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ABSTRACT The increase in drone usage by the public brings the number of drone incident and attack
up. Sophisticated preventive mechanisms, as well as post-incident procedures and frameworks, are needed.
Forensic investigation is performed upon a drone incident, aiming to uncover the incident scenario, mitigate
the risk and report the examination results. Generally, standard drone forensic procedure consists of three
stages, i.e., evidence acquisition, evidence analysis, and reporting. Among the existing research, many
attempts have been made in framework proposal and evaluation, study case, and tools proposal and
evaluation. However, less research focuses on utilizing specific data artifacts from the drone forensic image,
such as telemetry, dataflash, and flight log data. Therefore, this research aims to propose the use of log
message data to discover and extract some incident-related information using a deep learning-based NLP
technique, i.e., named entity recognition using the Transformer. Cosine similarity is proposed as a substitute
for dot-product in the self-attention mechanism of the Transformer encoder layer. Additionally, we propose
NER architecture built from a mix of several existing methods and report the performance evaluation.
We extract the DJI drone forensic image from a publicly available dataset using Autopsy and DJI Phantom
Help and collect the decrypted log messages. Six entity types are defined after carefully reading the log
message. These entity types are used in the manual annotation process using the IOB2 scheme as the label.
The constructed dataset is used to evaluate the proposed model along with several baseline models. The
proposed method outperforms the previous baseline model with a 91.348% F1 score. Finally, we conclude
the experiment and mention several future directions.

INDEX TERMS Digital forensics, drone flight log, drone forensics, log mining, named entity recognition,
transformer encoder, conditional random fields, infrastructure.

I. INTRODUCTION
UAV technology’s presence has significantly impacted sev-
eral sectors, such as industry, film, and advertisement. It can
be seen from the increase in the number of consumer drone
usage in recent years. A survey from Statista [1] states that
the shipments of drone consumers reached approximately
5 million units in 2020 globally. This number is expected to
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keep increasing to 9.6 million delivery in 2030. The increase
in drone employment in many fields brings and opens new
challenges to secure drone devices. Other than consumer
drones, there are other types of drones, i.e., military, terrorist,
and criminal drones [2]. Any failure, error, or malfunction
is not tolerated for these types of drones, as in consumer
drones. Therefore, it is critical to guarantee the security of the
device. To this end, more sophisticated security and forensic
procedures are needed to develop to diminish the risk caused
by any attack or incident [3].
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FIGURE 1. An illustration of entity types in a forensic timeline constructed from drone flight log data.

In the digital forensic research area, drone forensics is a
quite new research topic. Generally, it is categorized into
two sub-topics based on the evidence used to perform the
investigation, i.e., digital and physical investigation. Both
types of research aim to find relevant information regarding
the incident, uncover the attack scenario, and diminish the
risk as the effect of an incident [4]. In order to perform a
digital forensic investigation, several artifacts can be utilized,
such as image, video, telemetry log, and flight log data. The
physical examination aims to achieve several objectives but
is not limited to identifying any unique identifier, notable
features, or damages. Secondly, it determines the model and
class of the device, along with the capability of the storage
system. Then, it lists the available options to perform extrac-
tion [5]. On the other hand, digital evidence is analyzed to
achieve other objectives, such as mapping the link between
the components of the UAV, identifying and matching the
ownership to get a suspect user, and obtaining and inferring
some information to prove that the device was used to commit
a crime [5].

While the drone is flying, any event that happens to the
drone is recorded in a log file, including the component’s
state, such as sensors, motors, GPS, and links. These data are
stored in telemetry and dataflash logs located in the persistent
storage attached to the device [6]. Mantas and Patsakis [6]
have attempted to utilize telemetry and dataflash logs to
perform drone forensic investigation by performing UAV
integrity checks, anomaly detection on the visual flight path,
command verification, error reporting, and hardware error
detection. GRYPHON is proposed as an open-source tool
to perform the aforementioned tasks [6]. Previously, DROP,
as the first open-source tool for parsing drone flight log data
from DJI, was proposed to help the process of acquiring the
plain information encrypted in the proprietary.DAT dan.TXT
log files of the DJI model [7]. Other than that, most of the
drone forensic research is a type of study showcase, which
starts from a scenario design, data generation and acquisi-
tion, data analysis, and finally, reporting. Several references
are using DJI [8], [9], [10], Cheerson [11], Parrot [4], and
Yuneec [12] model as experimental devices. However, there

is no attempt to utilize specific data, in this case, the log
message, to perform a drone forensic investigation. For this
reason, we propose a deep learning-based Natural Language
Processing (NLP) technique to perform information extrac-
tion from the log message to assist the forensic investigation
process.

Information Extraction (IE) is one of the sub-topic in the
NLP research domain, which aims to infer knowledge from
a lake of text data. There are several steps in performing
information extraction; after data source collection and pre-
processing, Named Entity Recognition (NER) is one of the
initial steps in IE [13]. The researcher has taken advantage
of NER power to recognize and extract mentioned enti-
ties in several domain problems such as agriculture [13],
[14], biomedical [15], [16], chemical [16], [17], food and
dietary [14], and cybersecurity [18], [19], [20]. Inspired by
the success of NER in those domains, we are motivated to
investigate the usability of NER in the drone forensic domain,
considering the characteristic of the data is unique for every
domain specific. Fig. 1 illustrates a forensic timeline con-
structed from the flight log message along with mentioned
entities within. A well-constructed forensic timeline exposes
sequential events experienced by a system regarding a partic-
ular security incident [21]. In this research, we use flight log
data to construct a forensic timeline that consists of the log
message and the timestamp.

To perform NER, two common deep learning mod-
els can be used, either RNN-based or Transformer-based
models. The latest state-of-the-art include BiLSTM-CRF
and a pre-trained Transformer-based Language Model. The
rise of Transformer-based language models (LM) such
as BERT [22], one of the first pre-trained LM models,
RoBERTa [23] as an optimized version of BERT, Distil-
BERT [24], a smaller, faster, cheaper, and lighter version of
BERT and GPT [25], types of pre-trained language model
that employs only the decoder part of Transformer architec-
ture are significantly impacted the NLP research landscape,
including NER. However, every domain-specific problem
has its own unique problem and data characteristic. In the
general NER, the common entity types are Organization,
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Person, or Location. The sentence structure follows the natu-
ral language semantics. However, drone flight log messages’
sentence structure does not necessarily adhere to that of the
natural language in public news, for instance. For this reason,
we aim to investigate the success of the Transformer-based
technique in recognizing the region of interest in drone flight
log messages.

The contributions of this paper are summarized as follows.

1) This research constructs a new NER dataset in the
drone forensic domain. To the best of our knowledge,
there is no publicly available NER dataset for drone
forensic problems yet. We identify and propose six
entity types as the tagset in the annotation process. The
proposedmodel achieves a competitive score compared
to the state-of-the-art methods, with a 91.146% F1
score. Yet, one of the scenarios achieves high perfor-
mance, with a 91.348% F1 score.

2) This work showcases how to utilize specific evidence
data to perform forensic information extraction to assist
a forensic investigation, including a simple framework
for data extraction and annotation.

