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ABSTRACT Multi-scale permutation entropy (MPE) is an analytical method describing the complexity of
time series, which has been applied to the fault diagnosis of rolling bearings. To solve the problems ofMPE in
coarse-grained process and permutation entropy calculation, multi-scale weighted permutation entropy based
on sliding variance (SVMWPE) was proposed in this paper. By analyzing WGN signal and 1/f noise signal,
the parameter selections for SVMWPE were studied, and the stability and superiority were investigated
by comparing SVMWPE with MPE, MWPE, and SVMPE. The high-dimensional matrix obtained by
MPE feature extraction to pattern recognition was solved by introducing Hessian local linear embedding
(HLLE) dimension reduction method, and the feature extraction method based on SVMWPE-HLLE was
proposed. The clustering effect was studied by comparing SVMWPE-HLLE with SVMWPE-LLE through
the analysis of three simulation signals. Fault diagnosis method for rolling bearing was proposed by
combining SVMWPE-HLLEwith extreme learning machine (ELM), which was applied to two experimental
cases of rolling bearings for analysis. The experimental results showed that the proposed method can realize
intelligent diagnosis of different fault types and degrees of rolling bearing, and the fault recognition rate of
the proposed method was higher than other methods.

INDEX TERMS SVMWPE, hessian local linear embedding, extreme learning machine, rolling bearings,
fault diagnosis.

I. INTRODUCTION
As the basic industry and backbone industry of mechanical
industry, the development level of bearing industry often
represents or restricts the development level of a coun-
try’s mechanical industry and other related industries.Rolling
bearing is a widely used and strictly required accessory and
basic part in themachinery industry. It is a supporting element
of the rotating shaft or movable part of various machinery,
and also an influencing factor of equipment performance and
health status [1], [2].

The diagnosis method of rolling bearing health state is
more widely used in the practical application of vibration
method. There are two parts to judge the health state of
bearing based on vibration method: one is to extract the fault
feature information in bearing vibration signal by relying
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on signal processing technology, and the other is pattern
recognition.Among them, the time domain and frequency
domain methods are more suitable for analyzing the vibration
signal in ideal environment by analyzing the time domain dia-
gram and spectrum diagram to monitor whether the bearing
has a fault. In the actual operation of rolling bearings, non-
stationary and nonlinear vibration signals are often generated
due to the influence of load changes and speed fluctuations.
How to extract feature information from such signals is the
key to studying fault diagnosis [3], [4]. The time-frequency
analysis method can effectively overcome the shortcom-
ings of the two methods of time domain and frequency
domain analysis, and analyze the local characteristics of
non-stationary vibration signals more accurately. Commonly
used time-frequency analysis methods are short-time Fourier
transform (STFT) [5], wavelet analysis [6], empirical mode
decomposition (EMD) [7] and so on. In literature [8], STFT
and convolutional neural network are combined to diagnose
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rolling bearings, and end-to-end fault pattern recognition is
realized. In literature [9], wavelet analysis is used to denoise
the vibration signal of rolling bearing. In literature [10],
EMD is used as a preprocessor to extract the energy of each
frequency band of the rolling bearing vibration signal as a
characteristic parameter, which is used as the input parameter
of the neural network to identify the fault type of the rolling
bearing. The wavelet analysis or EMD of the signal is to
decompose the non-stationary signal into the sum of several
simple stationary signals, and then process each component
to extract the time-frequency domain information, and then
obtain the complete time-frequency information of the orig-
inal signal. However, due to the factors such as friction,
vibration and load in the process of mechanical operation, the
vibration signal of mechanical system often shows nonlinear
behavior. It is difficult to decompose the signal into stationary
signal by time-frequency analysis.

With the development of non-linear analysis methods,
especially with Shannon introduced the concept of entropy
into the field of information electronic engineering, many
non-linear analysis methods have been applied in the field of
fault diagnosis, such as approximate entropy (AE) [11], sam-
ple entropy (SE) [12], fuzzy entropy (FE) [13], Dispersion
entropy (DE) [14] and permutation entropy (PE) [15]. In lit-
erature [16], AE was used to measure valve fault complexity.
In literature [17], feature information of rolling bearing fault
signal was represented by PR component after FE calculation
as feature vector. In literature [18], PE was used to predict
the whole life of rolling bearings, which can show the early
fault detection time of rolling bearings. In literature [19],
DE was used for pattern recognition of three states of normal,
planetary gear fault and sun gear fault of tank planetary
gearbox, and the conclusion of high recognition rate and
fast calculation speed is obtained. However, PE, SE, DE and
FE can only describe the complexity of signals at a single
scale, resulting in incomplete fault information. Therefore,
the analysis methods of multi-scale sample entropy (MSE)
[20], multi-scale fuzzy entropy (MFE) [21], multi-scale dis-
persion entropy [22], and multi-scale permutation entropy
(MPE) [23] that can describe the complexity of signals at
different scales have been proposed. In literature [24], MPE
was used to extract the fault features of rolling bearings, and
MPE had better performance than PE.

