two.

The matrices F1,1 to FS,P are sparse and contain only
signed powers of two such that the multiplication of any of
them with a vector requires only a fixed number of additions

per row. Furthermore, all those additions can be executed,
in parallel. From now on we will refer to such well-behaved
matrices as CC-matrices, referring to the computation coding
(CC) decomposition algorithm which they originate from.

As firstly described in [16] and [15], we can transform
a matrix into a set of CC-matrices. All these new matri-
ces are well-behaved meaning each row of them features a
fixed number of non-zero entries per row which are signed
powers of two. When implementing a matrix-vector product
architecture the well-behaved property of the underlying CC
matrices leads to a lower computational effort because no
multiplications are needed anymore as they can be replaced
by shifts. Moreover, the prior knowledge of the structure of
F1,1 to FS,P will enable the creation of dedicated hardware
circuits, which perfectly utilize this approach. Nevertheless,
as shown in (3), this transformation will introduce a small
error. Fortunately, similar to any fixed point arithmetic the
error can be determined and lowered arbitrarily well which is
important for the overall accuracy of the ANN inference.

While in [16] and [15], the basic idea of the matrix factor-
ization approach was already described, a hardware realiza-
tion to prove the idea with real numbers was not given yet.
Furthermore, [16] and [15] suggested a horizontal decompo-
sition of the matrix W. With respect to hardware realization,
the vertical decomposition proposed in (2), is much better
suited as we will show later on. Therefore, with this paper
we first introduce a hardware realization, based on reconfig-
urable logic (FPGAs), which was dedicatedly designed for
this approach.Wewill show, that using this new approach and
our hardware architecture, we can save up to 80% hardware
resources compared to a standard design flow on FPGAs.

The underlying matrices of many DSP algorithms, e.g.
Fourier transforms, are fixed and application-independent.
Thus, it is simple to design an architecture implementing
them. For the case of ANNs, these matrices differ from appli-
cation to application and layer to layer. But due to the fact,
that weight matrices are created only once for an application,
but are reused for every inference, we can utilize the reconfig-
uration ability of FPGAs to address any ANN. Moreover, the
internal structure of the CC matrices can be perfectly utilized
by FPGAs, since shift-operations are just wiring on an FPGA,
which will cost neither additional hardware resources nor
energy. Implementations on application-specific integrated
circuits (ASICs) also benefit from the latter point but lack the
aspect of reconfigurability. This means, FPGAs will be the
perfect candidate for this kind of algorithm. In this paper we
show the combination of matrix decomposition and recon-
figurable logic for the first time. In Figure 1, this concept is
shown graphically and compared to the state-of-the-art (SoA)
solution using an ANN as example: At the left, an example
of a weight matrix is shown. For general CMMs, as they are
used in, e.g., DSP algorithms, the approach stays the same,
only the matrix differs. The traditional approach to a matrix-
vector-product architecture requires many multipliers and
adders. In contrast, our approach presented later in Section IV
benefits from the well-behaved structure of the CC-matrices

3882 VOLUME 11, 2023

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

FIGURE 1. Comparison between state-of-the art mapping of ANN (at the
top) and linear computation coding (at the bottom) onto reconfigurable
hardware.

and does only require shifters and a fixed small amount of
adders. Additionally, the linear computation coding approach
decomposes the original matrix into multiple CC-matrices.
Due to their unique structure, a resource-aware hardware
mapping is possible, which results in limited usage of adders
and a short critical path.

This paper is structured as follows. In the introduction,
we show the importance of this topic and explain the basic
idea. Section II discusses previous related work in two
domains, first hardware architecture approaches and second
developments from an algorithmic point of view. Further,
in Section III we present our computation coding approach
of decomposition of matrices in a detailed way. Afterwards,
Section IV explains the architecture and hardware realization
of our approach on reconfigurable hardware, first for general
CMMs and later for ANNs. In Section V, we prove the
working principle of our architecture by explaining our exper-
iments and evaluating their results. Additionally, Section VI
provides a further implementation of a multi layer percep-
tron (MLP) with further efficiency comparisons to other
implementation methods. Finally, Section VII concludes the
paper.

Throughout the paper, matrices and vectors are denoted by
boldface upper case and boldface lower case letters, respec-
tively. Non-bold indexed letters denote the entries of the
respective matrices and vectors in boldface. Design vari-
ables are denoted by non-bold upper case letters. Lower case

non-bold letters denote indices running from 0 or 1 to the
respective upper case letter.

II. RELATED WORK
A. HARDWARE ARCHITECTURES
One of the main drivers of deep learning was the vast amount
of computational resources graphic processing units (GPUs)
could provide to train and evaluate sufficiently powerful neu-
ral networks. However, with the widespread usage of deep
learning and the expansion to further domains like automo-
tive, mobile, and edge devices, additional factors like energy
efficiency, latency, and runtime predictability became more
urgent. For this reason, a substantial amount of research has
focused on the acceleration of neural networks with spe-
cialized hardware in the last years [17]. Hereby, three main
directions of optimization can be found in literature, which
are not mutually exclusive, but are often combined for even
greater benefits.

The first category is the design of data-driven digital
circuits and its automation. While GPUs with their single-
instruction multiple-threads-(SIMT)-style architecture offer
many computational units with less control logic than central
processing units (CPUs), they are still fully programmable.
Hence, they inherently have a considerable amount of over-
head, which is not needed for the smaller subset of operations
in deep learning. Therefore, specialized dataflow architec-
tures came in the focus of interest. One of the first candidates
for this purpose were systolic arrays, which were already
concisely described in 1978 [18]. Their locally connected
structure of processing elements not only reduces the con-
trol hardware, but also increases the amount of local data
movement. As a consequence of the fewer slow external
memory accesses, this approach also mitigates the widening
processor-memory gap, which has the potential to consider-
ably improve performance and energy consumption. Due to
these benefits, the concept has been used in many current
designs and most prominently in Google’s Tensor Processing
Unit (TPU) [19], [20], [21]. For the same reasons, dataflow
processing schemes have been similarly applied in varying
scales to other architectures [22]. On a small scale, GPUs
nowadays also incorporate specialized cores that efficiently
process 4 × 4 matrix-matrix multiplications [23]. Further-
more, coarse-grained reconfigurable arrays (CGRAs) have
been employed as a trade-off between programmability and
efficiency [24], [25]. Hereby, the programmable processing
cores directly source data from and provide data to other
nearby cores via a routing fabric to keep data as local as
possible. In the other extreme, several approaches propose to
entirely forgo control flow and generate dedicated accelera-
tors for specific networks [14], [26]. These architectures usu-
ally map layers or the complete model to own hardware for
the highest efficiency at the cost of flexibility. While automa-
tion frameworks for all kinds of deep learning accelerators
are nowadays indispensable, in particular these latter types
make heavy use of network metadata like the number ranges

VOLUME 11, 2023 3883

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

of input, intermediate, and output values or the composition
of the weights matrices [27], [28].

Due to the direct influence of the network structure on the
efficiency of the accelerator circuits, optimizations usually
already begin at the network itself. In this second direc-
tion of optimization two main approaches have emerged in
literature. First, the quantization of weights and data from
32 bit floating point to a fixed point representation with a
smaller bit width [29], [30]. This method has two benefits.
It reduces the complexity of arithmetic operations while at
the same time decreasing the amount of memory needed
for weights. Therefore, a single operation is not only more
memory efficient, but more can be calculated at once with the
same memory bandwidth. As smaller bitwidths can also be
found in other application domains, traditional architectures
of CPUs and GPUs already incorporate vector processing
capabilities. However, these are usually limited to fixed sizes
of 8 bit, 16 bit, 32 bit and 64 bit. Despite the recent support of
further operand types like int4 and bfloat16, the optimal
values can heavily vary between neural networks and do
often not coincide with these fixed widths. Therefore, several
approaches use hardware that is specifically adapted for the
applications by quantizing the network as far as ternary or
binary weights [14], [26], [28]. Adjacent to the quantization,
pruning has been established as the second way to prepare
a network for optimized hardware [31]. Here, weights are
successively set to zero and then stored in compressed for-
mats. Although this method makes the control flow logic
more complex to parse the weight storage, the overall amount
of arithmetic operations is drastically reduced as multiplica-
tions and additions with 0 can be completely stripped away.
This leads to a sparse matrix multiplication, which can be
calculated faster and with less energy than the original [32],
[33]. Further research has explored the optimization of con-
stant matrix multiplication by converting entries to the CSD
representation and then optimizing the resulting adder tree
for the matrix-vector multiplication [12], [13]. While some
approaches discuss finding an optimal exact solution to the
matrix vector multiplication [12], there are also efforts to
reduce accuracy for further reduction in hardware cost of the
resulting designs [13].

While such dataflow architectures and their network opti-
mizations are also the main focus of this paper, they can
be further combined with technology driven designs. This
third main direction of research extensively utilizes uncon-
ventional or novel circuitry and memory cells. As such, one
of the central structures are crossbar arrays, which usually
follow the general principle of dataflow architectures. They
internally store the network weights and perform analog
multiplications and additions as the information medium
propagates through them [34], [35], [36]. Hereby, a num-
ber of different technologies with their own benefits and
drawbacks have been investigated. On the still rather con-
ventional side are designs based on capacitors [37] and
common non-volatile memory cells like flash and silicon-
oxide-nitride-oxide-silicon (SONOS) [38], which are already

used in traditional circuits and are therefore more reliable.
Regarding novel components, memristive memory cells have
become a field of active research for deep learning [34], [35],
[36], [39]. As non-volatile, electrically alterable resistances,
they enable storage and in-memory computing in the same
device. Furthermore, they promise a high cell density and
simpler fabrication in conjunction with digital logic cells
due to the full complementary metal-oxide-semiconductor
(CMOS) compatibility [40]. Aside from the classical data
processing with electric circuits, silicon photonics also has
been presented as an approach for deep learning [41], [42].
Due to its unprecedented possible bandwidth, photonic com-
puting systems promise high performance and energy effi-
ciency. However, there is still a long way until these systems
are industrially viable outside of the network communication
sector [43]. Although, our approach presented in this paper is
based on classical electrical circuits, it can be combined with
these technology-driven optimizations in the future.