3) We propose and investigate cosine similarity as a sub-
stitutive of dot-product in the self-attention sub-layer
of the Transformer encoder to model contextual depen-
dency in a sequence. We also propose a new NER
architecture consisting of CNN character embedding,
BERT word embedding, a Transformer with scaled
dot-product attention as the encoder, and CRF as the
decoder.

The paper comprises five sections. The remainder of this
paper is as follows. Section II reviews the recent related
works on drone forensic research, deep learning for named
entity recognition, and the use of named entity recogni-
tion in cybersecurity. The proposed method is elucidated in
Section III. Section IV explains the experimental results and
analysis. We conclude the paper in Section V with several
future directions.

II. RELATED WORKS
The advancement of the Unmanned Aerial Vehicle (UAV),
commonly called a drone, followed by a constantly increasing
number of drone usage in society, has brought drone forensic
research to the surface and interested researchers. The case
study-based paper is the most popular among the published
papers on drone forensics. This section briefly discusses and
summarizes the published works related to drone forensics.
The following sub-section explains the other researchers’
works on employing a deep learning model for named entity
recognition. Since our research is a sub-field of cybersecurity,
we also recap several related attempts at utilizing NER in the
cybersecurity domain in the last subsection.

A. DRONE FORENSIC INVESTIGATION
The field of drone forensics is a relatively recent research
topic. The growth and development of Unmanned Aerial

Vehicle (UAV) technologies bring drone forensics subject to
the surface and pique the academics’ attention. The case study
is the type of most drone forensics published research. In this
research category, a forensic examination is performed on a
drone device after having a scened flight under a controlled
environment. The procedure starts with the data collection
stage and ends with the investigation report. Yousef and
Iqbal [10] proposed a series of guidelines to help forensic
investigators conduct forensic investigations using the DJI
Mavic Air drone model. In order to gather the evidence and
explain the successfully collected data, various techniques
are used, which may aid the investigation process. Several
similar studies were done on other drone models, such as the
Yuneec Typhoon model [12], DJI Spark [26], and the DJI
Phantom [27]. According to those case studies, the drone’s
controller devices stored valuable data that can be compared
to the other artifacts enabling a correlation study between the
UAV and the mobile application used to control the drone.
Some studies also suggest a technical procedure for drone
forensic inquiry. In order to perform an end-to-end analysis
from the preparation to the reporting of the findings, ten
procedures proposed by Salamh et al. [12] must be followed.

Analyzing the encrypted files is one of the obstacles in
the data collection phase. For the DJI models, encrypted
evidentiary data is a certainty. However, sometimes we have
no access to the DJI proprietary tools. Therefore, the data
must be decrypted without using DJI’s proprietary tool, even
though DJI offers a closed-source and paid decryptor tool.
Hence, some studies develop tools to help the researcher and
investigator to conduct a forensic analysis. The DROP (Drone
Open source Parser) tool developed by Clark et al. [7] is a
parser tool for a.DAT file that can also decrypt the encrypted
file to obtain the plain data within. Furthermore, DROP can
link what the.DAT file holds and match it with the.TXT flight
log file contents. After successfully decrypting those two
files, GRYPHON [6] can be used for dataflash and telemetry
log analysis. The program can perform timeline analysis,
analyze flight data to discover an anomaly, map the GPS
coordinates, and many other features. Other than the previ-
ously mentioned tools, several other tools were identified and
described in a survey conducted by Viswanathan et al. [28].
Among the existing tools, Salamh et al. [8] carried out a
case study to examine the features of the tools that were
found to aid the forensic investigator in selecting the best
suitable tools for a particular type of task. In the general
digital forensics domain, log2timeline is commonly used to
construct a forensic timeline from log records. The result is
in.CSV format consisting of log records with corresponding
timestamps. Timeline2GUI can be used to parse and analyze
the log2timeline output file’s contents. It offers an automatic
analysis that is too complex if conducted manually. It is also
equipped with sophisticated visualization features to high-
light critical information and assist the forensic investigator
in analyzing, interpreting, and drawing conclusions [29].

Understanding the drone device and its parts is a cru-
cial step before beginning a forensic investigation [30].
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Accordingly, Jain et al. [30] proposed a framework com-
prising 12 phases. The first five phases were used to locate
and validate the drone’s sensors and data. The other seven
steps were used to analyze physical evidence like fingerprints
and digital evidence from several sources, such as memory
cards, flight logs, and network logs. However, the proposed
framework has not explained the preparation phase in detail.
Therefore, another framework consisting of four investigative
phases with a more comprehensive analysis is proposed by
Al-Dhaqm et al. [3]. One of the primary distinctions of this
framework is a more extensive preparation phase consisting
of pre- and post-incident preparation. Pre-incident prepara-
tion is an important step that is not yet covered in most
forensic frameworks. This step aims to understand several
possible indicators of compromise, define potential forensic
evidence, and measure a drone device’s forensic readiness
before a flight. The remaining phases, including post-incident
preparation, data acquisition, and data analysis, are likely the
same as the other frameworks but more thorough.

Physical and digital evidence is the source of evidence
used in a forensic investigation. Analyzing these two types
of evidence require diverse technique. For digital evidence,
computer-assisted tools are needed to read and present the
evidence in a format that humans can comprehend. Study on
evidence analysis is dominated by reconstructing and visu-
alizing the flight path taken by the drone during a flight [5].
It is done by utilizing the GPS coordinates recorded in the
flight log and with the help of the CsvView tool. A similar
study conducted by Kumar and Agrawal [31] utilizes GPS
data to reconstruct the flight path with three different drone
makes as experimental devices. A tool to convert the.TXT
or.JSON flight log file from Parrot make drones into a.CSV
file that is easy to understand, named FlyLog Converter Tool,
is proposed.

B. NAMED ENTITY RECOGNITION IN CYBERSECURITY
NER plays a vital role in the general NLP study as well as in
the domain-specific areas, where it is utilized as an initial task
that supports other downstream tasks, such as event extraction
and relation extraction [32]. The capability of NER to obtain
valuable information from text data can faster an information
extraction process with a more accurate result. The extraction
is accomplished by processing and recognizing tokens that
may be associated with a specific type of entity [33]. NER
task is not a new research topic. There have beenmany studies
on the development of NERmodels. The capability of captur-
ing bidirectional relations among words in a sentence posses
by BiLSTM has been around for many years as the state-of-
the-art method in the sequence labeling task. Accompanied
by a statistical model, CRF, which can maximize the proba-
bility of a label sequence, has proven to improve the BiLSTM
performance [32]. Many more advanced models with a richer
input representation obtained from pre-trained word embed-
dingmodels, such asWord2vec [34], GloVe [35], ELMo [36],
and BERT [13], improved the BiLSTM-CRF architecture.
However, the presence of Transformer has revolutionized

manyNLP tasks, including NER. Since the publication, many
variants of pre-trained Transformer-based models have been
available. The main advantage of the Transformer architec-
ture is that the attention mechanism in the encoder sub-layer
can model the context and relation between the words in a
sentence.