The coarse-grained process of MPE is based on the cal-
culation of the mean value, which can only reflect the aver-
age amplitude of the sequence. MPE is lack of description
of signal fluctuation and unable to describe the difference
between failure degrees of mechanical equipment. In the
process of coarse-grained, the information of adjacent points
is ignored, which makes the sequence length shorter, the sta-
bility lower, and the fault information incomplete. To address
these problems, sliding variance method is introduced to the
coarse-grained calculation instead of the meanmethod. Order
variation of mode amplitude is considered for the calcula-
tion of PE,but not the difference of amplitude of the same
serial number mode. The weighted idea is introduced for

PE calculation in the proposed method. Multi-scale weighted
permutation entropy based on sliding variance (SVMWPE) is
proposed in this paper.

Dimension of the obtained feature matrix is high after
MPE feature extraction. To improve the accuracy of pattern
recognition, it is necessary to reduce the dimension of the
high-dimensional matrix for extracting the main features of
low-dimensionality [25]. For non-linear signals, local linear
embedding (LLE) is one of the most commonly used dimen-
sion reduction methods, which has the advantages of low
time complexity and few parameters [26]. In literature [27],
the combination of LLE and LDA was applied to the rolling
bearing fault diagnosis model, results showed that the dimen-
sionality reduction sample had the best feature separability in
the new feature space. When LLE processes data, there are
problems such as hole phenomenon, being too sensitive to
nearby points and noise, etc. Donoho proposed HLLE on the
basis of the LLE algorithm, which uses the Hessian operator
to improve the LLE, and replaces the linear representation of
the local weights of the LLE with local isometrics to realize
the dimensionality reduction process [28].

In this paper, the advantages of SVMWPE in multi-scale
information processing are combined with the good adapt-
ability of HLLE in non-linear signal data, and a fault diag-
nosis method for rolling bearings based on SVMWPE-HLLE
and ELM was proposed. The validity and superiority of the
method were verified and analyzed by two rolling bearing
data.

II. SVMWPE
A. MPE
MFE is a nonlinear analysis method that combines multi-
scale analysis with FE to measure the complexity and
randomness of time series at different scales [29]. MPE algo-
rithm is as follow.

1) For time series xi = {x1, x2, · · · , xN }, the coarse-
grained sequence can be expressed by using (1).

yτj =
1
τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤
N
τ

(1)

where τ is scale factor, then τ = 1, y1j is original sequence.
For the scale factor τ 6=0, the original sequence is split into
N /τ coarse-grained vectors each of length yτj . Taking τ = 2
as an example, the calculation method of coarse-grained
sequence is shown in Fig. 1.

FIGURE 1. Coarse-grained sequence computing segmentation diagram
of MPE at τ = 2.
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We observed from (1) that the length of the coarse-grained
sequence becomes shorter with the increase of the scale fac-
tor, which leads to the decrease of stability and the increase of
entropy deviation. In Fig.1, the coarse-grained sequence rep-
resents the information between x1 and x2, x3 and x4, . . . , xi−1
and xi, whereas ignoring the information between x2 and
x3, x4 and x5, . . . , xi−2 and xi−1, resulting in the incomplete
failure information. The coarse-grained computing process is
essentially for calculating the mean value between the data,
which can reflect the average amplitude of the sequence,
ignoring the volatility of the signal.

2) PE of the coarse-grained sequence at each scale is sepa-
rately calculated to obtain the MPE, which can be expressed
by using (2).

MPE(x, τ,m, t) = PE(yτj ,m, t) (2)

where m is the embedding dimension, and t is delay time.

B. SVMPE
SVMPE is firstly developed to solve the above problems of
MPE, which uses the sliding variance method to improve the
coarse-grained process, and its steps are as follows.

1) For time series xi = {x1, x2, · · · , xN }, and the
coarse-grained sequence can be expressed by using (3).

y′τj =
1
τ

j+τ−1∑
i=j

(xi − x̄)2, 1 ≤ j ≤ N − τ + 1 (3)

When τ 6= 0, the original sequence is split into N − τ + 1
coarse-grained vectors each of length y′j(τ ). Taking τ = 2
as an example, the calculation method of coarse-grained
sequence is shown in Fig. 2.

FIGURE 2. Coarse-grained sequence computing segmentation diagram of
SVMPE at τ = 2.