B. ALGORITHMIC FUNDAMENTALS
From the pioneering work of Strassen [44] and improvements
of the same [45], we know that matrix multiplication can
be performed more efficiently than by the standard method
of calculating inner products of rows and columns. How-
ever, the Strassen algorithm brings only benefits for matrix
ranks in the thousands and beyond. Furthermore, applying
Strassen’s ideas to ANNs requires buffering the input vectors
until an input matrix with sufficiently large rank has been
accumulated. Thus, the Strassen algorithm and its further
improvements have remained a well-studied subject in the-
oretical computer science, but not entered algorithm design
for matrix-vector multiplication in ANNs. In this work, we
follow a very different line of ideas, instead.

Higher accuracy of computation, in general, results in
higher computational load. Any improvement in the former
is thus equivalent to a reduction of the latter. Both are two
sides of the same tapestry, which is utilized in the sequel.

The common way to represent matrices is to element-wise
quantize their entries. The more accurate the quantization
of each entry, the more accurate is the whole matrix. The
entries are typically quantized by the common signed inte-
ger representation. Each additional binary digit halves the
average quantization error. This can be improved by Booth’s
CSD representation [46]. Each CSD reduces the average root
mean-square quantization error by a factor

√
28 [16].

When implementing small CMMs, as they appear in, e.g.,
DSP algorithms, the CSD representation brings further bene-
fits. Instead of implementing full multiplication units, we can
convert the sum of products (SOP), that represents the compu-
tation of one line of the CMM, into a directed acyclic graph
(DAG) of adders which then can be minimized by reusing
intermediate results where possible [12]. As this problem
is NP-hard [12], finding good solutions for large matrices,
as they appear, e.g., in ANNs, is not viable. In more recent
work, inaccurate implementations are considered, trading
accuracy for even lower hardware costs [13].

3884 VOLUME 11, 2023

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

The element-wise CSD representation is simple, but leaves
much room for improvement. The coordinate rotation digital
computer (CORDIC) algorithm [47] represents 2×2matrices
as products of 2 × 2 matrix factors that only contain signed
powers of two and is used to improve the calculation of, e.g.,
trigonometric functions. Recent work on linear computation
coding in [15] shows that rectangular matrices are much bet-
ter suited to be decomposed into matrix products than square
matrices. Furthermore, the savings grow unboundedly with
matrix size. This behavior was first observed for the particular
example of the mailman algorithm [48]. While the latter is
too inflexible for practical applications, modern methods of
linear computation coding work well for matrices of almost
any size and aimed accuracy of computation. The particular
algorithm utilized in this work is detailed in the sequel.

III. OUR METHOD: COMPUTATION CODING -
DECOMPOSITION OF MATRICES
Our objective is to decompose a matrixW in such a way that
the productWv can be computed with minimum effort on an
FGPA.

The multiplicative decomposition algorithm in [15] works
much better for rectangular than for square matrices. There-
fore, we first slice the matrix W into S tall sub-matrices Ws
as in (2). Similarly, the vector v is cut into S sub-vectors vs
such that v† = [v†1|v

†
2| . . . |v

†
S]. Thus, we have

Wv =
S∑
s=1

Wsvs. (4)

Note that reference [15] slices the matrixW into wide, not
tall sub-matrices. This requires the subsequent factorization
algorithm to operate on the transposed matrices. Although
horizontal slicing results in a similar number of required
computations, it is less suited for pipelining: Vertical slicing
ensures that all computation paths have exactly the same
lengths, cf. equal number of nonzero entries in the rows in
(7). Horizontal slicing, however, results in varying lengths of
computation paths, cf. equal number of nonzero entries in the
columns in (7). With vertical slicingwe ensureminimal clock
skew in hardware implementation. All paths have the same
lengths and thus a minimal clock skew is guaranteed. Hori-
zontal slicing on the other hand leads to varying paths lengths
and thus the clock skew increases. It is well established
that an optimized clock skew is key to designing efficient
hardware [49].

Each tall sub-matrix Ws is decomposed into P nontrivial
matrix factors Fs,p as denoted in (3). For this purpose, we use
a recursive approach to be detailed in the sequel. The recur-
sive approach is not optimal and more sophisticated decom-
positions may yield even better results. However, it performs
well and allows for a matrix decomposition with reasonable
complexity.

We initialize the recursion with the trivial factor Fs,0 =
[I|0]† with I and 0 denoting the identity and the all-zero
matrix, respectively. The sizes of the matrices I and 0 are

chosen such that Fs,0 and Ws have the same size. This ini-
tialization works well for most weight matrices occurring,
in practice. However, it may perform poor in some excep-
tional cases, e.g., for matrices that contain only positive or
only negative entries. In that case other initializations should
be taken, see [15] for details.

We calculate the matrix factor Fs,p given the previous
matrix factors Fs,p−1 and the sub-matrix Ws. With M denot-
ing the number of rows inWs, p > 0, and some parameter E ,
we solve

f s,p,m = argmin
ϕ∈{0,±2Z}M :‖ϕ‖0=E

∥∥ws,m − ϕFs,p−1 · · ·Fs,0
∥∥
2 (5)

row-wise for all rows f s,p,m of Fs,p. There ws,m and
‖ϕ‖0 denote the m-th row ofWs and the number of non-zero
components in ϕ, respectively. We stop the recursion if the
desired accuracy is reached, i.e. the Frobenius norm of the
difference between the approximation and the exact weight
matrix is small enough. Thus, the desired accuracy deter-
mines the number of non-trivial factors P. While the initial
and trivial factor Fs,0 is rectangular having the same size as
Ws, all subsequent factors Fs,1 to Fs,P are square.

The optimization problem (5) is NP-hard. Therefore,
we resort to an approximate solution based on a quantized
version of matching pursuit [50]. First, we find the first
non-zero entry of the vector ϕ. For that purpose, we cal-
culate all matchings and quantize their scale factors to the
most suitable signed powers of two. Then, we pick the best
matching with respect to the Euclidean distance to the vector
ws,m. Given this first entry ofϕ, we find the second entry ofϕ.
We repeat that, until E non-zero entries are found.

An example of such a decomposition is given in the sequel.
Consider the matrix1

W1 =

0.5377 0.3188
1.8339 −1.3077
−2.2588 −0.4336
0.8622 0.3426

 . (6)

For P = 2 and E = 2, we approximate it as

W1 ≈

1 0 −
1
32

0

−
1
2

1 0 0

0 −
1
8

1 0

0 −
1
16

−
1
2

0

︸ ︷︷ ︸

F1,2

1
2

1
4

2 −1

−2 −
1
2

1
1
4

︸ ︷︷ ︸

F1,1F1,0

. (7)

In order to approximate the matrix-vector product W1v1,
we first calculate the vector F1,1F1,0v1 which requires four
additions, and subsequently multiply this vector by Fs,2
which also requires four additions, so eight additions in total.

1This matrix is found when executing the command A = randn(4,2)
right after startingMatlab. It is chosen to demonstrate that this example is not
made up particularly to promote this algorithm, but it is a generic example.

VOLUME 11, 2023 3885

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

FIGURE 2. Comparison of data dependencies of the standard implementation and the computation coded computation of a CMM
using a 4× 4 matrix. The colored data paths F1,0 to F1,2 of the CC implementation are also presented in Equation 7.

The signal-to-quantization noise ratio

SQNR =
‖W1‖

2
F

‖W1 − F1,2F1,1F1,0‖
2
F

(8)

for this example is given by 24 dB which corresponds to
the accuracy of 4-bit signed-integer arithmetic. The SQNR
measured in decibels was found in [15] to scale linearly with
the number of factors P, so any desired accuracy can be
reached. Note that a direct computation of W1v1, irrespec-
tive of the accuracy, would require four additions and eight
multiplications.

By design, any matrix factor Fs,p, p > 0 contains exactly
E nonzero elements per row. These E non-zero elements are
signed powers of two. Multiplying such a matrix to a vector,
thus, requires at most E shifts and exactly E − 1 additions
(or subtractions) per row. For an M × N weight matrix,
these areM (E − 1) additions (or subtractions) for any matrix
factor Fs,p. In total, there are PS of these matrix factors.
Moreover, we have (S−1)M additions for calculating the sum
in (4). Thus, the total number of additions and subtractions to
computeWv is

(E − 1)MPS + (S − 1)M . (9)

The choices of the three parameters P, S, and E determine
both the computational effort and the accuracy of the approx-
imation (3). Setting

S ≈ N/ log2M (10)

is typically not a bad choice. The optimum value of S often
deviates from (10) by at most a factor of two in one or
the other direction. For given parameter S, the parameters P
and E are chosen such as to reach the desired accuracy of
computation.

In the standard approach of computing CMM, every output
is a direct linear combination of any input. This is visualized
in Figure 2a, where every node represents a vector entry and

the edges connecting them depict the data dependencies. Each
entry of the resulting output vector is the sum of products
of input vector entries and the matrix entries in the corre-
sponding column. Therefore, all entries of the result vector
directly depend on all entries of the input vector. The structure
in Figure 2a is generic for all 4 × 4 matrices that do not
contain zeros. The particular properties of the constant matrix
are encoded in the coefficients of the linear combinations at
the output nodes and are not visible in Figure 2a.

The computation coded decomposition of the same matrix
is visualized in Figure 2b for P = 3 factors. No data depen-
dencies are lost by applying the proposed decomposition.
Instead, previously direct data dependencies are exchanged
with indirect dependencies. The result of the CMM is not
computed directly from sums of products, but by repeated
CMMswith CC-matrices for each slice of the original matrix,
followed by accumulation of all slice approximations. The
4 × 4 matrix W of the CMM is sliced into S = 2 slices of
size 4 × 2. Decomposition of the first slice W1 is presented
in Equation 7 for P = 2 factors. Each slice computation is
now only dependent on the respective two elements of the
input vector. After P = 3 factors with one addition each
(E = 2), the slice-wise computation is finished and the final
accumulation takes place.

