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ABSTRACT Various unsupervised anomaly detection methods using deep learning have recently been
proposed, and the accuracy of the anomaly detection technique for local anomalies has been improved.
However, no anomaly detection dataset includes co-occurrence-related anomalies, which are combination-
related. Thus, the accuracy of anomaly detection for co-occurrence-related anomalies has not progressed.
Therefore, we propose SA-PatchCore, which introduces self-attention to the state-of-the-art local anomaly
detection model, PatchCore. It detects anomalies in co-occurrence relationships and anomalies in local
areas with the benefit of the self-attention module, which can consider contexts between separated words
introduced first in the natural language processing field. As no anomaly detection dataset includes anomalies
in co-occurrence relation, we prepared a new dataset called the Co-occurrence Anomaly Detection Screw
Dataset (CAD-SD). Furthermore, we performed experiments on anomaly detection using the new dataset.
SA-PatchCore achieves high anomaly detection performance compared with PatchCore in the CAD-SD.
Moreover, our proposed model shows almost the same anomaly detection performance as PatchCore in an
MVTec Anomaly Detection dataset, which is composed of anomalies in a local area. As a contribution to
the anomaly detection task, we have released the CAD-SD to the public. The code and dataset are publicly
available at https://github.com/IshidaKengo/SA-PatchCore

INDEX TERMS Anomaly detection, deep learning, self-attention.

I. INTRODUCTION
An anomaly detection task that identifies a sample as nor-
mal or anomalous is essential in various fields, such as
industry, medical care, and security. In the industrial field,
visual inspection has been conducted until now for the qual-
ity assurance of products. However, human visual inspec-
tion has problems, such as a shortage of inspectors’ work-
force and individual variability. Therefore, automation of
appearance inspection using image recognition is expected
to alleviate these problems. In recent years, deep learn-
ing has achieved outstanding results in image recognition,
and various anomaly detection models using deep learning
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have been actively studied. The MVTec Anomaly Detection
(MVTecAD) dataset [1] is used as a benchmark of deep
learning-based anomaly detection techniques. The dataset is
created by assuming visual inspection of products in real
environments. MVTecAD [1] includes images of 15 cat-
egories of products of normal and abnormal images. The
types of anomalies in the dataset are local anomalies, such
as scratches, stains, and cracks, where part of the image
is anomalous. Among various anomaly detection methods,
the state-of-the-art PatchCore [2] achieves area under the
receiver operator curve (AUROC) score of 99.6%. Many
of the highly accurate methods for MVTecAD [1] use
convolutional neural networks (CNNs) pre-trained using
ImageNet [3] to extract features of images and distinguish
normal and anomalies based on the distribution of these
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FIGURE 1. Examples of co-occurrence anomalies.

features in feature space. However, the existing detection
models for MVTecAD are unable to detect anomalies in the
relationships between distant pixels, which are anomalies
in co-occurrence relationships because they extract image
features from convolutional layers. The co-occurrence rela-
tionship anomaly is excluded from MVTecAD [1] and it is
determined based on the features of the relationship between
distant pixels (Fig. 1). If a product with a hex nut attached
to one side of the screw rod is assumed to be normal, then it
will become abnormal if a hex nut is attached to both ends of
the screw rod or if there is no hex nut attached to either side
of the screw rod. For such co-occurrence relation anomalies,
the high-precision anomaly detection model proposed for
MVTecAD [1], such as PatchCore [2], cannot sufficiently
demonstrate the anomaly detection performance.

Thus, we focus on using self-attention in image recogni-
tion and enabling anomaly detection of the co-occurrence
relationship. The self-attention was proposed as an operation
method that can consider the relationship between words
in the translating task of natural language processing [4].
Recently, there have been an increasing number of applica-
tions in the image recognition field, such as the Vision trans-
former [5]. We can consider the relationship between distant
pixels on the image as the self-attention uses the entire image
as an input and calculates the features based on the relation-
ship between pixels. We constructed an anomaly detection
method that can detect anomalies in co-occurrence relation-
ships by capturing the relationship between distant features
using self-attention. In this study, we propose a SA-PatchCore
that incorporates the self-attention into PatchCore [2], which
is a state-of-the-art model for MVTecAD [1], to identify
anomalies in co-occurrence relationships (Fig. 2). The pro-
posed model is valid for both anomalies in local regions
and those in co-occurrence relationships. In SA-PatchCore,
the local features extracted using a pre-trained CNN and
the global features based on the relationship between dis-
tant pixels, obtained using self-attention to the features, are
mapped on the feature space, and normal or abnormal data
is distinguished based on the distribution of the features. The
contribution of this study is as follows:

1) We propose SA-PatchCore incorporating self-attention
into PatchCore [2] to detect anomalies in local regions
and co-occurrence relationships.