We observed from (3) that the length change of the coarse-
grained sequence is small, which improves the stability of the
entropy value. SVMPE considers the information between
the adjacent data in the sequence avoiding information leak-
age, which can show the volatility of the original sequence.

2) PE at each scale for the new sequence y′j(τ ) is calculated
to obtain SVMPE, which is expressed by using (4).

SVMPE(x, τ,m, t) = PE(y′τj ,m, t) (4)

C. SVMWPE
The SVMWPE algorithm introduces the weighted idea on
the basis of SVMPE, and fully considers the difference of

different amplitudes in the same sequence number ranking
mode, and its specific calculation steps are as follows.

1) For a given time series xi = {x1, x2, · · · , xN }, the
coarse-grained sequence y′τj is calculated by (3).

2) Phase space reconstruction of coarse-grained
sequence y′τj is performed by adding a weighting coefficient
to each reconstruction component, which can be expressed
by (5).

wr (s) =
1
m

m∑
k=1

(yj+(k−1)t − ȳj)2 (5)

Of which:

ȳj =
1
m

m∑
k=1

yj+(k−1)t (6)

where s represents the number of identical symbol sequences.
3) The probability of different symbols by using (7).

pw(πr ) =
fw(πr )
m!∑
i=1

fw(πr )

(7)

Of which:

fw(πr ) =
s∑
i=1

f (πr (i))wr (i) (8)

where πr indicates the possible sorting patterns, fw(πr ) rep-
resents the frequency of the r-th order.

4) WPE is obtained according to the concept of Shannon
entropy, which can be expressed by (9).

Hw = −
m!∑
i=1

pw(πl) lnpw(πl) (9)

5) The SVMWPE representation of the original time series,
which is expressed by using (10).

SVMWPE(x, τ,m, t) =
1
τ

τ∑
k=1

H k
w(y
′τ
j ,m, t) (10)

D. ANALYSIS OF PARAMETER SELECTION
Four parameters need to be set in SVMWPE, including scale
factor τ , embedding dimension m, time delay t , and time
series length N . For the scale factor τ , in order to ensure
that the length of the coarse-grained sequence cannot be too
short, and τ cannot be too large. We used τmax ≥ 10 and
τmax = 20 in this study. The permutation entropy is highly
dependent on the embedding dimension m. The larger the
value of m, the more information the sequence needs to
be reconstructed, and the subtle changes in the sequence
are ignored [30]. If the selection of m is too small, the
dimension of the reconstructed signal will become lower, the
contained states will be reduced, and the dynamic changes
of the sequence will be difficult to detect. Bandt recom-
mended that the embedding dimension m should be selected
between 3 and 7 [15]. The research on permutation entropy
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by many scholars showed that the selection of time delay t
had almost no effect on the results [31]. Hence, t is set to 1 in
this paper. For the time series length N , whether the length is
too long or too short will have a greater impact on the entropy
value.

MPE, MWPE, SVMPE and SVMWPE of WGN and
1/f noise at m = 4 − 7 were calculated by selecting t = 1
and N = 3000, the results are shown in Fig. 3 and Fig. 4.
We observed that whenm = 4 or 5, most of the entropy values
of the four methods hovered within 0.9-1, and the variation
range was small. This shows that when m was small, the
arrangement was less, resulting in a lower frequency of the
same symbolic pattern. The probability of the corresponding
state vector after weighting was higher, and the entropy value
was larger. When m = 6 or 7, the entropy obtained by
the four methods varied greatly, which can more accurately
reflect the variation range of entropy with scale factor. When
m = 7, the four entropy curves had high overlap and were
difficult to distinguish. Based on these analyses, therefore
m was set to 6. In addition, compared with the other three
methods, SVMWPE had smaller fluctuation in entropy value

FIGURE 3. The entropy values of WGN under different embedding
dimensions of MPE, MWPE, SVMPE and SVMWPE algorithms.

FIGURE 4. The entropy values of 1/f noise under different embedding
dimensions of MPE, MWPE, SVMPE and SVMWPE algorithms.

and smoother curve, which reflected that SVMWPE had good
stability and superiority.

The parameters m = 6 and t = 1 were selected to inves-
tigate the influence of the selection of N on SVMWPE. The
SVMWPE of WGN and 1/f noise for N = 1000, 1500, 2000,
2500, 3000, 3500, 4000 are calculated. The corresponding
entropy values were recorded as EV1-EV7. The results are
shown in Fig. 5 and Fig. 6, and the differences at each scale
are shown in Fig.7 and Fig. 8. Fig. 5 and Fig. 6 show that the
overall trend of each entropy curve was roughly the same,
with the increase of N , the entropy corresponding to each
scale increases. Combining Fig. 7 and Fig. 8, we observed
that when N ≤ 3000, the entropy value difference between
the curves was large, when N ≥ 3000, the fluctuation of
each curve was smaller, the entropy value difference was very
close, and the stability was higher. Therefore, N ≥ 3000 was
selected in the next stage of research.