TENER [37] attempts to utilize the Transformer encoder to
performNER by incorporating relative positional encoding to
make the model distinguish the direction of a particular con-
text. CNN char embedding is added to the embedding vector
to represent the char-level feature. The proposed architecture
outperformed the RNN-based state-of-the-art models in the
benchmark NER dataset, CoNLL2003. Working with deep
learning models is primarily a matter of providing decent
input to the neural model. Several efforts have been made
to increase the performance of the Transformer encoder by
incorporating more features into the embedding vector of the
word representation. Instead of solely relying on the word
embedding as the input source, adding a dictionary feature
embedding to the input vector can improve the BiLSTM-CRF
model equipped with an attention mechanism [19].

Supervised-based deep learningmodels can take advantage
of the label information attached to the data points in the
training process. Besides updating the weight parameters,
label information can also be injected into the input vector,
as proposed in LUKE [38], to provide a rich input. An entity-
aware self-attention mechanism is proposed to separate the
token-to-token and token-to-entity context parameter. The
masked languagemodel is employed in the pre-training phase
to predict some random token and entity. LUKE becomes
the state-of-the-art for five well-known entity-related bench-
marks, such as CoNLL2003 for NER, Open Entity for entity
typing, TACRED for relation classification, ReCoRD for
cloze-style question answering, and SQuAD 1.1 for extrac-
tive question answering task.

The capability of NER to recognize and extract the region
of interest in unstructured text data has been implemented in
various domains. Several efforts have been made to utilize
NER in the cybersecurity domain. In a process-aware system,
valuable information is stored in log files and commonly
written in a less human-readable format. Because the records
are text data in a large size, the researchers use particular
NLP techniques to process the data and perform analysis
automatically.

One of the most severe difficulties has been dealing with
the complexity of cybersecurity data. Different systems and
devices generate logs in different formats. No consistent
name system with numerous acronyms, technical terminol-
ogy, frequent conjunction use, and extensive nesting structure
are the main challenges in cybersecurity data [33]. The prior
state-of-the-art model employed the XBiLSTM-CRF archi-
tecture to conduct NER on a publicly available cybersecurity
dataset [18]. The model’s performance was enhanced by the
concept of concatenating the word’s vector representation
with the Bidirectional Long Short-Term Memory (LSTM)
layer output. The Conditional Random Field (CRF) layer is
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used to decode the concatenated output since it can determine
how the sequence labels relate to one another.

Most of the work involved in implementing deep learning
models is predominantly spent on figuring out how to prepare
adequate input representations. Most often, word embedding
techniques like GloVe [39], Word2vec [40], BERT [22], and
ELMo [41] are used to learn the input representation. Pre-
trained language models, such as BERT and ELMo, can
generate contextualized representational vectors after going
through a pre-trained procedure on a large corpus. Contrary,
GloVe employs local and global statistics to build a word
vector, yielding a static lookup dictionary after being trained
on a relatively large corpus. In order to provide additional
information to the word embedding vectors, Gao et al. [19]
developed a domain-specific knowledge base and data-driven
NER system. Additionally, an attentionmechanism is utilized
to apply greater weights to more valuable information in
a sentence. The experiment demonstrates that the designed
model is more capable of identifying rare entities.

Aligning with the rise of the attention-based model,
Zhou et al. [20] suggest further NER system development in
cybersecurity data using BERT. Instead of taking a random
word piece to be masked as used in BERT, Whole Word
Mask is employed. Since the masking is applied to the
entire word rather than at the word-piece level, this masking
mechanism can cope with cybersecurity data better. This
solution addressed the issue of conjunctions being frequently
used in words like ‘‘buffer-overflow’’ or ‘‘man-in-the-middle
attack,’’ which is one of the main issues in cybersecurity
NER.

Among the published literature, there are still not many
studies that specifically work on examining a particular type
of drone forensic artifacts, especially the human-readable
message within a drone flight log, as evidence to perform
forensic analysis. Therefore, we are motivated to utilize the
log message and perform information extraction to assist in a
forensic investigation.

III. PROPOSED METHOD
Themodel’s architecture of the proposed model is depicted in
Fig. 2. In this research, we employ the modern deep learning
model, Transformer, to encode and model the dependency
betweenwords in a sentence and perform named entity recog-
nition in the drone forensic domain. Overall, our proposed
method consists of positional encoding, character embed-
ding, word embedding, encoder, and decoder. We further
explain the details in the following sub-sections.

The existing studies show thatmost drone forensic research
is based on case studies, tool development, and tool testing
and evaluation. There are presently few studies performing
analytics against certain drone data artifacts, specifically log
message data. Inspired by the success of Transformer-based
NER model implementation in various domains, including
cybersecurity, this paper intends to take advantage of NER in
recognizing mentioned entities in drone flight log messages.
In order to fill the research gap, this work investigates the use

of information extraction techniques to obtain insight from
unstructured evidentiary data. The retrieved information is
expected can assist the forensic investigator in pinpointing
the critical information related to an incident in the flight logs
faster.

A. DATA PREPROCESSING
Drone flight log data contains a number of columns with
numerous information regarding the drone’s condition and
state. From those columns, we take the data from themessage,
tip, and warning columns. Not every log entry has a message,
as the log message is generated and triggered by certain
events or incidents. This message contains useful information
for the forensic investigator to conduct forensic analysis and
investigation. Therefore, the other columns in the drone flight
log message are ignored.

After collecting all the log messages from the flight log
files, themessage is then tokenized to get per token separation
without lowercasing. As observed from the dataset, many
entities are written in a capital case. To give the model a
chance to see the difference between upper and lower case,
we preserve the original message without converting them to
lowercase. We tokenize the message by keeping the dot and
comma, as these two punctuations play the context separator
role in a sentence. We use the Spacy1 tokenizer to tokenize
all the messages. The tokenized message is then converted
into CoNLL format as a standardNERdataset format. Finally,
equal-length tokens and labels are fed to the embedding layer
to obtain a representational vector.

B. CHARACTER AND WORD-LEVEL EMBEDDING
Named entity recognition is part of a long process in the
Information Extraction pipeline. NER is the initial step in
performing information extraction from text data, which rec-
ognizes the region of interest and mentioned entities in text
data or documents [13]. Since neural networks can not deal
with text data, the data must be converted into numerical
values. This process is called embedding. There are two levels
of embedding used in this research, char-level and word-level
embedding. Char-level embedding is used to tackle the out-
of-vocabulary problem, which is common in NLP problems.
Therefore, each character has its own embedding vector.
CNN [43] and LSTM-based [44] char-level embedding are
common approaches in NER. Besides CNN and LSTM, Ada-
Trans [37] is also used as the char-level embedding in this
research to provide rich comparisons.