2) SA-PatchCore can calculate relationships of the fea-
tures without using the linear transformation and its

training, which is included in the conventional self-
attention model.

3) SA-PatchCore applies self-attention to compressed fea-
ture maps using the CNN so that the large computa-
tional complexity of the self-attention model does not
become a bottleneck.

4) We constructed a new dataset called the Co-occurrence
Anomaly Detection Screw Dataset (CAD-SD) for
anomaly detection, including anomalies in the local
regions and co-occurrence relationships.

5) SA-PatchCore achieves almost the same abnormality
detection accuracy as PatchCore [2] for MVTecAD [1]
consisting of only the abnormality in the local area
while achieving a high abnormality detection perfor-
mance even in the CAD-SD.

II. RELATED WORKS
A. ANOMALY DETECION USING DEEP LEARNING
In recent years, anomaly detection methods using deep learn-
ing have been significantly divided into two methods. The
first is a reconstruction-based method that uses a generative
model to detect abnormalities based on reconstruction errors
when input images are rebuilt [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16]. The second is a representation-based
method for detecting anomalies based on the distribution of
encoded features obtained when images are put into a neural
network [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35].

1) RECONSTRUCTION-BASED METHOD
The reconstruction-based method is based on generative
models, such as autoencoder [17] and generative adver-
sarial network (gan) [18]. these techniques are based on
the hypothesis that the generation model learned so that
only normal images can be reconstructed are unable to
properly reconstruct abnormal areas of abnormal images.
in the simplest case based on the autoencoder, Zhou et al.
[6] performed anomaly detection by comparing input and
output of Autoencoder. Bergman et al. [7] proposed an
ae-ssim that replaces the error with ssim. draem [8], smai
[9], and nsa [10] created pseudo-anomaly images and used
them for self-supervised learning. in the gan-based meth-
ods, schlegl et al. [11] detected anomalies by comparing
evaluation and generated images, and Song et al. [16] pro-
posed anoseg using self-supervised learning. in recent years,
most of the high-performance anomaly detection methods are
representation-based rather than reconstruction-based meth-
ods. this is because the improved generative model suc-
cessfully reconstructs abnormal images, and the methods
using self-supervised learning, which uses pseudo-images,
are biased against pseudo-anomalies.

2) REPRESENTATION-BASED METHOD
The representation-based method detects anomalies based on
the distribution of encoded features obtained from putting
images into a network. It includes the methods [19], [20],
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FIGURE 2. Overview of the proposed SA-PatchCore.

[21] for training a neural network to make statistical rea-
soning based on one-class classifications, methods [22], [23]
for using the latent variable space of an autoencoder, and
methods [25], [26], [27] using the discriminator of GAN to
classify anomalies. However, in recent years, several methods
have employed the

CNN pre-trained on large-scale external datasets, such as
ImageNet, to extract image features. Different [30], CS-Flow
[31], and FastFlow [32] are the representation-based methods
that use the normalizing flow. SPADE [33] uses feature maps
at various levels of the network for fine-grained anomaly
detection and localization based on the k-NN method. The
model of Rippel et al. [34] uses encoded features as a
multivariate gaussian distribution and calculates anomaly
scores using the Mahalanobis distance. PaDiM [35] applies
this approach at the patch-level to multi-scale feature maps.
Several structures of the SPADE and PaDiM are related to
PatchCore [2], which is the current state-of-the-art anomaly
detection model in MVTecAD benchmark [1].