FIGURE 5. The entropy values of WGN under different time series lengths
of SVMWPE algorithms.

FIGURE 6. The entropy values of 1/f noise under different time series
lengths of SVMWPE algorithms.
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FIGURE 7. Difference of SWMWPE of WGN with different lengths under
different scale Factors.

FIGURE 8. Difference of SWMWPE of 1/f noise with different lengths
under different scale factors.

E. ANALYSIS OF PARAMETERS IN SVMWPE
Parameters of SVMWPE based on the previous section
were analyzed to illustrate the superiority of SVMWPE with
m = 6, t = 1 and N = 4000. MPE, MWPE, SVMPE,
and SVMWPE of WGN and 1/f noise was calculated, and
results are shown in Fig. 9 and Fig. 10. The entropy curves
of SVMPE and SVMWPE were significantly smoother than
those of MPE and MWPE, indicating that the MPE had been
improved by sliding variance method, which can retain more
useful information in processing signals and improve the
insufficient calculation of original coarse graining. As the
scale factor increases, the entropy fluctuation of SVMWPE
wasmuch smaller than that of SVMPE, especially in the high-
scale segment, indicating that SVMWPE was superior and
more stable.

III. SVMWPE-HLLE BASED FEATURE EXTRACTION
The research on SVMWPE in the previous section found that
the dimension of the feature matrix obtained after feature

FIGURE 9. MPE, MWPE, SVMPE, and SVMWPE of WGN under the same
parameters.

FIGURE 10. MPE, MWPE, SVMPE, and SVMWPE of 1/f noise under the
same parameters.

extraction is too high, which is not conducive to pattern
recognition, and it is necessary to reduce the dimension of the
high-dimensional feature matrix. In this section, we combine
SVMWPEwith HLLE to propose a feature extractionmethod
based on SVMWPE-HLLE.

A. LLE
LLE is a non-linear dimensionality reduction method pro-
posed by Roweis and Saul, which has the advantages of low
time complexity and few parameters (only one predetermined
parameter). The core idea of LLE is to ensure that the man-
ifold structure remains unchanged by keeping the weight
values unchanged during dimension reduction [32].

For high-dimensional data set X = {xi ∈ RD, i =
1, 2, · · · ,N }, where D is the sample dimension, and N is
the sample number, the mapping of low-dimensional space
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Y = {yi ∈ Rd , i = 1, 2, · · · ,N }, where d is the dimension of
low-dimensional space (d � D).

The LLE algorithm is as follows.
1) Find k neighbor points for each sample by using

Euclidean distance between sample points, and get neighbor-
hood Vi = {xi1, xi2, · · · , xik}.

2) The local weightW is calculated based on the minimum
principle of local linear structural error, and the reconstruc-
tion error function by using (11).

ε(w)=
N∑
i=1

∥∥∥∥∥∥xi −
N∑
j=1

wijxij

∥∥∥∥∥∥
2

2

(11)

Equation (11) is requires two constraints: (1)
k∑
j=1

wij = 1;

(2) Sample xj is not in the neighborhood of xi, and wij = 0.
Take the minimum value of ε(w) under condition (1) to obtain
the best weight vector wi = (wi1,wi2, · · · ,wik)T . Then the
weight matrix isW = (w1,w2, · · · ,wN )T .

3) To obtain low-dimensional coordinates, the reconstruc-
tion error function Y is constructed under the condition that
the weight matrixW is constant by using (12).

ε(Y ) =
N∑
i=1

∥∥∥∥∥∥yi −
N∑
j=1

wijyij

∥∥∥∥∥∥
2

2

(12)

Equation (12) has two restrictions: (1)
N∑
j=1

yi = 0,

(2) 1
N

N∑
j=1

yiyTi = I . Equation(12) is transformed into eigen-

value decomposition of the matrix M = (1-W )T (1-W ), and
the eigenvector corresponding to the smallest eigenvalue is
obtained. The eigenvector P = (p2, p3, · · · , pd+1) corre-
sponding to the first 2 to d + 1 eigenvalues is taken, and the
final low-dimensional matrix Y = PT is obtained.

B. HLLE
HLLE is proposed on the basis of LLE, which uses the local
Hessian matrix to decompose the curvature of the sample
data, and its steps are as follows.

1) Find k neighbor points for each sample by using
Euclidean distance between sample points, and get neighbor-
hood Vi = {xi1, xi2, · · · , xik}.