Between the first and second matrix factor, a node appears
to be missing. Instead of four nodes, there are only three.
A one-to-one translation of (7) would actually make this
fourth node to show up. However, due to the all-zero column
inF1,2, this node has not any outgoing edges. Thus, it does not
have any influence on the final result and can be eliminated.
Optimizing VDHL compilers remove such nodes automati-
cally. See also [51] for details.

The two data dependency graphs mainly differ in two
points:

• For CC, the structure of the graph depends on constant
matrix W, while for the standard approach, it does not.

3886 VOLUME 11, 2023

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

CC encodes the information about the matrix W pre-
dominantly in the structure of the graph and only to a
minor extent in the weights of the linear combinations
at the nodes.

• For CC, all nodes have a fixed number of incoming
edges which can be freely chosen by the design variables
E and S. For the standard approach, however, the number
of incoming edges is equal to the number of rows of the
matrixW.

Our approach allows, due to choice of the parameters
E and S, to design the number of incoming edges to computa-
tion nodes freely. Thus, we reduce the node activity from four
edges to two in our example. This reduction in node activity
is muchmore pronounced for larger matrices. For the purpose
of readability we chose to present this small 4× 4 example.

The matrix decomposition described above is not the only
sensible method of linear computation coding. A recent
alternative requiring even less additions is reported in [51].
Whether the method in [51] is also well suited for implemen-
tation on FPGAs is to be explored in future work.

IV. OUR METHOD: ARCHITECTURE AND
HARDWARE-REALIZATION
In this section, we propose an architecture for implementing
CC-matrix-vector products. It utilizes the particular proper-
ties of the CC-matrices. Results of several experiments on
the scalability of our architecture are presented and further
aspects needed for the real-world implementation are elabo-
rated upon.

Our objective is to design an optimized architecture imple-
menting MLPs, as a general form of ANNs, that can be real-
ized on FPGAs. A MLP is a sequence of neural layers, each
layer consisting of a set of neurons with activation functions.
The resulting activations of a layer can be computed element-
wise or, when represented as a vector, using a matrix-vector
product concatenated with a non-linear activation function
as shown in (1). There, a is the resulting activation of the
current layer with weight matrix W, input v, bias b, and
activation function φ. The inputs to a layer are the activations
of the previous layer or, in the case of the first layer, the
input to the MLP itself. Disregarding the activation function,
it is immediately obvious that the matrix-vector product is
the most computationally expensive component of (1). Thus,
when designing an optimized MLP architecture, it is crucial
to focus on saidmultiplication. This coincides with the imple-
mentation for general CMMs, as the ANN design consists,
next to other parts, of CMM units. Our approach replaces
the original CMM with multiple CC-matrix-vector products,
or in other words CMMs where the underlying matrices are
CC-matrices and are created using the approximate matrix
decomposition algorithm presented in Section III.

A. ARCHITECTURE
This section will present our architecture starting with
explaining the components of a CMMand discussing benefits
stemming from certain restrictions to them.

The standard implementation of a CMM consists of two
steps, the multiplication itself and the column-wise accumu-
lation per entry of the result vector. Consider the product

z =Wv (11)

where W ∈ RM×N , v ∈ RN and z ∈ RM . When implement-
ing the product (11) in a naive architecture, the computation
can be separated into two distinct steps, 1) the multiplications
themselves and 2) row-wise accumulations. Thus, we can
define the intermediate matrix W′ ∈ RM×N whose rows
w′m = wm � v are the element-wise (Hadamard) products
of the rows of W with the input vector v. As explained, now
we need to row-wise accumulate the matrix W′ to compute
the resulting vector z with zm =

∑N
n=1W

′
m,n. As already

alluded to, we want to modify the product (11) to simplify
the hardware required to implement it. Instead of using the
original matrix W, we make use of the approximate matrix
decomposition algorithm presented in Section III. This results
in the approximation ofW such that

Wv ≈
S∑
s=1

P∏
p=0

Fs,pv (12)

where Fs,p ∈ RM×M for p > 0. There are a few parameters
that determine the number of matrix-vector products needed
to implement this decomposition. The algorithm decomposes
W into slices of widthW , as shown in (13).

W =
N
S

(13)

Thus, with increasing width W the number of slices
decreases. The parameters P and E are used to control the
accuracy of the approximate decomposition which increases
with P and E meaning that more factors and less sparsity in
these factors yield a more precise result. Typically we want to
set P and E such that we perform (at least) equally accurate
as the integer-arithmetic used by the naive implementation.
Each of the matrices Fs,p is a CC-matrix with the following
properties that can be controlled by the algorithm:
• There is a fixed number of elements that are unequal to
zero in each row of the matrix.

• The domain of values that matrix entries can be is fixed
to a finite set.

The proposed architecture which is depicted in Fig. 3 benefits
from both points mentioned and the following paragraph
explains how both constraints are exploited.

We restrict each row of the matrix to consist of exactly two
non-zero elements, i.e. E = 2. As each element of the output
vector zm is calculated as the inner product of two vectors with
one of them containing only two non-zero entries, we only
need one addition to compute zm. This holds for any of theM
components of z, so there areM additions needed in total for
this step.When implementing a general matrix vector product
one needs to choose between a linear adder and a tree adder
effectively choosing between minimizing hardware cost and
critical path length. To implement a matrix vector product

VOLUME 11, 2023 3887

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

FIGURE 3. Architecture of CC-matrix-vector product (F-Block) Fv = z with
input v (left) and output z (right). Additional multiplications with −1 are
taken care of by the inverter-module denoted by inv. The blue shifters can
have varying implementations while the black part is fixed. Depending on
the type of implementation of the blue part, the red network is needed or
not. In our implementation the blue and red parts are replaced by
hard-wired shifts.

with the described restriction we only need one adder per
matrix row optimizing both hardware cost and critical path
length at the same time.

As a side note, with an increase in E the number of adders
required to accumulate the intermediate results per row may
increase. The optimization problem here is between mini-
mizing hardware cost by choosing a linear adder structure or
minimizing the critical path by choosing tree adders. While
E drives hardware cost per CC-matrix product, the total
hardware cost is balanced out by the need of less sequen-
tial products. Due to more information being stored in each
CC-matrix the number P of CC-matrices required to reach a
certain precision decreases.

The main benefit of our approach compared to a naive
implementation results from the second bullet point men-
tioned above. By restricting all non-zero matrix entries to
be signed powers of two, we need not any multiplication
elements to implement the matrix-vector product. As num-
bers are encoded binary, a multiplication with a power of
two is nothing but a shift. There are various possibilities to
implement these shifts. Barrel shifters enable shifting in both
directions and thus are one way of implementing the required
computation. The main benefit of this approach is that the
implementation is independent of matrix values as matrix
elements are the controlling input of the shifters and can be
read from memory. When assuming the matrices as fixed,
we can skip the shifters and hard-wire the shifts using simple
connections between the input vector and the adders.

At last, as we do not restrict the matrices to consist of
positive values only, we need a way to handle negative matrix
entries. This is done by inverting the input vector at the

FIGURE 4. Architecture of approximate matrix-vector product
(CMVM-Block) Wv = z where W is decomposed into the CC-matrices F1,1
to FS,P . The input for Fs,1 is the s-th part of v separated into S slices and
zeros such that the vector has N elements. After parallel computation, the
partial results zs are accumulated to z.

beginning and choosing between the inverted and the original
input vector at the time of shifting. From an overall per-
spective an implementation of a CC-matrix-vector product
compared to a naive implementation of a general product has
a significantly lower hardware cost and critical path length.

As was pointed out, architecture in Fig. 3 only implements
the CMM for CC-matrices. To implement a full product we
need to assemble multiple instances of the mentioned archi-
tecture as shown in Fig. 4. The architecture can be divided
into three sections, construction of input vectors, multiplica-
tion with CC-matrices and accumulation of partial results.

The construction of the input vectors is needed as a first
step, because each row of CC-matrix-vector products only
approximates a slice of the original matrix. Thus, we only
need the corresponding section of the input vector v. Tomatch
the dimensions of the matrices Fs,p ∈ RM×M for p > 0,
the partial input vector gets multiplied with an identity matrix
augmented by zeros. This is formally done in (3) by the initial
matrix factor Fs,0. This can be shortened to filling up the
remaining bits with zeros. This is done in the leftmost section
of Fig. 4.

After having assembled the partial input vectors, an array
of CC-matrix-vector products follows. Each of these imple-
ments the architecture presented previously. Each row is
implemented as a chain of products running in parallel to
other rows.

As each row of products only represents a subset of
columns of the original weight matrix, or the underlying
matrix of general CMMs, the results of a row of CC-matrix-
vector-products is only a partial result. To get the final output
vector all partial results zs need to be accumulated which is
best done in a binary tree structure. This approach minimizes
the critical path length at the cost of more hardware to imple-
ment it when compared to a linear addition.

As was explained in Section III, the decomposition of a
matrix via the CC-algorithm is only approximate. The more
consecutive factors there are per slice, the higher the accuracy
of the approximation [15]. To achieve viability compared
to other, competing implementations of CMMs we simply
use as many factors in the decomposition to reach the same

3888 VOLUME 11, 2023

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

or better accuracy which the fixed-point arithmetic of the
competing implementation would provide. When we want to
approximate, e.g., 8 bit signed integer arithmetic in this way,
we need to set the amount of computations per slice such that
the quantization error is 48 dB below the entries of the weight
matrix [52].