PatchCore [2] uses the Wide-ResNet50 [36], pre-trained
on the ImageNet, as a feature extractor and average pooling
to aggregate feature maps extracted from the middle layer
of Wide-ResNet50 [36] to calculate the features per patch.
The features of the calculated normal data are stored in the
memory bank during training. Furthermore, the features of
the calculated unknown data and the feature quantity in the
memory bank with a small distance on the feature space
are obtained using the k-NN method during inference. The
distance is used as the patch-level anomaly score and the
maximumof this patch-level anomaly score is the image-level
anomaly score. PatchCore [2] reduces the loss of normal and
abnormal information by considering the neighbor pixels for
patch-level features. Greedy Coreset Subsampling reduces
computational costs. PatchCore [2] can detect anomalies with
high accuracy for anomalies in local areas in datasets, such as
MVTecAD [1]. However, PatchCore [2] is weak to anomalies
in co-occurrence relationships because it is the mechanism
for extracting features using a pre-trained CNN. The pro-
posed SA-PatchCore solves this PatchCore problem [2] by
applying the self-attention to the extracted features, and it can
detect the anomalies of co-occurrence relationships.

B. SELF-ATTENTION
Self-attention is proposed for natural language processing
translating tasks [4], which can consider the context between

distant words. Specifically, the input sequence is linearly
transformed to generate three variables: query, key, and value.
The inner product of the query and key is normalized using
softmax to obtain the relevance of the key (search destina-
tion) to the query (search source). The weighted sum of this
relevance and the value is the output of the self-attention.
Therefore, the self-attention module, which can consider the
relevance of the entire input sequence, solved the problem
of relevance disappearing because of the distance of the
input sequence of recurrent neural networks used in the con-
ventional machine translation. The module achieved model
features based on the global feature relevance in the input
image regardless of the distance of the input sequence.

In recent years, using self-attention has been actively stud-
ied, even in the image recognition field. SASA [37], LRNet
[38], SANet [39], and Axial-SASA [40] proposed a model,
in which the self-attention layer replaces the convolution
layer in ResNet, as a simple approach to use self-attention in
image recognition. Each of these models proposes to replace
self-attention in a different format. The Vision Transformer
[5] proposes a model structure that divides the input images
into patches and puts these patches into several transformer
block. It shows comparable performance to or better than
the conventional CNN. DETR [41], VideoBERT [42], VIL-
BERT [43], CCNet [44], AA-CN [45], and BoTNet [46]
are models using both convolution and self-attention. The
computational complexity becomes enormous when high-
resolution images are input into self-attention because its
computational complexity increases in the order of square
based on the length of the input sequences. BoTNet [46]
applies self-attention to feature maps whose resolution is
reduced using convolution to solve this problem. Further-
more, our proposed SA-PatchCore has a similar construction
and prevents the computational complexity from increasing
because it uses self-attention for feature maps compressed
using a pre-trained CNN.

III. METHOD
Our proposed model is based on PatchCore [2], which is a
state-of-the-art anomaly detection model in MVTecAD [1]
and introduces the self-attention module. We named the pro-
posed model SA-PatchCore. SA-PatchCore retains the high
anomaly detection performance of PatchCore [2] for local
anomalies, and the introduction of the self-attention module
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enables highly accurate anomaly detection in co-occurrence
relationships. Fig. 3 depicts the model structure of SA-
PatchCore.

A. PatchCore-BASED STRUCTURE
SA-PatchCore is based on PatchCore [2] and is composed of
several parts.

1) FEATURE EXTRACTION
SA-PatchCore uses the WideResNet50 [36] pre-trained on
ImageNet to extract features of input images. The final output
of each hierarchy from the convolutional network is extracted
as a feature map and used for abnormality detection. Gen-
erally, the deeper the hierarchy, the more the global fea-
ture map captured, which is specialized for learning tasks.
SA-PatchCore uses feature maps of the middle layers of
the WideResNet50 [36] because the local features for the
unknown data are crucial in the industrial anomaly detection
task. Specifically, SA-PatchCore uses Layers 2 and 3 of
the WideResNet50 [36]. Layer 2 has a more local feature
representation than Layer 3; the algorithm of PatchCore that
aggregates features in the neighborhood is applied to Layer 2
to detect local anomalies. Let φ2(h,w, c) be the feature map
of Layer 2 with height h, width w, and c channels. The patch-
level features that aggregate local features in the neighbor-
hood are expressed as follows:

P2 = fagg(φ2) (1)

fagg is the aggregate function in the neighborhood. SA- Patch-
Core [2] uses average pooling with a kernel size of 3, stride
1, and padding 1. As Layer 3 has a more global feature repre-
sentation than Layer 2, its feature is used as input to the self-
attention module for detecting anomalies in co-occurrence
relationships. Let the feature map of Layer 3 be φ3(h,w, c)
and the self-attention module be a transformation function fSA
to features with information necessary for anomaly detection
of co-occurrence relationships. The features considering rela-
tionships obtained from Layer 3 are expressed as follows:

P3 = fSA(φ3) (2)

P2, which aggregates features in the neighborhood to detect
local anomalies, and P3, which contains the information nec-
essary for anomaly detection of co-occurrence relationships,
are concatenated and stored in a memory bank M . The reso-
lution of P3 resized to match that of P2 since it has a lower
resolution thanP2.

2) CORESET SUBSAMPLING
The size of the required memory bank becomes large and
inference time significantly increases when the size of the
feature map increases. PatchCore [2] solves this problem
by subsampling the feature quantity using greedy coreset
subsampling, and SA-PatchCore uses a similar mechanism.
Coreset subsampling finds a subset S ∈ A, such that the
solution to the problem in sample A comes closest to that of

TABLE 1. Shooting environment of Co-occurrence Anomaly Screw
dataset.

sample S [47]. The coresetMcfor the memory bankM in the
patch-level feature space is chosen so that the coverage ofMc
is approximately the same as the original memory bank M
[48], [49] because PatchCore [2] takes the nearest neighbor
computation. PatchCore [2] uses the iterative greedy approx-
imation proposed in [49] because the exact computation of
Mc is NP-hard.

3) ANOMALY DETECTION
SA-PatchCore selectsm∗ which is the nearest neighbor of the
patch-level features mtestof test data, among the patch-level
features m ∈ M of the training data stored in the memory
bank. It estimates the patch-level anomaly score s of the test
image X test from the distance between patch-level features
mtest and m∗.

m∗ = argminm∈M
∥∥mtest − m∥∥

2

s =
∥∥mtest − m∗∥∥2 (3)

The image-level anomaly scoreS for the test image X test is
obtained from the maximum patch-level anomaly score s in
the X test .

B. SELF-ATTENTION MODULE
SA-PatchCore introduces a self-attention module (Fig. 4) to
detect co-occurrence anomalies. This module is applied to the
feature maps obtained from Layer 3 of the WideResNet50
[46], and it is used as a transformation module to obtain fea-
ture maps XSA with the information required for the anomaly
detection of co-occurrence relationships. Once a feature map
of Layer 3 φ3(h,w, c) is obtained, max pooling of kernel
sizes 3, strides 1, and padding 1 are applied to emphasize the
nearby features, which are turned into vectors X ∈ Rhw×c.X
is replicated in triplicate to compute the self-attention as a
query, key, and value in the Transformer [4]. XSA is expressed
as follows:

XSA = softmax
(
XXT
√
dX

)
X (4)

where dX is the depth of X . The vector XSA, which consid-
ers the relationship between distant features, is obtained by
calculating the relationship between pixels using the product
of a query and key as weights and calculating the product of
the weights multiplied by the softmax and value. By resizing
the obtained XSA to the size of the original feature map,
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FIGURE 3. Structure of the SA-PatchCore.

FIGURE 4. Overview of the self-attention module.

a feature map P3 with the information necessary for detecting
anomalies of co-occurrence relationships is obtained. The
self-attention module does not calculate keys, queries and
values by linear transformation in the Transformer [4] but
uses max pooling because it is used to generate feature maps
based on the relationships necessary to detect anomalies in
co-occurrence relationships. Furthermore, since the computa-
tional complexity of the self-attention increases in the order
of the square based on the input sequence length, the high
computational complexity is occasionally a problem when
high-resolution images are input into the self-attention. How-
ever, SA-PatchCore has the advantage that the computational
complexity problem does not become a bottleneck because it
inputs feature maps compressed using a pre-trained CNN to
the self-attention module.

IV. EXPERIMENTS
We created the CAD-SD to verify the effectiveness of SA-
PatchCore, which includes the anomaly of the local area

and that of the co-occurrence relationship. Then, we exper-
imented with anomaly detection on the dataset.