Despite the parallelism support offered by Transformer
architecture, it does not have information about a word’s posi-
tion in a sentence. However, words in a sentence are arranged
in sequential order, and the order determines the contextual
information. Thus, positional encoding is used to inject the
representation of the position of the word. Let t be the index
position of a word in a sequence, then f : t ∈ N→ PEt ∈ Rd

is a deterministic function that maps each index position into

1https://spacy.io/models
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FIGURE 2. (a) Proposed method architecture. (b) Transformer encoder sub-layer [42].

a d dimensional vector, for d ≡ 0 mod 2. This function is
formulated in (1), where i is the index of the vector element.

f (t)i =

sin
(

1
ωi
× t
)
, i ≡ 0 mod 2

cos
(

1
ωi
× t
)
, i ≡ 1 mod 2

(1)

ωi = 100002i/d (2)

Word embedding is a representational vector used in NLP
tasks to represent the features in text data. This vector not
only contains the features in text data but also mimics the
behavior of text data, such as semantics. A well-constructed
word embedding vector can be used to estimate the similarity
between two words having u and v as the embedding vector
with d dimension using cosine similarity [45] as defined
in (3).

cos θ =
u · v
||u|| ||v||

=

∑d
i=1 uivi√∑d

i=1 u
2
i

√∑d
i=1 v

2
i

(3)

There are two types of word embedding, static and contex-
tual embedding. Word2vec [40], fasttext [46] and GloVe [39]
are the common static embedding. While ELMo [41] and
BERT [22] are an example of contextual embedding. The
difference between static and contextual embedding is in the
way of the lookup process. Static embedding has a static
dictionary that maps the word into a vector. Therefore, a word
will have exactly one representational vector, no matter what
the context is. Contrary, contextual embedding generates a

different representational vector for each distinct context of a
certain word has.

In this research, GloVe, E ∈ Rdvocab×dglove is used as a static
embedding, and BERT, Es ∈ Rds×dbert is used as the contex-
tual embedding for sequence s. The final embedding vector
is the concatenation of the positional embedding vector, char-
level features extracted by the AdaTrans, and the pre-trained
word embeddings GloVe or BERT.

C. TRANSFORMER ENCODER LAYER
The development of research on the topic of natural language
processing reached a significant stage after the presence of
an attention-based deep learning architecture called Trans-
former in 2017 [47]. This architecture was first introduced by
the Google research team for English-German and English-
French translation problems. The ability to understand and
model the language is the main advantage of the Transformer.
Transformer architecture is divided into two major parts: the
Encoder and the Decoder. In this study, the only part used was
the Encoder. In general, the elements that build the Encoder
block include Input Embedding, Positional Encoding, Multi-
head Attention, and Feed-forward Networks [42].

The attention mechanism in Transformer architecture tries
tomodel theway some data in a database system are retrieved.
Previously, the attention mechanism was introduced by Bah-
danau et al. [48] in 2015 as additive attention, which was
then modified by Luong et al. [49] in 2015 by proposing dot-
product attention. These two papers use language translation
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FIGURE 3. (a) The inner structure of the multi-head attention sub-layer. The shadow represents the attention heads arranged in
parallel. (b) The inner structure of the self-attention mechanism. [42].

as the experimental case and model contextual learning using
the attention mechanism. In the dot-product attention, each
token in the sequence is transformed into three different rep-
resentational vectors, i.e., query, key, and value, as shown in
Fig. 3. In order to obtain the contextual representation of the
currently processed token, there are five steps to follow [42].

1) Project each of the token’s vectors in the sequence into
three representational vectors, i.e., q ∈ Rdk , k ∈ Rdk ,
and v ∈ Rdv . These three vectors are computed by mul-
tiplying the embedding vector e ∈ Rdmodel with three
weight matrices W q

∈ Rdmodel×dk , W k
∈ Rdmodel×dk ,

and W v
∈ Rdmodel×dv which randomly initialized.

2) Take the dot-product between the vector of the current
token qt to each vector of the context token kj in the
sequence, yields vector st = 〈st1 st2 st3 . . . stj〉 for
j = 1, 2, 3, . . . , n, where n is the number of token in
a sequence.

stj = qt · kj (4)

3) Scale the output of the dot-product by dividing it with
√
dk . This is the main difference between Loung’s

attention with the Vaswani’s attention.

ŝt = st ×
1
√
dk

(5)

4) Normalize the scaled dot-product output using soft-
max. The output of this step is a probability distribution

to weigh the v vector as the target context, yielding
a vector wt = 〈wt1 wt2 wt3 . . . wtj〉. Therefore,∑n

j=1 wtj = 1.

wtj =
exp(ŝtj)∑n
j=1 exp(ŝtj)

(6)

5) Finally, perform Hadamard Product (�) between
the probability distribution with the v vector to
get the weighted value vector, as the weight indicates
the amount of attention that exists between the query
and key vector.

yt =
n∑
j=1

wtjvj (7)

Vector yt ∈ Rdv is the output of the scaled dot-product
self-attention mechanism, as explained previously, which
contains the contextual representation of the current token.
Mathematically, the self-attention score of qt against each of
kj and vj in a sequence with n number of tokens is formulated
as (8).

Attn(qt ,kj, vj) =
n∑
j=1

softmax(
qt · kj
√
dk

)vj (8)

Practically, the computation of forward propagation in neu-
ral networks is in a matrix multiplication nature. Instead of
taking the dot-product between the vectors one by one, the
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whole self-attention mechanism can be wrapped into a single
matrix multiplication operation by building Q, K , and V for
query, key, and value matrices, respectively. These matrices
are obtained by multiplying the word embedding matrices of
a sequence Es ∈ Rds×dmodel , with the weight matrices WQ

∈

Rdmodel×dk , WK
∈ Rdmodel×dk , and WV

∈ Rdmodel×dv . The
projected matricesQ ∈ Rds×dk , K ∈ Rds×dk , and V ∈ Rds×dv

are the representational matrices for the sequence. Therefore,
the self-attention mechanism for a single sequence can be
formulated as (9).

Attn(Q,K ,V ) = softmax(
QKT
√
dk

)V (9)

In the self-attention mechanism, each token has one
self-attention score against each token in the sequence.
It makes the output vector tends to contain only a single
context for each token in the sentence. However, it is pos-
sible for certain word has several contextual relations with
more than one word in the sentence. Therefore, multi-head
attention comes as a solution to learning several contexts for
each token, which is modeled in each attention head weight.
The attention head is a hyperparameter in Transformer archi-
tecture. We can set the number of attention heads as needed
based on our data and case. In this paper, the sequence length
ismostly (more than 80%) less than tenwords, and the longest
sequence is 33, so it is less likely that a word has several con-
texts in a sequence. To keep the model’s complexity simple,
the dk and dv are taken from dmodel/H = 128. Thus, the
complexity of multi-head attention with dk = dmodel/H is
the same as a single head with dk = dmodel . The multi-head
attention mechanism can be formulated in a matrix multi-
plication operation, as shown in (10), where h denotes the
attention head, H is the number of the attention head, a is the
index of attention head, and WO is a weight matrix for the
concatenated output from each attention head.

MultiHead(Q,K ,V ) = Concat(h1, . . . , hH )WO (10)

ha = Attn(QWQ
a ,KW

K
a ,VW

V
a ) (11)

The WQ
a ∈ Rdmodel×dk , WK

a ∈ Rdmodel×dk and WV
a ∈

Rdmodel×dv matrices are different weight matrices for each
attention head. In order to obtain the multi-head attention
score, the result of each attention head is concatenated, then
multiplied by a weight matrix WO

∈ Rhdv×dmodel . The
resulting matrix is then passed as an input to the next sub-
layer, which is a fully-connected layer. The overall multi-head
attention mechanism is depicted in Fig. 3.
The fixed sinusoidal positional encoding proposed in

Transformer is not representative enough since it only rep-
resents the distinct position and distance but lacks direction
information. Inspired by the success of bidirectional LSTM,
TENER incorporates direction-aware positional encoding to
give the attentionmechanism ability tomodel which direction
of a certain context comes from [50] and [51], which is then
called AdaTrans. Therefore, the modified formula to obtain
the attention score between query and key vector is shown

in (13) [37], where t is the index position of the current
token and j is the index position of the context token. Fixed
sinusoidal positional encoding PEt in (1) becomes Rt−j in
(12) to represent the relative positional encoding, and Rt−j ∈
Rdk to make it compatible with the word embedding vector
dimension. u and v are learnable parameters to give the model
the ability to distinguish the representation of et,j and et+1,j
from different distances, and ωi is the same term as (2).