Our designs are implemented using the Very-High-Speed
Integrated Circuit Hardware Description Language (VHDL)
which is generated from the output of the decomposition
algorithm using a hardware generator we implemented in
python. This choice best bridges the semantic gap between
the output and corresponding interface of the decomposition
algorithm and the hardware descriptions required for syn-
thesis while only relying on basic assertions and operations
supported by most VHDL standards and also comes with
the benefit of providing an interface for common neural net
frameworks such as Tensorflow or PyTorch.
The goal of our implementation is a tool that generates the

description of the instantiated designs as shown above while
sustaining compatibility with most synthesis tools, not only
for FPGA implementations but for ASIC implementations as
well. Due to this, we implement our designs in the VHDL-
93 standard [53] which is supported by most synthesis tools.
This choice comes with the drawback that the VHDL-93
standard lacks features ofmoremodern versionswhichmakes
implementations based on it unnecessarily complex and hard
to read. Therefore we have chosen to implement a hardware
generator instead of relying on static VHDL implementations
of our designs. As mentioned our generator is implemented
in python and consists of a generic VHDL generator back-
end and several functions using the backend to generate the
descriptions of the designs for specified input matrices and
parameters. Thus, the resulting interface consists of python
functions which can either be called individually but can also
be connected to neural net interfaces asmentioned previously.
In-between the decomposition algorithm is executed, this also
takes place on the python-level.

This architecture implements an approximate CMM, with
the approximation being at least as accurate as comparable
fixed-point arithmetic. The resource-efficiency we achieve
is not at the cost of a lower throughput. It arises from suit-
ably quantizing matrices rather than naively quantizing their
entries. Therefore, it can replace the naive implementation
of CMMs without hindering accuracy or throughput. In the
following the potential of the presented architecture will be
explored with themain focus on properties of weight matrices
of ANNs.

B. SCALABILITY
There are several factors that affect the scalability of our
architecture for a matrix-vector product. Apart from opti-
mizations to the architecture and the ease of applying them,
we can also explore the effects of variable matrix traits. The
latter will be explored in the upcoming two experiments
which consider the impact of matrix dimensions as well as
the statistics of matrix entries. After that we present our

approach to pipelining the architecture demonstrating how
we can make use of the repetitive architecture and optimize
critical paths.

A particular problem is the well-known memory bottle-
neck, i.e. to enable our architecture to compute fast we
require high data throughput. A matrix with dimensions 64×
64 already requires as input-output-(IO)-ports two vectors
with 64 entries resulting, when encoded in 8 bit, 1024 bit
transferred every clock cycle. At a frequency of 400 MHz
we need a memory bandwidth of 400 Gbit/s. To solve this
requirement we chose to implement our designs for the
XCVU37-ES1 chip by Xilinx on the ADM-PCIE-9H7 board
by Alpha Delta. This setup is consistent for all the following
results.

Our design is a fully rolled-out implementation and thus
executes the corresponding CMMs in one clock-cycle. There-
fore, we compare our architecture to a fully rolled-out version
of the naive implementation. As a basis for comparison of
hardware cost we implement both the standard approach and
our CC-approach using look-up-tables (LUTs) and do not use
any DSPs present on this specific FPGA. By doing this we
can guarantee a fair comparison in terms of the validity of the
results as well as the applicability to other FPGA boards.

Floating-point computations introduce a level of accuracy
which can be used as a termination criterion for the decom-
position of matrices, if desired. This way, similar to how
we achieve the accuracy of fixed point computations, the
approximative decomposition provided by the CC-algorithm
can then be as accurate as floating point arithmetic.

Our designs are individual dataflow architectures that
implement an entire CMM,ANN layer, or ANN, respectively.
There is no need for mapping algorithms for processing
elements. Results concerning speedup can be found in the
experiment concerning pipelining in Section IV-B3, the main
experiment which discusses timing results, as well as in the
last implementation realizing a MLP in Section VI.

1) MATRIX DIMENSIONS
One key aspect of the performance of our architecture is its
scalability in terms of varying matrix dimensions and the cor-
responding benefit when compared to the naive implementa-
tion. This facet will be explored in the following experiment.
As we want to represent matrices appearing in ANNs we
chose to test our approach on square matrices with dimen-
sions ranging from 64× 64 to 256× 256. To keep generality
we randomly generated matrices with independent uniformly
distributed entries. An experiment on varying statistics of
entries is presented in Section IV-B2.

The main choices left before running the linear computa-
tion coding algorithm is the precision we want to achieve and
the size of the matrix slices to approximate. We compare our
results to a fixed-integer arithmetic naive implementation of a
matrix-vector product with a bit width of 8 bit. The bitwidth
of all vector entries between matrices, meaning the in- and
outgoing vectors of the corresponding matrices, is set to 8 bit.
This determines the precision we need to achieve. According

VOLUME 11, 2023 3889

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

TABLE 1. S: Number of vertical slices per matrix, P: number of
consecutive products per matrix slice, W : width of each slice. The
standard approach (STD) implements a naive matrix-vector product with
fixed-point arithmetic with a bit width of 8. The precision of said bit
width is achieved by the computation coding (CC) decomposition
resulting in S consecutive products per slice. The column I = STD LUTs

CC LUTs
represents the improvement of our approach over the naive one.

to (10) and (13), the slice width should be around 5 to 8.
We chose the three options W = 2, W = 4, and W = 8,
as they lead to numbers of slices which are powers of two,
thus simplifying the adder trees in Figure 4.

The results of this experiment are presented in Table 1.
Note that there are no multiplication units and all addition
units are implemented as LUTs. It is immediately obvious
that our approach outperforms the standard implementation
in every case. The factor by which our implementation is
better in terms of hardware cost measured in LUTs required
for implementation ranges from 2.3 to 3.4 for the best slice
width shown in the table. The amount of adders required to
implement our approach depends on the matrix dimension
and the precision we want to achieve. Counting multipliers
as multiple adders, we can expect a theoretical factor of
1
2 log2M for the benefit in terms of the number of adders
of our approach compared to a naive implementation for an
M × N matrix [15]. This theoretical factor is also approxi-
mately reflected in our results, where we count LUTs instead
of adders. Further we learn that the precise slice width used
in the decomposition of the original matrix has only minor
impact. The number of consecutive CC-products P required
to achieve the desired precision decreases with the number
of slices S. This compensates for the increased hardware cost
stemming from a larger number of slices.

The theoretical improvement factor 1
2 log2M grows with

matrix size. For slice width W = 8, this is confirmed by the
LUTs count in Table 1. The optimum theoretical slice width,
however, is not a power of two, in general, but may be of
course, in particular cases. This can explain why one result
in Table 1 sticks out with particularly excellent performance,
i.e.M = N = 64 andW = 4. Here, the optimum slice width
seems to be close toW = 4, while it does not match the grid
W ∈ {2, 4, 8} for larger matrices.

Our approach outperforms a naive implementation of a
M -by-N -matrix-vector product by a factor close to 1

2 log2M
mainly depending on M , the number of rows of the matrix.

Note that this factor is not dependent on the number of
columns of the matrix due to the slicing applied to it. By slic-
ing the matrix we achieve that the number of rows dominates
the number of columns, e.g. in Table 1 by a factor of 16, 32 or
64, resulting in the observed relation between implementation
cost and matrix rows. Had we sliced the weight matrix hor-
izontally instead of vertically, the factor would be 1

2 log2 N
depending on the number of columns instead of rows.

2) MATRIX ENTRY STATISTICS
In the previous experiment we considered matrices with vary-
ing dimensions but all of the corresponding matrices have
uniformly distributed entries. The overall goal of our research
is to achieve a fair and well-founded comparison between our
CC-approach and other competing implementation methods.
To be able to achieve such a comparison with our results we
need to point out that in the real world not all matrices feature
a uniform entry distribution.

There are well known optimizations for special kinds of
multiplications. Consider the product shown in 14 where x is
supposed to be a fixed value.

z = xv (14)

To implement 14 in hardware, generally a multiplication unit
consisting of several adders is needed. The same is not true
for special values of x.
• x = 0: There is nomultiplication needed, the result of 14
is z = 0.

• x = 1: There is no multiplication needed, the result of
Equation 14 is z = v.

• x = 2y, y ∈ Z: As numbers in hardware are represented
in the binary system, there is no multiplication needed.
The result can be computed by shifting v by y digits.

• x =
∑j

y=i 2
y, i, j ∈ Z: This is the representation of a

binary number consisting of 0-bits and one continuous
sequence of 1-bits. Using a general multiplication j − i
values have to be accumulated to calculate Equation 14.
The CSD representation provides the optimization x =
2j+1 − 2i. For sequences of more than two 1-bits the
amount of additions needed can be reduced to just one.
This comes with no added hardware cost, as subtractions
in hardware can be realized by addition units with no
extra expense. Such a multiplication unit is called a
Booth-Multiplier.

Concluding the list of optimizations, the actual matrix entries
in a CMM have a large influence on the implementation cost
of the entire CMM. This observation is the motivation for
the following experiment. We explore the impact of varying
0-1-bit ratios on the improvement that the CC-approach pro-
vides over the standard implementation of CMMs.

The uniform distribution that was used in the previous
experiment is now represented by a 50% 0-bit matrix. Such a
uniform distribution is the worst case for multiplication, as it
features the highest number of additions required for imple-
mentation while also providing the least amount of Booth-
Multipliers. Small 0-bit ratios featuremore Booth-Multipliers

3890 VOLUME 11, 2023

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

TABLE 2. This data compares the hardware complexity of a naive
implementation of a matrix-vector product compared to our computation
coding approach for matrices with varying percentage of 0-bits. Each
matrix has the dimension 64× 64 and is encoded in 8-bit to compute the
metric. The factor I = STD LUTs

CC LUTs is the improvement of our computation
coding approach over the naive implementation. Each matrix is sliced
with a slice width of W = 4 resulting in S = 16 slices each. The number of
factors is displayed in column P .

FIGURE 5. This plot visualizes the results presented in Table 2.

in the standard implementation while higher 0-bit ratios
require less additions overall. All matrices have a fixed
dimension of 64 × 64 and are sliced with a slice-width of
W = 4. Again, the accuracy that is used to determine the
termination criterion of the decomposition algorithm is the
quantization error of 8 bit fixed-point arithmetic (−47 dB).
The matrices are generated starting with the zero-matrix by
distributing a certain number of 1-bits uniformly over all
binary representations of entries. Table 2 presents the compar-
ison of hardware cost of the CC-approach versus the standard
implementation for matrices with various 0-bit ratios.