2) Obtain the centralizationmatrix Ṽi = Vi−
Vi
k e

T
k for each

neighborhood Vi, and then obtain the singular valueUi for Vi.
The first d column vectors of Ui are the matrix tangent space
coordinates, and denoted as Zi = [z1, z2, · · · , zd ]T .
3) For each neighborhood set toMi = [e,Zi,Z

k×s
i · Z k×li ],

there are (1 + d + d(d + 1))/2 columns. The first d + 1
is composed of a column vector with all 1 and Zi, and
Z k×si · Z k×li is the s-th column and the l-th column Hessian
product of columns. Perform an orthogonal transformation on
Mi to obtain a column orthogonal matrix M̃i, then the Hessian
matrix is Hi = M̃i(:, d + 2 : 1 + d + d(d + 1)/2)T , where
Hi ∈ Rk(d(d+1)/2).

4) UsingHi of each neighborhood to construct a symmetric

matrix H , whose element is Hij =
N∑
s=1

d(d+1)/2∑
l=1

(H s)l,i(H s)l,j.

5) Calculate the d + 1 minimum eigenvalues of
H , and obtain the corresponding eigenvector as u1,
u2, · · · , ud , then U = [u2, u2, · · · , ud+1] is the required null
space.

6)Denote the matrix Rij =
∑
I∈Jl

Ul,iUl,j, where i, j = 1,

2,. . . , d , Jl is the neighborhoods of specific samples. Ul,r is
the element value of the l-th row and the r-th column of U
corresponding toH , then T = R−1/2UT is a low-dimensional
embedding.

C. FEATURE EXTRACTION BASED ON SVMPE-HLLE
SVMPE-HLLE feature extraction method are as follows.

1) For time series xi = {x1, x2, · · · , xN }, the parameters
i.e. scale factor t , embedding dimension m, time delay t , and
time series length N need to be used.

2) Calculate SVMWPE for S samples, and construct a
high-dimensional sample matrix V of S × τ .

V =


H11 H12 · · · H1τ

H21 H22 · · · H2τ

...
... · · ·

...

HS1 HS2 · · · HSτ

 (13)

3) Reduce the dimension of the high-dimensional matrix V
through HLLE to obtain the low-dimensional feature vector
f = [f1, f2, · · · , fd ].

D. SIMULATION EXPERIMENT
For the fault signal of rotating machinery, which is non-
stationary and non-linear, two frequency modulation and
amplitude modulation signals x1(t) and x2(t) were con-
structed according to the vibration signal to study the
SVMPE-HLLE feature extraction method, x1(t) is the fre-
quency modulation and amplitude modulation signal with
fundamental frequency of 30Hz and frequency modulation
of 10Hz, x1(t) = (1+0.5sin(10π t))× cos(60π t+2cos(20π t)),
x2(t) is the frequency modulation and amplitude modula-
tion signal with fundamental frequency of 25 Hz and fre-
quency modulation of 8Hz, x2(t) = (1+0.5sin(8π t)) ×
cos(50π t+2cos(20π t)). Time t ∈ [0, 1], sampling frequency
is 1000Hz.

Random generation 3 × 2 mixing matrix E is used to
simulate three signals, and three WGN signals WGN1(t),
WGN2(t) and WGN3(t) are added to construct new signals
a(t), b(t), and c(t). The time-domain waveform is shown
in Fig.11. a(t) = E(1, 1)× x1(t)+ E(1, 2)× x2(t)+WGN1(t)

b(t) = E(2, 1)× x1(t)+ E(2, 2)× x2(t)+WGN2(t)
c(t) = E(3, 1)× x1(t)+ E(3, 2)× x2(t)+WGN3(t)

(14)
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FIGURE 11. Time domain waveforms of three analog signals.

A total of 180 samples are taken 60 samples from each
of the three signals. Time series length of each sample was
N = 4000, the maximum scale factor τmax = 20, embed-
ding dimension m = 6, and time delay t = 1. Adjacent
points k is 12 and the low-dimensional space dimension d
is 3 in HLLE. All samples were calculated by SVMWPE,
and the high-dimensional feature matrix V of 180 × 20 was
constructed. Then, the dimension of V was reduced by HLLE
to obtain a low-dimensional feature matrix of 180 × 3.
The results after dimension reduction are shown in Fig. 12.
We observed that the three analog signals can be completely
separated by SVMWPE-HLLE. The three-dimensional fea-
tures of different signals were relatively concentrated, and the
clustering effect was better. In order to highlight the superi-
ority of HLLE, LLE was used to reduce the dimension of the
high-dimensional feature matrix constructed by SVMWPE
calculation. The parameter selection was the same as that
of HLLE, the result after dimension reduction is shown in
Fig. 13. SVMWPE-LLE cannot completely separate the three
analog signals, and the three-dimensional features were scat-
tered, indicating that the SVMWPE-HLLE feature extraction
method can accurately identify the three analog signals and
the clustering effect was good.