Rt−j =
[
. . . sin

(
t − j
ωi

)
cos

(
t − j
ωi

)
. . .

]T
(12)

Arelt,j = QtKT
j + QtR

T
t−j + uKT

j + vRTt−j (13)

Attn(Q,K ,V ) = softmax(Arel)V (14)

Several attention mechanism modifications focus on
injecting more linguistic features into the embedding vec-
tor and the attention computation. However, to the best of
our knowledge, there is no attempt to control the attention
output’s behavior yet. Inspired by [52] where cosine is used
as a normalization function in neural network architecture,
we intended to use cosine similarity to normalize the atten-
tion score. Originally, the output of the attention is scaled
by
√
dk [42], then fed to the softmax function to get the

probability distribution. However, the resulting probability
distribution has only one significant element, which is then
used to weigh the context value vector. Thus, the attention
score will represent exactly one context only. Multihead
attention overcomes this issue by projecting the key, query,
and value vector into several distinct attention heads which
do not share their parameters. Since cosine can smoothen the
probability distribution from the softmax output, we aim to
investigate the use of cosine normalization as a substitute for
the dot-product operation in the self-attention mechanism.
As illustrated in Fig. 4, the probability distribution on the
smaller scale tends to have several significant values com-
pared to the larger one. This slope probability distribution
will capture several attention from the context words’ vector.
Additionally, from the existing NER architecture, we explore
several possible arrangements to find an architecture with the
best performance evaluated on our dataset.

Before performing matrix multiplication between the key
and query vector in the self-attention mechanism, our pro-
posed method first divides these two vectors with their
respective norm and constructs the matrix back. Themodified
self-attention mechanism is depicted in Fig. 5. Since (3)
can be written in the form of (15), then Q̂ and K̂ are the
query, and key matrices constructed from the vectors that
have been divided by their respective norm. Consequently,
we can fully exploit the optimizable matrix multiplication
operation as in the vanilla Transformer architecture. Thus,
the forward propagation is slightly the same, except for the
additional step for dividing the key and query vector by its
norm before performing the matrix multiplication. Therefore,
the attention score between the query and key vector using
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FIGURE 4. Softmax behavior on vectors in different scales.

FIGURE 5. Cosine-based self-attention mechanism. The respective vector
norm is used to scale each row element of Q and K matrices.

cosine similarity can be computed using (16).

cosine(û, v̂) =
u
||u||
·

v
||v||

(15)

Attn
(
qt ,kj, vj

)
=

n∑
j=1

softmax(cosine(q̂t , k̂j))vj (16)

The output of the multi-head attention sub-layer is then
passed to the Add + Norm sub-layer, as shown in Fig. 2 (b).
The term Add in Add + Norm sub-layer means a residual
connection [53] between the previous sub-layer output and
the current sub-layer output before being propagated to the
next sub-layer. This residual connection retains the positional
information from the embedding layer during the computa-
tion to the upper layer of the architecture. The term Norm
refers to LayerNorm [54] to control the value of each sub-
layer output. Afterward, the next sub-layer is the Feed For-
ward Network (FFN) which consists of two linear transfor-
mations with ReLU [55] activation function in between. This
sub-layer is formulated in (17) as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (17)

where W and b is the weight and bias parameter for each
linear layer in FFN, and x is the input vector. The output of
this sub-layer is then passed to a linear layer before being
propagated to the decoder.

D. CONDITIONAL RANDOM FIELD LAYER
In sequence labeling tasks, such as NER, CRF is a com-
mon method used. According to studies, the Hidden Markov
Model and the Maximum Entropy Markov Model (MEMM)
are ineffective at analyzing sentence-level sequences com-
pared to the CRF approach [15]. The main CRF features that
can compute cross-position label combination probability
grab the researchers’ attention to apply this method to the
NER problem. Combining the previous state-of-the-art NER
model, BiLSTM, with CRF has proven to improve perfor-
mance [56]. In this paper, CRF is used as the decoder for
all encoder combinations in our experiment. For an observed
sequence x = 〈x1 x2 . . . xn〉 with the corresponding tar-
get label y = 〈y1 y2 . . . yn〉, let Y be the set of all valid
sequence of labels in the dataset. The probability of the pre-
dicted label from the encoder is computed using (18), where
f (x, yt−1, yt , t) is an arbitrary feature function to compute
the transition score from yt−1 to yt in the sequence x. Let d
be the number of feature functions used, Feat(x, yt−1, yt , t)
is the weighted sum of all transition scores from yt−1 to yt in
the sequence x from each feature function. After getting all
possible paths and their corresponding probability, the Viterbi
algorithm is used to discover ŷ, which denotes the path with
the highest probability, as written in (21).

P (y | x) =
1
Z
exp

[
n∑
t=1

Feat(x, yt−1, yt , t)

]
(18)

Z =
∑
ỹ∈Y

exp

[
n∑
t=1

Feat(x, ỹt−1, ỹt , t)

]
(19)

Feat(x, yt−1, yt , t) =
d∑
j=1

wjfj(x, yt−1, yt , t) (20)

ŷ = argmax
y
P(y | x) (21)

IV. EXPERIMENTAL RESULT AND ANALYSIS
In this section, we give the details of the long process of
dataset preparation which consists of data collection, decryp-
tion, extraction, cleansing, entity type identification, anno-
tation rules definition, data annotation, and train test split-
ting. We then describe the experiment settings we used to
get the experimental results. Furthermore, we discuss the
performance of our proposed method with several attention
mechanism arrangements. We then compare the performance
of our proposed method with other baseline models. Finally,
we disclose the research challenges and limitations we
encounter throughout the experiment. The experimental code
along with the dataset is available on a GitHub repository.2

2https://github.com/swardiantara/droner-cosine
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FIGURE 6. Data collection and extraction using Autopsy. The highlighted folders are the location of the flight log files containing human-readable
messages.

A. DATASET PREPARATION
To the best of our knowledge, there are no publicly available
NER datasets in the drone forensic domain yet. For this
reason, a new dataset is constructed for the experiment in this
paper. However, there is an open drone forensic image dataset
publicly available provided by VTO Labs Drone Forensic
Program.3 Therefore, the first step in dataset preparation was
the data extraction process. From the total of 82 drone images
from 10 different models, we choose 60 drone images from
three drone models, i.e., DJI, Parrot, and Yunnec, to extract,
simply because these threemodels are themajority among the
available models. As of March 2021, DJI had a market share
of 76%, based on the sale volume. Thus, most of the consumer
and commercial drones in the market are DJI-made [57].