As expected the implementation of a nonuniform matrix is
not as expensive as one for a uniform matrix which is true
for both the naive approach being marked as STD in Table 2
as well as our architecture. These results are graphically
presented in Figure 5. We can also see that in general our
approach is better by a factor of 3 to 4.5 compared to the
naive implementationwith some anomalies on the edge cases.
In the case of a matrix only consisting of 1-bits we see that
the naive implementation is actually better. This is due to the
matrix decomposition only being approximate and the naive
implementation making use of the static pattern of the matrix.

For matrices consisting only of 0-bits or only of 1-bits the
standard approach also does not require multiplication units.

The improvement provided by the CC-approach over the
standard implementation does not drastically decrease with
deviations from a uniform entry distribution. It is even larger
for moderately small percentages of 0-bits. Only for extreme
bit ratios, e.g. ≥ 80% or < 5% 0-bits we see a notable
reduction in the improvement factor compared to the uniform
case. This demonstrates that the CC-approach leads to a great
improvement over the standard implementation for a wide
range of entry statistics. Uniformly distributed entries are not
required for a large improvement by our method.

Performance of the CC-approach is not hindered by minor
deviations from the uniform distribution. A sufficiently bal-
anced bit distribution leads to a clear improvement of about
three times over the standard implementation. For a not too
extreme bias towards 1-bits, the improvement can even be
larger.

3) PIPELINING
There are various approaches to implement a pipeline into
the architecture seen above. The traditional approach is to
pipeline the architecture top-down. This means to insert
pipeline-registers between each CC-matrix-vector product,
further between each matrix-vector product, eventually
between the various computational steps in each layer,
and between the layers themselves. An abstract illustration
of such a hierarchical pipelining approach is presented in
Figure 6. Hierarchical pipelining without further synchro-
nization is possible as each row of multipliers has the same
number of elements and thus every path through said multi-
pliers has the same length.

As alternative to the hierarchical approach it is also pos-
sible to implement a bottom-up approach. For bottom-up
pipelining we consider the architecture as an entirely rolled
out net with adders as base-building blocks and partition it
into subnets with equal critical path lengths. It is possible
to use adders as the atomic units of this process because our
proposed designs for CMMs is made up of adders only and
does not rely on multiplication units. As all paths through the
architecture have the same length and thus every path being
the critical path, synchronization between the different paths
is not necessary.

It is possible to create pipeline steps not only between
CC-matrix-vector multiplications but also inside the compu-
tation units implementing said products themselves without
the need for additional synchronization. As for the imple-
mentation of each individual CC-product, the critical path
length remains constant for each multiplication. This is due
to each matrix row requiring the same number of multiplica-
tions with elements of the input vector and each individual
multiplication being realized as a shift only. With these static
properties there is little variance in path length over all paths
in the implementation of a CC-matrix-vector product.

The only difference between the hierarchical and the
net-partitioning approach to pipelining is the amount of

VOLUME 11, 2023 3891

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

FIGURE 6. This figure shows an abstract approach to pipelining which is being implemented in our architecture. Each register is depicted in blue.
A pipeline step spans a CC-matrix-vector product, a bias addition or a nonlinear activation function (e.g. here RELU). The CMVM units represent a
CC-matrix-vector product each making use of our optimized approach.

registers required. Depending on the placement of a pipeline
step the number of signals that need to be buffered varies.
A set of registers placed as a pre- or postfix to a CMVM
unit requires only the corresponding input or output vectors
to be stored. When we cut a CMVM unit itself in partitions,
the pipeline registers in-between the stages have to store the
intermediate vectors of all concerned slice approximation
datapaths.

Our approach to pipelining sees the multiplication as an
unfolded net and simply inserts pipeline steps such that the
critical path of each step has the same length. In the case
of a fixed matrix this benefits highly from the architecture
only being made up of adders, as shifts can be hard-wired.
Therefore, an optimal pipeline distribution becomes possible
and can even be computed beforehand. To explore the effects
of pipelining in our architecture we compare randomly gen-
erated matrices for uniformly distributed entries with various
counts of pipeline steps each.

Next to the resulting hardware complexity for each product
the most important results are the corresponding frequencies
that the implementations can be run at. Said maximal fre-
quency is determined by the critical path length, the longest
run of gates between two registers. To determine the optimal
frequency we make use of the bisection method. For each
implementation run of our architecture we set a fixed timing
goal. After the implementation we determine the difference in
timing between the goal and the required time for the critical
path. According to the gathered information we adjust the
timing goal until the absolute difference passes a termination
threshold giving us the maximal frequency of the correspond-
ing design.

The test procedure was repeated for a set of amounts of
pipeline steps for a 64 × 64 matrix with two respective
approximate decompositions. For all our results the width of
the vector entries is set to 8 bit. Each decomposition requires
a different amount of concatenated CC-products per row of
computation to reach 8-bit integer calculation precision.

The results of this experiment are presented in Table 3
where several observations can be made. First of all, the hard-
ware cost increases with the increasing number of pipeline
steps where the LUT counts required for implementation
are about constant but the number or required registers
increases.

TABLE 3. This data compares the number of LUTs, the number of
flip-flops (FFs), and the maximal frequencies for various designs for the
decompositions of a 64× 64 matrix with uniformly distributed entries.
Each frequency is found using the bisection method starting with
100 MHz. The decomposed matrix approximates the original up to an
error similar to fixed-point 8-bit arithmetic of a naive approach.

The amount of additional registers per added pipeline
step depends on the positioning of the step. While registers
in-between layers or generally outside of the matrix-vector
product result in a small increase of the register count, having
pipeline steps inside the multiplication unit is more expen-
sive. This is due to the parallel rows of computation which
require to put registers in every row. Still both types of
pipeline steps lead to a linear increase in required registers.

With an increase in pipeline steps the maximal frequen-
cies of the according designs increase, reaching a peak at
about 400 MHz. The maximal frequency is the same for
implementations requiringmore sequential CC-matrix-vector
products as for implementations with fewer ones, as the
minimal pipeline steps only depend on the greatest atomic
units in the chain which are adders in both cases. The only
difference in the resulting implementations for the two cases
are the number of pipeline steps.

Note that with an increase in pipeline steps the initiation
period of the overall pipeline also increases by the same
amount of clock cycles. Table 3 show increases from one
to eight and 14 pipeline steps respectively. The initiation
period of the corresponding implementation also increases to
eight and 14 cycles. These clock cycles are shorter then the
clock cycles of the design without pipeline steps, reducing
the effects of said impact. After the initiation of the pipeline
the architecture is back to the single-cycle execution of the
corresponding F-Blocks.

As is described in Section IV-A, our designs are generated
implementations using our own python VHDL generator
and do not rely on existing high-level synthesis (HLS) tools.
Thus existing loop initiation algorithms and procedures are
not applicable to our architecture. A high number of pipeline

3892 VOLUME 11, 2023

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

steps does not harm the efficiency as there are no hazards
occurring during computation. Overall these improvements
gained by introducing pipelining to our designs lead to a
speedup of 3.7 and 4.2 respectively. With initiation peri-
ods being directly related to the number of pipeline steps,
pipelining the architecture only leads to an improvement
when more then a single calculation is performed. The more
vectors are passed through the hardware, the less the initiation
cycles impact the total number of cycles required for the
overall computation. Reconfiguring the FPGA to accommo-
date instances of a partitioned implementation can cut this
pipelining improvement. Therefore, it is best to implement
the fully rolled-out net as a whole or buffer input data.

As is shown in Section IV-B1, the required amount of
sequential factors to achieve a certain accuracy is not only
dependent on the slice width but also on the matrix dimen-
sions. The results in Table 1 show that for a fixed slice
width said number only varies slightly while for varying slice
widths it changes drastically. Therefore, we can conclude that
the results shown in Table 3 are similar for matrices with
larger dimensions. Even if more or less sequential factors are
required to achieve the desired accuracy, only the number of
initiation steps for the matrix changes, but the maximal clock
frequency does only vary marginally. This is also reflected in
the similar maximal frequencies of the two explored designs
in Table 3.

4) GENERAL COMPARISON WITH OTHER CSD-ALGORITHMS
As was already alluded to earlier, there are algorithms aiming
to lower the computational effort and thereby hardware cost
of the corresponding implementations for CMMs, in partic-
ular [12], [13]. The general approach of said algorithms is
to convert matrix entries to CSD and thereby minimize the
number of non-zero bits appearing in the matrices [12]. The
resulting additions of a SOP in a line of the CMVM unit
is then represented as a DAG of adders which then can be
minimized.

Said minimization problem is NP-hard [12]. Especially
for matrices with large dimensions, as are, e.g., used in our
benchmarks earlier, it is not feasible to find the optimal
solution to this minimization problem. Thus, greedy searches
are used to approach the optimum [12] or inaccuracy is intro-
duced to the calculation [13]. This results in an improvement
of computational complexity of the CMM which in turn is
reflected in more hardware resource-efficient implementa-
tions. The results presented by Kumm et al. [12] feature an
improvement of up to 34% while the results presented by
Aksoy and Flores [13] similarly reach an improvement of up
to 30%.

Our proposed method reaches improvement factors of
three to five times, or in other words saves 67% to 80% hard-
ware cost while not hindering throughput. In summary, our
linear computation coding approach produces better results
than current state-of-the-art (SoA) algorithms.

V. EVALUATION USING AN EXAMPLE DLRM
For the purpose of analyzing our architecture, we chose to use
a recommender system as example of anANN. These systems
are utilized by various companies, e.g., for streaming services
to give their customers advice about movies they may like
based on their consumer behavior. During the last years this
systems have become increasingly reliable in their forecasts
not least because of the more frequent use of algorithmic
models aided by multilayer perceptron (MLP) concepts. One
of these algorithms was implemented recently in 2019 by the
Deep Learning Recommendation Model for Personalization
and Recommendation Systems (DLRM) [54].