FIGURE 12. Dimensionality reduction results of SVMWPE-HLLE.

FIGURE 13. Dimensionality reduction results of SVMWPE-LLE.

IV. SVMWPE-HLLE BASED FAULT DIAGNOSIS
APPROACH FOR ROLLING BEARING
A. ELM
ELM is proposed based on single hidden layer feedforward
neural network, which has simple algorithm and fast train-
ing speed [33].The network structure of ELM is shown
in Fig. 14.

FIGURE 14. Network structure of ELM.

For a given training set (xi, ti), the mathematical function
of the above structure graph can be expressed by (15).

M∑
i=1

βig(wi · xi + bi) = σj, j = 1, 2, . . . ,N (15)

whereM is the number of hidden layer nodes, βi is the output
weight, wi is the input weight, bi is the unit bias, and σi is the
classification result.

B. FAULT DIAGNOSIS PROCESS
Fault diagnosis method for rolling bearings based on
SVMWPE-HLLE and ELM is proposed through the analysis
of the previous chapters. The diagnosis steps are as follows.

1) Set k types of rolling bearing fault states, collect n sam-
ples for each state, calculate the SVMWPE at τ scales
for all samples, and construct a high-dimensional sample
matrix V ∈ Rkn×τ .
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2) The dimension of the high-dimensional matrix V is
reduced by HLLE, and the low-dimensional matrix P ∈
Rkn×d with dimension d is obtained as the feature vector of
the sample.

3) Randomly selected i training samples from n low dimen-
sional matrices of each state as classifiers to form a training
set of ki × d and the remaining n-i as test samples to form a
test set of k(n− i)× d .

4) The feature vector of each state in the training set is input
into ELM to train, and the ELM training model is obtained.
Then the feature vector of the test set is input into ELM to
test.

5) According to the output of the ELM classifier, the fault
type and severity of the rolling bearing can be judged.

C. EXPERIMENT ANALYSIS OF ROLLING BEARING FAULT
DIAGNOSIS
1) EXPERIMENTAL CASE 1
The experimental data of Western Reserve University were
used to verify the applicability and superiority of the proposed
method in rolling bearing fault diagnosis [34]. The rolling
bearing test rig system and its schematic diagram are shown
in Fig. 15 and Fig. 16. The drive end bearing selected for
the test bearing was 6205-2RS JEM SKF deep groove ball
bearing. Bearing Damage was single point damage in electric
discharge machining. Under the experimental conditions of
motor load was 1471W, rotational speed was 1750 r/min

FIGURE 15. Rolling bearing test bench.

FIGURE 16. Rolling bearing test bench system sketch.

and sampling frequency was 12kHz. It was set into seven
states: Normal (Norm), Inner Race (IR1, IR2), Ball Element
(BE1, BE2) and Outer Race (OR1, OR2). Each state takes
20 samples with a data length of 4096 points, 5 samples
were randomly selected as training data, and the remaining
15 samples were used as test data. The detailed description
of the experimental data of the rolling bearing is shown in
Table 1. The time-domain waveforms of the seven states are
shown in Fig. 17.

TABLE 1. Detailed description of experimental data of rolling bearings.

FIGURE 17. Time domain waveforms of seven states of rolling bearing.

MPE, MWPE, SVMPE, and SVMWPE at 20 scales were
calculated for all samples by selecting parameters t = 1 and
m = 6. The results of MPE, MWPE, SVMPE and SVMWPE
in seven states were shown in Fig. 18-21. We observed that
the entropy values of MPE and MWPE were obviously more
volatile compared with SVMPE and SVMWPE, especially
for OR1 and OR2,indicating that SVMPE and SVMWPE had
better stability than MPE and MWPE. It is difficult to judge
which method was superior observing the entropy curve of
SVMWPE and SVMPE.

MPE, MWPE, SVMPE, and SVMWPE of all samples
were constructed by 140 × 20 high-dimensional feature
matrix, and the low-dimensional feature matrix was obtained
by HLLE. For HLLE, we set k = 12 and d = 3. The
results after dimension reduction are shown in Fig. 22-25.

4652 VOLUME 11, 2023



C. Li et al.: SVMWPE-HLLE Based Fault Diagnosis Approach for Rolling Bearing

FIGURE 18. MPE of vibration signal of rolling bearing in different states.

FIGURE 19. MVPE of vibration signal of rolling bearing in different states.