A. CO-OCCURRENCE ANOMALY DETECTION SCREW
DATASET (CAD-SD)
MVTecAD [1] is a typical dataset for evaluating the anomaly
detection method; however, it contains only the abnormal-
ity of a local area, in which an abnormal part exists only
in some parts, such as scratches and dirt. Currently, there
is no dataset for anomalies of co-occurrence relationships,
which are anomalies of combinatorial relationships. There-
fore, we created the CAD-SD, which includes the anomaly
of the local area and that of the co-occurrence relationship
for the images of products consisting of screw rods and hex
nuts. The images in the dataset were taken at random angles
using a camera. Table 1 shows the imaging environment of
the dataset. The camera used was a DFK33UX183 manu-
factured by Argo Corporation. The aperture and shooting
distance were set at 16 and 25 cm respectively. The size of
the image in the dataset was trimmed from 5472 × 3648 to
700× 700. HPR2-75SW manufactured by CCS Corporation
was used for the lighting, and PD2-5024 (A) was used for
the power supply. Figure 5 shows examples of the images
in the dataset. The CAD-SD includes normal images of the
product with a hex nut attached to one side of the screw
rod. The types of abnormal images in the dataset are roughly
divided into the anomalies of the local region and that of the
co-occurrence relation. The anomalies of the local area are
‘‘Scratch,’’ in which a portion of the product is scratched,
and ‘‘Paint,’’ in which some paint adheres to a part of the
product. The anomalies in the co-occurrence relationship are
‘‘Over-coupling,’’ where hex nuts are coupled on both sides
of the screw rod, and ‘‘Lacking,’’ where hex nuts are not

3236 VOLUME 11, 2023



K. Ishida et al.: SA-PatchCore: Anomaly Detection in Dataset With Co-Occurrence Relationships

TABLE 2. Accuracy of anomaly detection on CAD-SD (AUROC).

TABLE 3. Accuracy for each anomaly category on Co-occurrence Anomaly Screw Dataset (AUROC). Red and blue stand for the first and second places
respectively.

FIGURE 5. Example images of Co-occurrence anomaly screw dataset.

coupled on either side of the screw rod. There are 400 normal
training images. For the evaluation, ‘‘Normal,’’ ‘‘Scratch,’’
‘‘Paint,’’ ‘‘Over-coupling,’’ and ‘‘Lacking’’ contain 210, 41,
41, 44, and 40 images, respectively. The CAD-SD is publicly
available at present.

B. EXPERIMENTAL CONDITION
We experimented with anomaly detection using the CAD-
SD. The image in the dataset was resized to 224 × 224 and
used as input to the model. The CPU is an Intel R©Core
i9-9900K CPU @ 3.60 GHz, and the memory is 32 GB. The
GPU configuration is an NVIDIA GeForce RTX 3090 with
24 GB of memory. The batch size is 1 and the sampling
rate of Greedy Coreset Subsampling is 1%. PatchSVDD [20],
PaDiM [35], PatchCore [2], and CS-Flow [31] are used as
comparison methods. The AUROC is used as the evaluation
metric for image-level anomaly detection; the AUROC was
calculated for all test images and each anomaly type.

C. RESULTS
Table 2 shows the results of image-level anomaly detection
in CAD-SD. Table 3 shows the evaluation for each type
of anomalies in CAD-SD. SA-PatchCore achieved the best
performance. SA-PatchCore is slightly less accurate than

PatchCore [2] in detecting anomalies in the local regions
of ’’Scratch’’ and ’’Paint,’’ but it is more accurate than
the other methods. The method is on average about 30%
more accurate than PatchCore [2] in detecting anomalies
of the co-occurrence relationship between ’’Over-coupling’’
and ’’Lacking,’’ which is the highest accuracy. This result
indicates that SA-PatchCore has a significant improvement
in the detection of co-occurrence anomalies while main-
taining sufficient detection performance for anomalies in
local regions. It shows the advantage that SA-PatchCore
retains the effectiveness of PatchCore [2] for anomalies in
local regions while improving the effectiveness for anoma-
lies in co-occurrence relationships by introducing the Self-
attention module. Figure 6 shows the results of localizing
the anomaly area. The heatmap is normalized based on the
patch-wise anomaly scores of all test images, and the lower
limits are set to appropriate values. The red color indicates
that the anomaly score is higher. SA-PatchCore is able to
identify both local anomalies and co-occurrence anomalies.
Table 4 shows the inference speed for a single image on CAD-
SD. SA-PatchCore achieves almost the same inference speed
as PatchCore [2], which is faster than the other methods.
It indicates that SA-PatchCore achieves high detection accu-
racy by introducing self-attention while maintaining a high
inference speed.