A. PRINCIPLES OF RECOMMENDATION NETWORKS
In order to better understand the value of this model’s sin-
gle components, we first give a short introduction on the
principles of recommendation networks. Recommendations
today are given based on two underlying principles namely
content-based filtering and collaborative filtering. While the
former approach bases its prediction on the users’ own pref-
erences, collaborative filtering tries to imply a solution based
on the preferences of similar users. One of the first systems
making advantage of both of these concepts was the fac-
torization machine. Its prediction formula consists of two
parts, the regressive and the matrix factorization one. The
regression handles both sparse and dense data of the feature
vector and can consequently be seen as the content-based
filtering part of the system. The matrix factorization on the
other hand accounts for the interactions between feature
blocks, which represents the collaborative filtering approach.
Even though both of these models are already integrated in
this straight forward implementation, results can be further
refined by making use of MLP layers. Due to its non-linearity
it is possible for MLPs to learn even higher degrees of
interactions.

DLRM now brings those ideas together and introduces a
new concept by separating the features into dense continuous
and sparse categorical features, which are represented by
embedding vectors of the same size. The dense features are
then fed into a bottom MLP which transforms them into an
intermediate vector of the same size as the embedding vectors
of the categorical features before. Similar to the factorization
machine in the second stage, now the dot product between
the embedding vectors and the output of the bottom MLP
is computed, which represents the computation of second-
order interactions of different features. The products are then
concatenated to the result from the bottom MLP and fed into
another top MLP and finally to a sigmoid function in order to
obtain a probability.

In order to test our approach, we exchanged the weights in
theMLP layers of an already trained DLRMnetwork with the
ones obtained by the utilization of our matrix decomposition
algorithm.

VOLUME 11, 2023 3893

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

TABLE 4. Comparison of the hardware costs of implementing the
matrix-vector products of each layer of the DLRM. In this table, Layer
denotes the name of the corresponding layer, with an M × N
weight-matrix. S is the number of slices with width W = 4 and P the
number of consecutive CC-matrix-products. I = CC-LUTs

STD-LUTs is the factor by
which our approach improves the standard (naive) implementation.

B. COMPARISON
As a basis for comparison, we chose the same hardware
platform as for all other experiments presented above. This
means we synthesized our design for the XCVU37-ES1 chip
by Xilinx on the ADM-PCIE-9H7 board by Alpha Delta.
First we look at a layer-by-layer comparison of our approach
and a naive implementation of a trained ANN as described
previously. The results are displayed in Table 4. Again it
is immediately obvious that our approach performs better
than the naive implementation with the improvement factor
varying between 2x and 6x. It is notable that in the Bottom-2
layer said factor is very high compared to other results. This
is due to properties of the matrix used in this layer. With the
underlying matrix being a 64 × 256 matrix it is quite big
compared to, e.g., the next layer only featuring a 16×64 layer.
On top of that the matrix is not at all sparse leading to an
overall high improvement over the naive implementation. The
Bottom-1 layer features an even larger 256× 512 matrix, but
it is not as dense as the matrix of the Bottom-2 layer. Thus,
the improvement of 1.9 x of using our approach compared
to a naive implementation is not as high. Overall both the
naive implementation and our approach require an enormous
amount of LUTs to be implemented on a FPGA, but summing
up all layers our approach saves 60 % of the hardware cost.
As mentioned before, pipelining the resulting architecture is
very efficient for our approach as the registers can be placed
in a way that all paths through the pipeline step have the same
length. This cannot be said for the naive implementation as a
comparable assurance cannot be made.

VI. COMPARISON WITH AN EXAMPLE MLP
Previous examples explored the layer by layer performance of
the CC-approach in comparison to a standard implementation
of CMMs on the premise of single fixed matrices. This is also
true for the previously presented DLRMwhich is explored on
a layer-by-layer basis as the high amount of LUTs required
to implement it as a whole is to high for FPGAs. With this
final example we present a MLP which can be placed and
implemented on a FPGA. Similar to previous research [55],
we also choose to design a MLP to classify the Modified
National Institute of Standards and Technology (MNIST)
dataset.

An abstract representation of our net design can be
seen in Figure 7. Our net consists of four layers with the

FIGURE 7. This figure shows an abstract representation of a MLP design
used to classify the MNIST dataset. It reshapes the input images and
passes them through four fully connected layers the dimensions of which
can be found in the image.

TABLE 5. Test accuracy of the net presented in Figure 7 after 50 epochs of
training with different methods of computation. Compared are the
standard floating point method included with pytorch, an 8 bit fixed point
implementation and the corresponding CC-decomposition. The target
accuracy of the decomposition is set to 48dB, such that the approximation
is equally or more accurate than the 8 bit fixed point calculation.

correspondingweightmatrices being of size 784×64, 64×64,
64 × 64, and, 64 × 10, respectively, each followed by tanh-
activation functions. To accommodate the 28× 28 greyscale
input images of handwritten digits we reshape the input to
a vector of dimension 784. The resulting classification is
achieved by sorting the images into ten categories, one for
each digit, hence the initial and final dimensions of the weight
matrices of the layers of the net. With this setup, a learning
rate of 0.001, and a batch size of 32, an average reliability of
classification between 90 % and 97 % can be achieved after
30 generations.

We trained a net with these parameters and achieved
an accuracy saturation at 94 % in the test-dataset after
30 epochs. Fixed point calculation methods, as well as the
CC-decomposition approximating it, introduce an additional
quantization error. The influence of the this quantization error
is small, as shown in Table 5. Table 5 shows a comparison
between the default floating point computation method pro-
vided by the PyTorch framework, as well as a fixed point
implementation and a corresponding approximation using the
Computation Coding algorithm presented in Section III. The
results show only a minor decrease in reliability of classifica-
tion by the net when changing the computation method. Note
that not only the quantization error, but also the additional
inaccuracy introduced by using our decomposition compared
to the standard floating point approach is lower than for the
fixed point implementation.

Similar to previous examples we use the weight matrices
of the layers as the basis for CMMs which then are imple-
mented using our approach and a standard approach. As target
accuracy the bitwidth of 8 bit is chosen and again the same
board from Alpha Delta based on the ADM-PCIE-9H7 chip
by Xilinx is used as platform for implementation. For the
decomposition of the matrices we tried various different slice

3894 VOLUME 11, 2023

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

TABLE 6. This table shows the hardware cost in LUTs for our CC-approach
compared to the standard implementation. The decomposition arguments
are the slice width W and the corresponding slice count S as well as the
amount of factors P used. The last row shows the total cost including
implementations of tanh-activation functions, while the other rows
present layer-by-layer results of the individual weight matrix CMMs.
I = STD LUTs

CC LUTs describes the improvement of our approach over the
standard implementation.

widths of W = 2, W = 4 and W = 8, the number of
factors for each decomposition is chosen to match the desired
accuracy of 47 dB.

The results of this experiment with the optimal configu-
ration of slice widths for the decomposition on a layer-by-
layer basis can be seen in Table 6. According to our findings
the optimal slice widths for the decomposition of the weight
matrices of the first three layers is W = 4 while the last
weight matrix is sliced in five slices of width W = 2. Note
that the first, as well as the last layer have extreme dimensions
in the sense that their corresponding horizontal and vertical
dimensions differ a lot. Therefore, to achieve better results
these matrices are not sliced horizontally, as opposed to the
weight matrices of the remaining two layers, yielding more
tall and narrow matrix slices. In the layer-by-layer analysis
of the implementation costs of the second and third layer we
improve by a factor of 2.7 x. Previous results, i.e. Table 2,
suggest that the improvement is not as high as suggested by
Table 1 due to non-uniformly distributed matrix entries. The
first layer shows that our approach also decreases hardware
cost for matrices with one extreme dimension while the last
layer shows that, when slicing is done correctly, matrices with
one small dimension can also be implemented in efficient
CMMs.

For the implementation of the entire net, the weight matri-
ces are concatenated with adders for the bias as well as
the implementation of the non-linear activation function,
in our case a tanh-function. With the chosen configuration
we achieve an overall improvement of 2.4 x which can be
seen in the last row of Table 6. The numbers are the results
of the implementation of the entire net including the appli-
cation of tanh activation functions in between the multiplica-
tions with the corresponding weight matrices. With the final
configuration and thus the hardware designs fixed we now
can compare power and timing results between the standard
implementation, our CC-approach as well as a CPU and GPU
execution of the inference of the neural net. We found the
target frequency of the overall net to be at 372 MHz with
39 pipeline stages, coinciding with the results presented in
Table 3. Vertical slicing of the weight matrices in the first
and last layer leads to varying path lengths. There are paths

TABLE 7. Dynamic power analysis of the CC-approach and the standard
implementation. The frequency is fixed at 50 MHz. The analysis is run
with a toggle rate of 12.5% and a static probability of 0.5. Column CC
displays the dynamic power draw of the CC-approach, column STD the
same of the standard implementation. I denotes the improvement.

that would require more than one addition per row and thus
there is an extra pipeline step introduced. Paths where this
problem does not occur require an additional buffer stage in
the corresponding pipeline stages. Additional hardware cost
is introduced by this necessary buffering. Still this decom-
position requires less LUTs then the implementation of the
corresponding vertically sliced decomposition due to the
extreme dimension-ratio of the underlying matrices.

Eventually we now also introduce the energy aspect. For a
power comparison between the standard implementation and
our architecture we setup a layer-wise comparison between
the two methods. With a fixed throughput we enable a fair
comparison between the two combinatorial designs, i.e. both
designs are not pipelined. The last point of comparison which
is missing is the comparison of power requirements between
the two implementations. We ran a power analysis based
on subnet switching activity provided by a post-synthesis
simulation the results of which can be seen in Table 7. The
frequency is fixed to 50 MHz to generate results for equal
through-puts. Further parameters are kept default with a tog-
gle rate of 12.5% and a static probability of 0.5. Following
this setup we compared the implementations of layers two
and three of our MNIST-MLP presented in Figure 7. Layer
two of Figure 7 shows an improvement of 1.82 x, while the
implementations of layer three feature an improvement of
1.83 x. These findings show that our design not only provides
a reduction on the required number of LUTs for the imple-
mentation of these CMMs and thus the entire net, but are
more energy efficient than the standard implementation of the
same. One key aspect of our future research is further analysis
of these results in combination with ASIC implementation
comparisons of the respective designs.