We observed that MPE-HLLE, MWPE-HLLE, and SVMPE-
HLLE cannot completely separate all seven states, and there
were cases of crossover.Whereas SVMWPE-HLLE can com-
pletely separate the seven states, and the three-dimensional
features of different states of SVMWPE-HLLE were more
concentrated than that those of MPE-HLLE, MWPE-HLLE,
and SVMPE-HLLE, indicating that the SVMWPE-HLLE
feature extraction method can accurately identify seven states
of rolling bearings, which is superior to the other three meth-
ods. In order to illustrate the superiority of HLLE dimen-
sionality reduction method. SVMWPE of all samples was
constructed high-dimensional feature matrix, and the low-
dimensional feature matrix was obtained by LLE method.
The result of dimensionality reduction is shown in Fig. 26.
We observed that whether the separation effect or the con-
centration of three-dimensional features, SVMWPE-HLLE
had better clustering effect than SVMWPE-LLE, and can be
used for the evaluation of the degree of fault defects of rolling
bearings.

FIGURE 20. SVMPE of vibration signal of rolling bearing in different
states.

FIGURE 21. SVMVPE of vibration signal of rolling bearing in different
states.

FIGURE 22. Clustering results based on MPE- HLLE.

In order to evaluate the fault state of the bearing more accu-
rately, ELM was introduced to identify seven states. Firstly,
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FIGURE 23. Clustering results based on MVPE- HLLE.

FIGURE 24. Clustering results based on SVMPE-HLLE.

FIGURE 25. Clustering results based on SVMVPE-HLLE.

the samples of each state were extracted by SVMWPE-HLLE
feature to obtain 20 low-dimensional matrices, 5 samples
were randomly selected as training data, and the remaining
15 samples were used as test data. Among them, the acti-
vation function of ELM selects the Sigmoid function [35],
and the number of neurons in the hidden layer was set to 25.
Then, the training samples were inputted into the ELM for

FIGURE 26. Clustering results based on SVMVPE- LLE.

FIGURE 27. Recognition results based on SVMWPE-HLLE and ELM.

training. Finally, the test samples were inputted into the
trained ELM for identification. The results are shown in
Fig. 27. We observed that the actual output results were
exactly the same as the theoretical results, and the fault identi-
fication rate was 100% (105/105), indicating that the method
proposed in this paper can effectively identify the fault state
of the rolling bearing.

In order to illustrate the superiority of SVMWPE-HLLE,
all samples of each state were also extracted by MPE-HLLE,
MWPE-HLLE, SVMPE-HLLE, and SVMWPE-LLE, and
input to the ELM classifier for training and testing. The fault
identification results are shown in Table 2. We observed that
when the rolling bearing was in normal state, the recognition
rate of the fivemethods is 100%, indicating that the fivemeth-
ods can accurately identify the normal state. When the rolling
bearing was in a normal state, the recognition rates of the five
methods were all 100%, indicating that the five methods can
accurately identify the normal state. For several other states,
SVMWPE-HLLE had nomisclassification, whereas the other
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TABLE 2. Fault identification results of five methods.

FIGURE 28. Time domain waveforms of seven states of rolling bearing.

four had misidentified. It showed that the recognition rate
of SVMWPE-HLLE was better than the other four methods
in both the overall and individual states, which verified the
superiority of SVMWPE-HLLE in feature extraction.

2) EXPERIMENTAL CASE 2
The experimental data of Western Reserve University were
collected under almost pure working conditions and not
generic. In order to verify the applicability and superiority
of this method under actual working conditions, the bearing
selects 6308 deep groove ball bearing. Under the conditions
of rotational speed was 1309 r/min and sampling frequency
was 10240 Hz, seven states of Normal (Norm), Inner Race
(IR1, IR2), Ball Element (BE1, BE2) and Outer Race (OR1,
OR2) were collected. Each state took 30 samples with a data
length of 4096 points, 10 samples were randomly selected
as training data, and the remaining 20 samples were used as
test data. The detailed description of the experimental data
of the rolling bearing is shown in Table3. The time-domain
waveforms of the seven states are shown in Fig. 28.

MPE, MWPE, SVMPE, and SVMWPE at 20 scales were
calculated for all samples by selecting parameters t = 1 and

FIGURE 29. MPE of vibration signal of rolling bearing in different states.

TABLE 3. Detailed description of experimental data of rolling bearings.

m = 6. The results of MPE,MWPE, SVMPE, and SVMWPE
in seven states are shown in Fig. 29-32. We observed that
the entropy value of a single sample deviated greatly from
the mean value of MPE and MWPE compared with SVMPE
and SVMWPE, indicating that the computational stability of
SVMPE and SVMWPE were better than MPE and SVMPE.
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FIGURE 30. MVPE of vibration signal of rolling bearing in different states.