V. DISCUSSION
Several discussions are presented on SA-PatchCore. First,
we evaluated the anomaly detection performance on several
anomaly detection datasets including MVTecAD [1]. Next,
we examined the optimization of the modeling structure by
focusing on the hierarchy of feature extraction and pooling in
the self-attention module.

A. ANOMALY DETECTION ON OTHER DATASETS
We experimented with MVTecAD [1] to investigate the
anomaly detection performance of the SA-PatchCore, which
is a widely used anomaly detection dataset, although it
excludes co-occurrence anomalies. Table 5 shows that
the anomaly detection performance of SA-PatchCore on
MVTecAD [1] was slightly lower than that of PatchCore [2]
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FIGURE 6. Localization of anomaly areas on CAD-SD.

TABLE 4. Mean inference time per an image on CAD-SD.

TABLE 5. Accuracy of anomaly detection on MVTecAD [1] (AUROC).

TABLE 6. Accuracy of anomaly detection on BTAD [50] and AITEX [51]
(AUROC).

and CS-Flow [31] but better than PatchSVDD [20] and
PaDiM [35]. Table 6 shows the results on the BeanTech
Anomaly Detection dataset (BTAD) [50] and the AITEX
dataset [51]. SA-PatchCore scores higher detection accuracy
than PatchCore [2] for these datasets. SA-PatchCore has
the advantage of being able to detect both local anomalies
and co-occurrence anomalies well. However, these existing
datasets exclude co-occurrence anomalies and consist mainly
of local anomalies. These results show that SA-PatchCore has
sufficient anomaly detection performance even for datasets
consisting of only local anomalies. SA-PatchCore has high
anomaly detection performance even for local anomalies,
while improving the anomaly detection performance of
co-occurrence relations by introducing the Self-attention
module.

B. OPTIMIZATION OF THE MODEL STRUCTURE
1) HIERARCHY OF FEATURE EXTRACTION
The proposed SA-PatchCore places Layer 2 of the
WideResNet50 [46] into the average pooling for local feature

TABLE 7. Anomaly detection performance by hierarchy of feature
extraction.

TABLE 8. Anomaly detection performance using pooling in the
self-attention module.

extraction and Layer 3 into the self-attention module for
feature extraction of co-occurrence relationship. To eval-
uate the validity of this structure, we conducted anomaly
detection experiments on the CAD-SD even in a model
structure where Layers 2 and 3 are combined and inputted
into the average pooling and the self-attention module.
This structure directly incorporates the self-attention mod-
ule into PatchCore [2]. Table 7 shows that the structure of
SA-PatchCore is more effective than the original structure
of PatchCore [2], which uses Layers 2 and 3 cooperatively.
This confirms that SA-PatchCore is a suitablemodel structure
for detecting anomalies in local regions and co-occurrence
relationships.
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2) POOLING IN THE SELF-ATTENTION MODULE
We investigated the suitability of max pooling in the self-
attention module for SA-PatchCore in the CAD-SD when
average pooling or no pooling is used instead of max pooling.
The results in Table 8 show that the anomaly detection perfor-
mance is the best whenmax pooling is used, which is effective
for detecting anomalies in co-occurrence relationships.

VI. CONCLUSION
We proposed SA-PatchCore in this study, which extends the
current state-of-the-art PatchCore [2] to detect anomalies in
co-occurrence relationships by introducing a self-attention
module. This module is a transformation module that can
obtain feature maps by considering the relationship between
features without using the linear transformation of the con-
ventional self-attention and its training. SA-PatchCore pre-
vents the computation of self-attention from computational
complexity by inputting feature maps compressed using a
pre-trained CNN in the self-attention module. Furthermore,
since no anomaly detection dataset includes co-occurrence
anomalies, we prepared the CAD-SD that includes both local
and co-occurrence anomalies. SA-PatchCore has sufficient
anomaly detection performance on MVTecAD [1], which is
composed of only local anomalies, and it achieves state-of-
the-art anomaly detection performance in the CAD-SD.
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