To achieve a comparison to the execution of inference of
this net to the performance of a CPU we ran inference with
2000 classifications. Our test system is equipped with two
AMD EPYC ROME 7352 CPUs featuring 48 cores clocked
at 3.2 GHz and a NVIDIA A100 (40GB) GPU. The measure-
ment was set up by copying a random image from theMNIST
dataset as an input to the corresponding memory, after that,
inference of the net described above was repeatedly executed
and the execution times were measured. To achieve reliable
results the process was repeated ten times and the measured
times were averaged. Also the number of times any individual
imagewas used as an input without anymore storage accesses
was varied between 10 and 100000 times to guarantee a
saturated execution time per inference. In our measurement

VOLUME 11, 2023 3895

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

our CPU executed an average of 1554 inferences per sec-
ond while our GPU achieved 5688 inferences per second.
In comparison our hardware-design implemented on the
ADM-PCIE-9H7 achieves a target frequency of 378 MHz
while not saturating the available memory bandwidth of the
HBMmemory modules. A design with register only between
the layers can still be run with 50 MHz while keeping the
number of required registers to a minimum. Compared to
the execution of the net on the mentioned GPU and CPU
the CC-solution still provides a notable speedup of 32175 x
over the CPU and 8790 x over the GPU implementation. Note
that this speedup is possible with an overall power budget of
under 10 W while the NVIDIA A100 has a TDP of 300 W
and the AMD EPYC ROME 7352 CPUs come with a TDP
of 155 W each. The power draw of these devices thus is not
comparable to the small power budget of our FPGA solution.
With these findings we can infer that our approach to the
execution of CMMs on FPGAs does not only outperform
standard implementations of this computational operation but
also provides an enormous improvement in performance over
SoA solutions such as CPU and GPU implementations.

VII. DISCUSSION AND CONCLUSION
In this paper, we presented a new method for lowering the
computational effort of CMMs, e.g., for ANN inference,
decomposing the constant (weight) matrices by slicing and
factorization. The resulting sub-matrices are sparse, with a
well-behaved structure and contain only numbers related to a
power of two. Utilizing this a-priori knowledge, an efficient
computer architecture is designed, which exploits the struc-
ture of the sub-matrices perfectly. Finally, hardware resources
can be decreased by a factor of 2 to 6.

While in this work, the main focus is set on MLP ANNs,
an increasing number of today’s applications use convolu-
tional neural nets (CNNs). We already found a method to
apply the linear computation coding procedure to this kind of
ANNs. Investigations are ongoing. Future work here includes
a modified decomposition algorithm as well as hardware
architecture to support CNNs.

Additionally, in this paper we focused on implementing an
architecture for CMMs that are equally or more accurate than
fixed-point implementations. Especially inference in ANNs
do not always require this high level of accuracy. Thus, it is
possible to lower computational accuracy of certain appli-
cations while still achieving similar results. Hence another
future point of interest of ours is to explore the benefits of
tuning down computational accuracy and thereby improving
hardware efficiency even further. In this aspect we expect
our architecture to do well as there are two approaches we
can take here. First, it is possible to simply use less consecu-
tive matrix factors to approximate each matrix-slice. Second,
we can reduce the number of slices, which also reduces the
accuracy of computation for a fixed number of matrix factors.
Clearly, both approaches can be mixed in order to get a
suitable trade-off between hardware-efficiency and accuracy
of computation. In this direction of research comparisons to

other computation paradigms, such as floating point arith-
metics, are also of importance. As is already alluded to, the
variable accuracy of the decomposition by the CC-algorithm
can also be used to achieve the same accuracy that floating
point arithmetics provide. Future work will explore the hard-
ware cost of such a implementation and provide a comparison
to existing floating point implementations, e.g. to dedicated
DSPs as well as to LUT-based implementations.

Another point of focus in our future research will be exper-
imenting with varying entry-counts per row of a CC-matrix.
Instead of fixing the structure to only allow for two entries per
row, it is also possible to use more powers of two. With only
one entry there is no addition neededwhile four, eight or more
entries similar to the traditional approach require larger adder
implementations. With a higher number of entries not only
the number of adders per CC-matrix vector product increases
but also the number of matrix factors required to approximate
the original matrix decreases. This relation will be explored
further. Also different adder implementations like adder-trees
and linear adders can be compared in different aspects like
hardware cost and critical path length.

Building upon all the mentioned future research, we will
explore ways to implement our designs beyond FPGAs. For
implementations of DSP algorithms specialized accelerators
already exist and our approach to CMM improves on them.
In this aspect, we will explore ASIC implementations of
our architecture. As already mentioned in the beginning, the
general downside to ASICs when compared to FPGAs is the
lack of reconfigurability. In these regards we will explore the
performance of our design on CGRAs or even specialized
reconfigurable ASIC-like implementations where only the
interconnections, i.e. the wiring that replaces the shifters in
the CMM units for CC-matrices, are reconfigured.

REFERENCES
[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[3] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[4] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a Gaussian
Denoiser: Residual learning of deep CNN for image denoising,’’ IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[5] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:
A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[6] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645–6649.

[7] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,
‘‘Convolutional neural networks for speech recognition,’’ IEEE/ACM
Trans. Audio, Speech Language Process., vol. 22, no. 10, pp. 1533–1545,
Oct. 2014.

[8] P. Bangalore and L. B. Tjernberg, ‘‘An artificial neural network approach
for early fault detection of gearbox bearings,’’ IEEE Trans. Smart Grid,
vol. 6, no. 2, pp. 980–987, Mar. 2015.

3896 VOLUME 11, 2023

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

[9] Y. Xu, Y. Sun, X. Liu, and Y. Zheng, ‘‘A digital-twin-assisted fault diagno-
sis using deep transfer learning,’’ IEEE Access, vol. 7, pp. 19990–19999,
2019.

[10] O. Gustafsson, J. Coleman, A. Dempster, and M. Macleod, ‘‘Low-
complexity hybrid form fir filters using matrix multiple constant multipli-
cation,’’ in Conf. Rec. 38th Asilomar Conf. Signals, Syst. Comput., vol. 1,
2004, pp. 77–80.

[11] N. Boullis and A. Tisserand, ‘‘Some optimizations of hardware multi-
plication by constant matrices,’’ IEEE Trans. Comput., vol. 54, no. 10,
pp. 1271–1282, Oct. 2005.

[12] M. Kumm, M. Hardieck, and P. Zipf, ‘‘Optimization of constant matrix
multiplication with low power and high throughput,’’ IEEE Trans. Com-
put., vol. 66, no. 12, pp. 2072–2080, Dec. 2017.

[13] L. Aksoy, P. Flores, and J. Monteiro, ‘‘A novel method for the approxi-
mation of multiplierless constant matrix vector multiplication,’’ EURASIP
J. Embedded Syst., vol. 2016, no. 1, pp. 1–11, Dec. 2016.

[14] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, ‘‘FINN- R: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,’’
ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 3, pp. 1–23,
Dec. 2018, doi: 10.1145/3242897.

[15] R. R. Müller, B. Gade, and A. Bereyhi, ‘‘Linear computation coding,’’ in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Toronto,
ON, Canada, Jun. 2021, pp. 5065–5069.

[16] R. R. Müller, B. Gade, and A. Bereyhi, ‘‘Efficient matrix multiplication:
The sparse power-of-2 factorization,’’ in Proc. Inf. Theory Appl. Workshop
(ITA), San Diego, CA, USA, Feb. 2020, pp. 1–6.

[17] C. Latotzke and T. Gemmeke, ‘‘Efficiency versus accuracy: A review of
design techniques for DNN hardware accelerators,’’ IEEE Access, vol. 9,
pp. 9785–9799, 2021.

[18] H. T. Kung and C. E. Leiserson, ‘‘Systolic arrays for (VLSI),’’ Dept. Com-
put. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-
CS-79-103, 1978.

[19] N. P. Jouppi et al., ‘‘In-datacenter performance analysis of a tensor pro-
cessing unit,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit., New York,
NY, USA, 2017, pp. 1–12, doi: 10.1145/3079856.3080246.

[20] L. Jia, L. Lu, X. Wei, and Y. Liang, ‘‘Generating systolic array accelerators
with reusable blocks,’’ IEEE Micro, vol. 40, no. 4, pp. 85–92, Jul. 2020.

[21] L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-Mompean,
and A. Rosado-Munoz, ‘‘A novel systolic parallel hardware architecture
for the FPGA acceleration of feedforward neural networks,’’ IEEE Access,
vol. 7, pp. 76084–76103, 2019.

[22] S. Kala, B. R. Jose, J. Mathew, and S. Nalesh, ‘‘High-performance CNN
accelerator on FPGA using unified winograd-GEMM architecture,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 12, pp. 2816–2828,
Dec. 2019.

[23] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter,
‘‘NVIDIA tensor core programmability, performance & precision,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),
May 2018, pp. 522–531.

[24] K. Rocki, D. Van Essendelft, I. Sharapov, R. Schreiber, M. Morrison,
V. Kibardin, A. Portnoy, J. F. Dietiker, M. Syamlal, and M. James, ‘‘Fast
stencil-code computation on a wafer-scale processor,’’ in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., Nov. 2020, pp. 1–14.

[25] I. Bae, B. Harris, H. Min, and B. Egger, ‘‘Auto-tuning CNNs for coarse-
grained reconfigurable array-based accelerators,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 11, pp. 2301–2310,
Nov. 2018.

[26] E.Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides, ‘‘LUTNet:
Learning FPGA configurations for highly efficient neural network infer-
ence,’’ IEEE Trans. Comput., vol. 69, no. 12, pp. 1795–1808, Dec. 2020.

[27] H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen, ‘‘HybridDNN:
A framework for high-performance hybrid DNN accelerator design and
implementation,’’ in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC),
Jul. 2020, pp. 1–6.