The drone images are stored in several different formats,
such as.ZIP,.001, and.BIN. These images are acquired from
the controller devices, which are considered the primary
evidence close to the owner and contain incident-related
information [58]. After exploring the drone images with the

3https://www.vtolabs.com/drone-forensics

help of Autopsy4 and DJI Phantom Help5 for extracting and
decrypting, Autopsy was used to extract the drone images file
from the Android-based controller with.001 and.BIN exten-
sions. The Autopsy is also used to decrypt the files inside
the.ZIP files obtained from the iOS-based controller devices.
Fig. 6 shows the Autopsy interface when extracting a drone
forensic image acquired from an Android-based controller
device. The green boxes denote the path of the flight log
files stored. Sometimes,/dji.go.v4/ appear in a different
folder name, i.e., /dji.pilot/. Both of the folders possi-
bly exist at the same time in a single drone forensic image.

The only data taken from the drone images were
human-readable log messages in order to perform entity
recognition. To find this kind of data, we explore the drone
images directory, which potentially contains human-readable
log data. We found it in the flight log data. Then, we try
to find all the locations of flight log data in all directories
of every drone image we have downloaded and extracted.
Unfortunately, we did not find the expected data fromYuneec

4https://www.autopsy.com/
5https://www.phantomhelp.com/LogViewer/upload/
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FIGURE 7. Difference between IOB2 and BIOES annotation scheme for the same log message. The labels are assigned using the contextual tagging
procedure.

TABLE 1. Number of extracted messages from every drone model.

and Parrot models. Therefore, the only model that contains
the data is the DJI. After collecting the flight log files, we use
DJI Phantom Help tools to decrypt the files and get the plain
data, which then is parsed to get the log message data. The
number of messages from every drone image is shown in
Table 1.

The next step is identifying the entity type mentioned in
the drone log messages. Before reading the log messages,
we filtered the duplicate message and got the unique message
to read. After carefully reading the unique log message and
comprehensively studying what every log message indicates,
we categorized the entity types mentioned in the flight log
message into six groups, i.e., Component, Action, Parameter,
Function, State, and Issue. These entity types are used as
the label for every word in a message after performing data
annotation.

Annotation is a process of assigning a label to each data
point in order to train a supervised model. In this case, the
log message is the data that will be annotated. To demonstrate
the power of contextual learning in the Transformer encoder,
two annotation procedures are used to label the data, i.e.,
contextual tagging and consistent tagging. Consistent tagging

refers to assigning a label to a word by only considering the
token and ignoring the context within the sentence. Contrary,
contextual tagging assigns a label to each word in a sentence
by considering the present context. The following are several
criteria for the annotation process on each entity type.

A ‘‘Component’’ label will be assigned to a span that
indicates drone components, such as motors, sensors, and
batteries. If the span is indicating of an action taken by
the drone, then it will be assigned the ‘‘Action’’ label. The
‘‘parameter’’ label is assigned to the span, which indicates
some variables stored in the drone, such as maximum flight
distance, maximum flight altitude, and battery temperature.
Every drone type has features or functions supporting the
task given to it. Some example of span indicates function is
obstacle avoidance, obstacle sensing, and remote controller
settings. This type of span is assigned the ‘‘Function’’ label.
Some spans indicate a drone’s mode, such as sport mode,
auto landing mode, and quick shot mode. These spans get the
‘‘State’’ label. Lastly, the ‘‘Issue’’ label is assigned to a span
that indicates flight issues that happen to the drone during a
flight.

Before assigning the label to each word, we first tokenize
the sentence into tokens using tecoholic6 tools. Then, the
same tool is used to perform the data annotation process.
IOB2 is used as the annotation scheme since IOB2 is one
of the typical schemes in the NER task [59]. However, the
BIOES scheme is proven can improve the NER model’s
performance [37]. Therefore, after finishing the annotation
using the IOB2 scheme, a python script is used to convert the
annotation into a BIOES scheme. We manually annotate the
unique message only by carefully reading the context of the
sentence first. Fig. 7 shows a sample of annotated data using
the IOB2 and BIOES scheme in CoNLL format. Sometimes,
a particular span belongs to two or more alternative entity
types’ tags. For this confusing span, we chose the longest
span as the context of the mentioned entity. The ‘‘battery
temperature’’ span is given the Parameter label for contextual
tagging. However, for consistent tagging, the Component
label for the word ‘‘battery’’ and the Outside label for the
word ‘‘temperature’’ is assigned, respectively. Additionally,
for the ‘‘battery signal error’’ span, the Issue is assigned for
those three tokens considering the context. Nevertheless, con-
sistent tagging assigns each token the Component, Outside,
and Issue labels, respectively. After completing the label for
all unique messages, we do the annotation for all messages

6https://tecoholic.github.io/ner-annotator/
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FIGURE 8. Results of using contextual and consistent tagging procedure on a log message using the IOB2 scheme. The striking difference lies in the
‘‘Main Controller Settings’’ span.

TABLE 2. Number of message, token, and entities in the consistent and
contextual dataset.

by using the labeled unique message as a lookup dictionary.
Fig. 8 shows the annotation results using consistent and con-
textual tagging procedures.

After completing the annotation process, the dataset is split
into train and test sets. Unlike the usual splitting method,
we split the dataset based on the drone types. The first nine
drone models in Table 1 are the train set, while the last four
are used as the test set. By doing this, the train and test sets are
generated from completely different dronemodels. Assuming
that every model has its own features and functionalities,
which vary among them, then the generated log messages
will be different as well. However, since all the drones are
DJI make, the test set is chosen from the most advanced type
to make the test set contains log messages that do not exist
in the train set. Because the features and functionalities in a
more advanced model will not be in a less advanced model,
so do with the generated log messages.

As the final result of data preparation, the distribution of
every entity type in the train and test set of the annotated
datasets is shown in Table 2 and Table 3. The final composi-
tion of the dataset is 76:24 for train and test sets, respectively,
from a total of 1850 log messages. The final proportion is
uncontrollable since the splitting is done based on the drone
models instead of directly dividing the message into a certain
common ratio used in existing research.

B. EXPERIMENT SETTINGS
The experiment was conducted using the publicly available
code provided by TENER’s original paper [37]. Therefore,
the only requirement to install is fastNLP library.7 We mod-
ified the code to implement the proposed method. While the
hardware specification is as follows: Intel Core i7-8700 @
3.2GHz, 16GB RAM, NVIDIA GeForce GTX 1060 6GB,
and Ubuntu 20.04 LTS operating system.

The dimension of the input vector is 768, divided into eight
attention heads with 96 as the dimension for each head and

7https://fastnlp.readthedocs.io/

TABLE 3. Per entity type token distribution.

three encoder layers in the Transformer architecture. Both
train and test batch size is 8, with a learning rate of 0.001 and
with awarm-up step of 0.01.We set the dropout to 0.15 except
for the fully-connected layers, which used 0.4. The intermedi-
ate fully-connected layers are sized 1536 dimensions. These
parameters are inspired by Transformer [42] and TENER [37]
original papers. The number of epochs we used is 50 because
it has already provided convergence, as shown in Fig. 11.
Three char-level embeddings, such as LSTM, CNN, and
AdaTrans, were combined with two word-level embeddings,
GloVe and BERT, to provide input for the encoder layer.
In the Transformer encoder, three different attentions are
employed combined with options whether to scale or unscale
the attention score in the self-attention mechanism. Finally,
the CRF is the only decoder used.