FIGURE 31. SVMPE of vibration signal of rolling bearing in different
states.

The entropy values of each state of SVMWPE were dis-
tributed more dispersedly than SVMPE, at most scales, the
entropy values were sorted from large to small as Norm, OR1,
BE2, BE1, IR2, IR1, OR2, which indicated that SVMWPE
has obvious advantages in feature extraction and has good
stability.

MPE,MWPE, SVMPE, and SVMWPEof all sampleswere
constructed by 210 × 20 high-dimensional feature matrix,
and the low-dimensional feature matrix was obtained by
HLLE. In order to verify the superiority of HLLE, SVMWPE
feature matrix was additionally reduced by LLE algorithm,
the output were shown in Fig. 33-37. The separation of
MPE-HLLE and MWPE-HLLE were obviously poor.
SVMPE-HLLE can roughly separated the seven states, but
the separation effect was average, and the three-dimensional
features of each state were scattered. SVMWPE-LLE cannot
completely separate the seven states, and there were multiple
crossovers. SVMWPE-HLLE can completely separate the

FIGURE 32. SVMVPE of vibration signal of rolling bearing in different
states.

FIGURE 33. Clustering results based on MPE-HLLE.

FIGURE 34. Clustering results based on MVPE-HLLE.

seven states, and the three-dimensional features of each
state were relatively concentrated, and the clustering effect
was obvious, which indicated that SVMWPE-HLLE exhibits
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TABLE 4. Fault identification results of five methods.

FIGURE 35. Clustering results based on SVMPE-HLLE.

FIGURE 36. Clustering results based on SVMWPE-HLLE.

good ability to evaluate the fault degree of rolling bearing
faults

The samples of each state were extracted by SVMWPE-
HLLE feature to obtain 30 low-dimensional matrices,
10 samples were randomly selected as training data, and
the remaining 20 samples were used as test data. Then, the
training samples were inputted into the ELM for training.
Finally, the test samples were inputted into the trained ELM

FIGURE 37. Clustering results based on SVMWPE-LLE.

FIGURE 38. Recognition results based on SVMWPE-HLLE and ELM.

for identification. The results are shown in Fig. 38. The
actual output results were exactly the same as the theoretical
results, and the fault identification rate was 100% (140/140),
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indicating that the fault diagnosis of rolling bearing can be
effectively realized based on SVMWPE-HLLE and ELM.

V. CONCLUSION
1) In this paper, SVMWPE was proposed to measure the
complexity of non-linear time series, which optimizes the
coarse-grained sequence and fully considers the difference
of amplitudes in the same symbol pattern in the permutation
entropy calculation. Through the analysis of WGN and 1/f
noise, the selection of various parameters in SVMWPE was
determined it was verified that the superior of SVMWPE to
MPE, MWPE and SVMPE.

All samples of each state were extracted by MPE-HLLE,
MWPE-HLLE, SVMPE-HLLE and SVMWPE-LLE, and
input to the ELM classifier for training and testing. The
fault identification results are shown in Table 4. We observed
that SVMWPE-HLLE has no misclassification in all states,
whereas the other four are misidentified. It shows that the
recognition rate of SVMWPE-HLLE is better than other four
methods, which verifies the superiority of SVMWPE-HLLE
in fault diagnosis.

2)SVMWPE-HLLE feature extraction method was pro-
posed based on HLLE. The clustering effect was studied by
comparing SVMWPE-HLLE with SVMWPE-LLE through
the analysis of the three analog signals. SVMWPE-HLLE
had better clustering effect than SVMWPE -LLE in feature
extraction.

3) A new fault diagnosis method for rolling bearings
was proposed and analyzed through two experimental cases
of rolling bearings based on the respective advantages of
SVMWPE-HLLE and ELM. The SVMWPE was compared
with MPE, MWPE and SVMPE, and the results showed
that the stability of SVMWPE was better than that those
of MPE, MWPE and SVMPE. The clustering effect of the
feature extraction method based on SVMWPE-HLLE was
obvious, and it had a better ability to evaluate the fault degree
of rolling bearing faults than SVMWPE-LLE, which veri-
fied the effectiveness and superiority of HLLE. SVMWPE-
HLLE and ELM based fault diagnosis method had a higher
fault recognition rate than the MPE-HLLE and ELM based
method, MWPE-HLLE and ELM based method, SVMPE-
HLLE and ELM based method, together with SVMWPE-
LLE and ELM based method.

SVMWPE-HLLE can provide a new solution for rolling
bearing fault diagnosis. SVMWPE-HLLE has certain advan-
tages in characterizing fault characteristics, and could
be extended to the fault diagnosis of other mechanical
equipment.
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