[28] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-M. Hwu, and
D. Chen, ‘‘DNNBuilder: An automated tool for building high-performance
DNN hardware accelerators for FPGAs,’’ in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2018, pp. 1–8.

[29] A. Demidovskij and E. Smirnov, ‘‘Effective post-training quantization of
neural networks for inference on low power neural accelerator,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–7.

[30] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou, and
A. Joulin, ‘‘Training with quantization noise for extreme model compres-
sion,’’ 2020, arXiv:2004.07320, doi: 10.48550/ARXIV.2004.07320.

[31] G. B. Hacene, V. Gripon,M. Arzel, N. Farrugia, andY. Bengio, ‘‘Quantized
guided pruning for efficient hardware implementations of deep neural
networks,’’ in Proc. 18th IEEE Int. New Circuits Syst. Conf. (NEWCAS),
Jun. 2020, pp. 206–209.

[32] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, ‘‘Cambricon-X: An accelerator for sparse neural networks,’’
in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2016, pp. 1–12.

[33] T. Posewsky andD. Ziener, ‘‘A flexible FPGA-based inference architecture
for pruned deep neural networks,’’ in Architecture of Computing Systems.
Cham, Switzerland: Springer, 2018, pp. 311–323.

[34] A.Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu,M. Foltin, R. S.Williams,
P. Faraboschi, W.-M. W. Hwu, J. P. Strachan, K. Roy, and D. S. Milojicic,
‘‘PUMA: A programmable ultra-efficient memristor-based accelerator for
machine learning inference,’’ in Proc. 24th Int. Conf. Architectural Support
Program. Lang. Operating Syst., New York, NY, USA, 2019, pp. 715–731,
doi: 10.1145/3297858.3304049.

[35] R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, H. Suwa,
R. Yasuhara, K. Katayama, T. Mikawa, and Y. Gohou, ‘‘A 4M synapses
integrated analog ReRAM based 66.5 TOPS/W neural-network processor
with cell current controlled writing and flexible network architecture,’’ in
Proc. IEEE Symp. VLSI Technol., Jun. 2018, pp. 175–176.

[36] O. Krestinskaya and A. P. James, ‘‘Binary weighted memristive analog
deep neural network for near-sensor edge processing,’’ in Proc. IEEE 18th
Int. Conf. Nanotechnol. (IEEE-NANO), Jul. 2018, pp. 1–4.

[37] Y. Li, S. Kim, X. Sun, P. Solomon, T. Gokmen, H. Tsai, S. Koswatta,
Z. Ren, R. Mo, C. C. Yeh, W. Haensch, and E. Leobandung, ‘‘Capacitor-
based cross-point array for analog neural network with record symmetry
and linearity,’’ in Proc. IEEE Symp. VLSI Technol., Jun. 2018, pp. 25–26.

[38] L. Fick, D. Blaauw, D. Sylvester, S. Skrzyniarz, M. Parikh, and D. Fick,
‘‘Analog in-memory subthreshold deep neural network accelerator,’’ in
Proc. IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2017, pp. 1–4.

[39] E. Rosenthal, S. Greshnikov, D. Soudry, and S. Kvatinsky, ‘‘A fully analog
memristor-based neural network with online gradient training,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 1394–1397.

[40] (Jun. 2021). I. G. L.-I. für innovative Mikroelektronik. IHP Offers Access
to Memristive Technology for Edge AI Computing or Hardware Artificial
Neural Networks Applications. [Online]. Available: https://www.ihp-
microelectronics.com/de/news/news-detailansicht/ihp-off%ers-access-to-
memristive-technology-for-edge-ai-computing-or-hardware-artifici%al-
neural-networks-applications

[41] M. A. Nahmias, T. F. de Lima, A. N. Tait, H.-T. Peng, B. J. Shastri, and
P. R. Prucnal, ‘‘Photonic multiply-accumulate operations for neural net-
works,’’ IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 1, pp. 1–18,
Jan. 2020.

[42] V. Bangari, B. A. Marquez, H. Miller, A. N. Tait, M. A. Nahmias,
T. F. de Lima, H.-T. Peng, P. R. Prucnal, and B. J. Shastri, ‘‘Digital elec-
tronics and analog photonics for convolutional neural networks (DEAP-
CNNs),’’ IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 1, pp. 1–13,
Jan. 2020.

[43] A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, ‘‘Open-access silicon
photonics: Current status and emerging initiatives,’’ Proc. IEEE, vol. 106,
no. 12, pp. 2313–2330, Dec. 2018.

[44] V. Strassen, ‘‘Gaussian elimination is not optimal,’’ Numer. Math., vol. 13,
no. 4, pp. 354–356, 1969.

[45] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R. Ruiz, J. Schrittwieser, G. Swirszcz,
D. Silver, D. Hassabis, and P. Kohli, ‘‘Discovering faster matrix multipli-
cation algorithmswith reinforcement learning,’’Nature, vol. 610, no. 7930,
pp. 47–53, Oct. 2022.

[46] A. D. Booth, ‘‘A signed binary multiplication technique,’’ Quart. J. Mech.
Appl. Math., vol. 4, pp. 236–240, Jan. 1951.

[47] J. E. Volder, ‘‘The CORDIC trigonometric computing technique,’’ IRE
Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, Sep. 1959.

[48] E. Liberty and S. W. Zucker, ‘‘The mailman algorithm: A note on matrix-
vectormultiplication,’’ Inf. Process. Lett., vol. 109, pp. 179–182, Jan. 2009.

[49] N. Maheshwari and S. S. Sapatnekar, Clock Skew Optimization. Boston,
MA,USA: Springer, 1999, pp. 33–64, doi: 10.1007/978-1-4615-5637-4_3.

[50] S. G. Mallat and Z. Zhang, ‘‘Matching pursuit with time-frequency dic-
tionaries,’’ IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415,
Dec. 1993.

VOLUME 11, 2023 3897

http://dx.doi.org/10.1145/3242897
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.48550/ARXIV.2004.07320
http://dx.doi.org/10.1145/3297858.3304049
http://dx.doi.org/10.1007/978-1-4615-5637-4_3

A. Lehnert et al.: Most Resource Efficient Matrix Vector Multiplication on FPGAs

[51] R. Müller, ‘‘Linear computation coding inspired by the Lempel-Ziv
algorithm,’’ in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2022,
pp. 606–611.

[52] R. M. Gray and D. L. Neuhoff, ‘‘Quantization,’’ IEEE Trans. Inf. Theory,
vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[53] (1993). I. S. C/DA. IEEE 1076–1993. Accessed: Oct. 17, 2022. [Online].
Available: https://standards.ieee.org/ieee/1076/1611/

[54] M. Naumov et al., ‘‘Deep learning recommendation model for person-
alization and recommendation systems,’’ 2019, arxiv:1906.00091, doi:
10.48550/ARXIV.1906.00091.

[55] K. Khalil, A. Kumar, and M. Bayoumi, ‘‘Reconfigurable hardware design
approach for economic neural network,’’ IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 69, no. 12, pp. 5094–5098, Dec. 2022.

ALEXANDER LEHNERT received the mas-
ter’s degree in computer science from the
Friedrich-Alexander University Erlangen-
Nürnberg (FAU), Germany, in 2022. He is
currently a Researcher at the Brandenburg Univer-
sity of Technology Cottbus-Senftenberg (BTU),
Germany. His main research interest includes
development and optimization of implementations
of machine learning algorithms, with a focus on
reconfigurable hardware.

PHILIPP HOLZINGER received the master’s
degree in computer science from Friedrich-
Alexander University Erlangen-Nürnberg (FAU),
Germany, in 2017. He is currently a Researcher
at the Chair of computer architecture, FAU. His
research interest includes the design of heteroge-
neous system architectures, with a focus on recon-
figurable and near-memory computing.

SIMON PFENNING received the master’s degree
in information and communication technology
from Friedrich-Alexander University Erlangen-
Nürnberg (FAU), Germany, in 2019. He currently
works as a Researcher at the Chair of computer
architecture, FAU. His research interest includes
the development and optimization of hardware
platforms for machine learning.

RALF MÜLLER (Fellow, IEEE) received the
Dipl.-Ing. and Dr.-Ing. (Hons.) degrees from
Friedrich- Alexander-Universität (FAU) Erlangen-
Nürnberg, in 1996 and 1999, respectively.
From 2000 to 2004, he has directed a Research
Group at the Telecommunications Research Cen-
ter, Vienna, Austria, and taught as an Adjunct Pro-
fessor at TUWien. In 2005, he was appointment as
a Full Professor at the Department of Electronics
and Telecommunications, Norwegian University

of Science and Technology, Trondheim, Norway. In 2013, he joined the
Institute for Digital Communications at FAU in Erlangen, Germany. He was
a co-recipient of the Leonard G. Abraham Prize from the IEEE Communica-
tions Society. He was presented awards for his dissertation by the Vodafone
Foundation for Mobile Communications and the German Information Tech-
nology Society (ITG). He received the ITG Award for the paper ‘‘A Random
Matrix Model for Communication via Antenna Arrays.’’ He was also a
co-recipient of the Philipp-Reis Award. He served as an Associate Editor
for the IEEE TRANSACTIONS ON INFORMATION THEORY, from 2003 to 2006, and
an Executive Editor for the IEEETRANSACTIONSONWIRELESSCOMMUNICATIONS,
from 2014 to 2016.

MARC REICHENBACH (Member, IEEE) received
the Diploma degree in computer science from
Friedrich-Schiller University Jena, Germany,
in 2010, and the Ph.D. degree from Friedrich-
Alexander University Erlangen-Nürnberg (FAU),
Germany, in 2017. From 2017 to 2021, he worked
as a Postdoctoral Researcher at the Chair of com-
puter architecture, FAU. Since 2021, he has been
heading the Chair of computer engineering at the
Brandenburg University of Technology Cottbus-

Senftenberg (BTU), Germany, as a Substitute Professor. His research inter-
ests include novel computer architectures, memristive computing, and smart
sensor architectures for varying application fields.

3898 VOLUME 11, 2023

http://dx.doi.org/10.48550/ARXIV.1906.00091