Several scenarios which used BiLSTM as the encoder are
designed for the experiment based on the published reference
as the baseline methods for comparison. The combination of
arrangements from the available options of word embedding,
char embedding, and the attention type are presented in the
following subsection, along with the results. We freeze the
BERT embedding to avoid the domination of the attention
mechanism used in the BERT pretraining phase. Therefore,
BERT parameters will not be updated during the training.
We ran the experiment three times for each scenario and took
the average as the final evaluation score.

The evaluation mechanism used in this experiment is the
span-oriented paradigm. It means the predicted tag is eval-
uated on the entity type level instead of on the tag level.
Therefore, if the predicted entity type is correct, even if the tag
is not strictly correct, the predicted token is considered True
Positive. For example, if the true label is B-Component, while
the predicted label is I-Component or vice versa, we count the
predicted label as True Positive.

Precision, Recall, and F1 score are used as the evaluation
metrics after counting the true positive (TP), false positive
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TABLE 4. Performance evaluation of all scenarios on the dataset
annotated using consistent tagging with AdaTrans as the char-level
embedding. The best score is indicated in bold font. BERT and GloVe are
used as word embedding.

(FP), and false negative (FN) for each label. Since there are
seven labels in the dataset with an imbalance proportion,
we use the micro-average approach to compute the final
evaluation score. The formula for per entity type precision,
recall, and F1 are shown in (22), (23), and (24), respectively,
where c is the entity type, and C is the total number of entity
types exists in the dataset. Micro-average for the precision
and recall are identical to the per class formula, but the TP, FP,
and FP are the sum from all classes as in (25) and (26). While
(27) is used to calculate the micro-average F1 score. For all
of these evaluation metrics, we used the pre-defined function
SpanFPreRecMetric in fastNLP library.8 The ε symbol
is a small number to avoid division by zero error, while β is a
term to weigh between precision and recall in order to obtain
the F1 score. In this paper, we use ε = 1e− 13 and β = 1.

pre =
TP

TP+ FP + ε
(22)

rec =
TP

TP+ FN + ε
(23)

F1 =
2× (pre× rec)
pre+ rec + ε

(24)

premicro =

∑C
c=1 TPc∑C

c=1 TPc +
∑C

c=1 FPc + ε
(25)

recmicro =

∑C
c=1 TPc∑C

c=1 TPc +
∑C

c=1 FNc + ε
(26)

F1micro =
(1+ β)× premicro × recmicro

β × premicro × recmicro + ε
(27)

C. RESULTS ON DIFFERENT ANNOTATION RULES
This subsection presents all the possible arrangements from
the available options of character embedding, word embed-
ding, and attention mechanism. Since two types of datasets
are constructed, every architectural arrangement is tested on
these two datasets. Table 4 to 6 shows the first dataset’s eval-
uation scores, which were annotated using a non-contextual

8https://fastnlp.readthedocs.io/zh/latest/fastNLP.core.metrics.html

TABLE 5. Performance evaluation of all scenarios on the dataset
annotated using consistent tagging with LSTM as the char-level
embedding. The best score is indicated in bold font. BERT and GloVe are
used as word embedding.

TABLE 6. Performance evaluation of all scenarios on the dataset
annotated using consistent tagging with CNN as the char-level
embedding. The best score is indicated in bold font. BERT and GloVe are
used as word embedding.

tagging procedure. The model with the best performance is
highlighted a bold font. The presented scores in the tables
contain both proposed and baseline models. Each table rep-
resents a scenario that is grouped based on the character
embedding used, as Table 4 shows the models employing
AdaTrans for extracting character embedding. Subsequently,
Table 5 and 6 show themodels’ architecture where LSTMand
CNN were used as the character embedding, respectively.

From the evaluation score presented in Table 4 to 6, the
best performance was achieved by GloVe – Scaled AdaTrans
combination with an 87.771% F1 score. AdaTrans atten-
tion consistently achieves the highest score for all character
embedding and word embedding options. GloVe outperforms
the BERT embedding evaluated on the non-contextual dataset
for all scenarios. This is because the first dataset has con-
sistent tagging, meaning that a word has a consistent tag
for all different contexts in the dataset. It complies with the
GloVe behavior, where each word has exactly one representa-
tional vector. BERT – Scaled Transformer achieved the best
overall performance for the second dataset with a 91.348%
F1 score. The annotation procedure in the second dataset
complies with the contextual representation resulting from
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TABLE 7. Performance evaluation of all scenarios on the dataset
annotated using contextual tagging with AdaTrans as the char-level
embedding. The best score is indicated in bold font. BERT and GloVe are
used as word embedding.

BERT embedding, where everyword has one representational
vector for each distinct context in the dataset. This claim
is supported by the experimental results shown in Table 7
to 9, where the scenarios that utilized BERT as the word
embedding outperform the models that employed GloVe as
the word embedding. As the dataset annotated using contex-
tual tagging procedures better represents the semantics of a
span, the following subsection discusses only the results of
the contextual dataset.

D. ATTENTION MECHANISM IN COMPARISON
An attention-based model has been widely used in NLP
research to model the context between words within a sen-
tence. In this experiment, we investigate three different atten-
tion mechanisms to recognize mentioned entities in drone
log messages. After conducting an extensive experiment,
we obtain the results as shown in Table 4 to 9. The architec-
ture arrangements are inspired by the TENER paper, which
proposed AdaTrans to extract character-level features and
incorporate relative positional to the attention layer. How-
ever, several scenarios have not been reported yet. There-
fore, we experiment to find the best architecture to use on
our dataset. The details explanation of every scenario is as
follows.

Overall, the model’s architecture consists of five layers,
i.e., positional encoding, char embedding, word embedding,
encoder, and decoder. Relative positional encoding proposed
in TENER is used to reproduce the AdaTrans’ unexplored
scenarios. To obtain character-level embedding, either CNN,
LSTM, or AdaTrans is utilized in every scenario as listed
in Table 7 to 9. For the pre-trained word embedding, either
GloVe or BERT is used to obtain the words’ vector repre-
sentation. Unscaled attention is reported to be better used in
NER since mentioned entities commonly consist of a few
words only [37]. Thus we experiment with every attention
type with the scaled and unscaled scenario in the encoder
layer, including the AdaTrans encoder. The employment of
CRF can undoubtedly improve the performance of a NER

TABLE 8. Performance evaluation of all scenarios on the dataset
annotated using contextual tagging with LSTM as the char-level
embedding. The best score is indicated in bold font. BERT and GloVe are
used as word embedding.

TABLE 9. Performance evaluation of all scenarios on the dataset
annotated using contextual tagging with CNN as the char-level
embedding. The best score is indicated in bold font. BERT and GloVe are
used as word embedding.

model [56]. Thus CRF is used as the decoder for all scenarios
arrangements.

The CNN-BERT-Scaled Transformer outperforms the
other scenario with a 91.348% F1 score. This score is slightly
higher than the unscaled Transformer. We assume this slight
difference is because of the dataset size, so the effect of either
using scaling or not is insignificant. The AdaTrans-based
encoder is considered a baseline model, which will be dis-
cussed in the following subsection. Our proposed model that
uses cosine similarity instead of dot-product operation in
the self-attention mechanism underperforms the Transformer
with a competitive F1 score of 91.146%. This shows that the
cosine similarity is able to model the context between words
in a sentence, just like the dot-product intuition in the self-
attention mechanism.

The presence of contextual pre-trained word embedding
has positively impacted NLP research recently. The main
advantage of contextual over static pre-trained word embed-
ding is the ability to generate a unique representational
vector of a word for each distinct context within two or
more different sentences. In this experiment, these two types
of pre-trained word embeddings were employed. From the
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FIGURE 9. Message length distribution in the dataset.

FIGURE 10. Comparison between different encoders with the best
performance on the test set of the contextual dataset.

results reported in Table 7 to 9, the involvement of either con-
textual or static embedding significantly affects the model’s
performance evaluation score. This can be seen from the
dot-product attention performance, with a 3.782% difference
between the best dot-product attention that uses BERT and
GloVe. This significant difference is also happening to the
cosine attention, with a 3.899% difference. The other sce-
narios show consistent results, where a model with static
and contextual pre-trained word embedding has a significant
difference in the evaluation score. The process of capturing
context that exists between words in a sentence also occurs
in the encoder layer, which is performed by the self-attention
mechanism. Therefore, the representational vector obtained
from the static embedding is undergoing a refinement process
in the encoder layer. Eventually, the words’ vectors from the
embedding layer went through a contextual learning pipeline,
just like what the contextual pre-trained word embedding has
done. Contextual vector representation from BERT fits the
intuition of contextual learning in the self-attention mech-
anism by means that the contextually related words within
a sentence are close to one another in the representational
space. Therefore, using a static and contextual embedding
in a Transformer-based model resulted in significantly differ-
ent evaluation scores. Nevertheless, the experimental results

FIGURE 11. Convergence speed of the best model for each encoder on
the train set of the contextual dataset.

show an insignificant effect of using different character-level
embedding on the models’ performance.

The scale factor implemented in scaled dot-product atten-
tion, as proposed in the vanilla Transformer, has been argued
better not be used in the NER task [37]. The reason is to
sharpen the probability distribution yielded by the softmax
in the self-attention mechanism. The sharper the attention,
the fewer contexts are captured by the attention, aligning to
the span length of mentioned entities commonly exist [37].
However, the experimental results in Table 8 and 9 show a
contradictive point. Consider the following points. First, the
average sentence length is 6.3 and 8.8 in the train and test
sets, respectively. Secondly, the sentence length is dominated
by lengths ranging from one to ten, with more than 80% of
the portion, as shown in Fig. 9. Thus, it is unlikely that the
sentence contains several contexts. Therefore, unscaled atten-
tion is supposedly better if used instead of scaled attention.
However, the experimental results demonstrated the contrary
on dot-product and AdaTrans attention. The scaled attention
for dot-product and AdaTrans attention achieved better per-
formance than unscaled ones. Contrary, the cosine has better
performance with unscaled attention. As shown in Fig. 5, the
element-wise norm scale operation played the same role as
the scale factor in scaled dot-product attention. Therefore,
a scaling factor is needed in the self-attention mechanism and
has proven to improve the model’s performance compared to
unscaled attention.

E. COMPARISON WITH OTHER BASELINE MODELS
To verify the superiority of our proposed methods, we com-
pare the proposed models with several baseline models,
as shown in Fig 10. The detailed architecture for each encoder
is as follows: CNN-BERT-Scaled Transformer, AdaTrans-
BERT-Unscaled Cosine, AdaTrans-BERT-Scaled AdaTrans,
and AdaTrans-BERT-BiLSTM. For all of these encoders,
CRF is used as the decoder. In terms of convergence speed,
as depicted in Fig. 11, the proposed method converges as
fast as Transformer and AdaTrans. Moreover, cosine atten-
tion outperforms the BiLSTM model. From the F1 score,
our proposed method achieves the second-best performance
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FIGURE 12. Illustration of highlighted entities mentioned in a flight log message. The color highlight is used to help the investigator pinpoint the critical
information within a log message.

with a 91.146% F1 score. This model uses the AdaTrans
as the character-level feature extractor, concatenated with
the output of BERT as the pre-trained word embedding
to get a word-level feature vector. The unscaled cosine
attention is used as the encoder and CRF as the decoder.
The scaled Transformer model achieved the best perfor-
mance, with a 91.348% F1 score. This scenario consists of
CNN char embedding, BERT word embedding, scaled dot-
product attention, and CRF as the decoder. In comparison, the
unscaled AdaTrans attention is in the third position, accom-
panied by AdaTrans as the character embedding and BERT as
the word embedding, with a 90.514% F1 score. This proves
that the relative attention mechanism is unsuitable for our
case since our dataset has a relatively short sequence, with
6.3 and 8.8 words in length on average in train and test data,
respectively.

Our proposed model underperforms the scaled dot-product
attention with a 0.202% difference in the F1 score. How-
ever, from the recall score, our proposed model outperforms
all the baseline models with a 93.612% recall score. This
shows that the proposedmethod has the lowest False Negative
rate, where the number of misclassification on entities are
small. It means that the mentioned entities in the datasets are
mostly correctly classified. Therefore, the proposed method
successfully recognizes the region of interest in the log
message.

The evaluation score indicates that the proposed model
can recognize mentioned entities in flight log message data.
When a forensic investigator conducts an evidence analysis
process, plenty of evidence must be examined, analyzed,
and evaluated. To this end, presenting the NER result in a
sophisticated visualization can help the investigator pinpoint
the region of interest in flight log data faster. Fig. 12 shows a
sample log message that has been fed to the NER model in a
visualization form to assist the forensic investigation. Having
the mentioned entities highlighted with a particular color, the
investigator can ignore the message with no highlights and
focus only on those with color highlights. The color can be
set to represent a level of importance. For instance, red can be
used to highlight the Issue entity type. The highlight can help
the forensic investigator find a message containing words or
phrases with the Issue label.

F. CHALLENGES AND LIMITATIONS
After conducting the experiment, we described several chal-
lenges in the following. Since drone forensics is a relatively
new research domain, a few open drone image datasets are
available. We only found one drone image dataset, the VTO
Labs Drone Forensic dataset. Even from 15 different mod-
els and more than 20 datasets, we only discover less than
2000 log messages. Moreover, the dataset does not contain
any specific drone incident scenario. It implies that no ground
truth can be used to test the proposed method regarding the
forensic investigation, finding, and reporting view. Since this
is an initial attempt on NER for drone forensics, there are few
references, datasets, and domain-specific knowledge, such
as entity types related to incidents and regions of interest
in drone log messages. Therefore, many opportunities are
opened by this attempt in the future, which will be our next
project. Considering the time needed to perform a thorough
analysis for one drone model, it is unrealistic to include other
drone models. Besides, DJI has the largest market share, and
the availability of a public dataset is one of the considerations
for this research to be verifiable and reproducible.

V. CONCLUSION AND FUTURE WORKS
In this research, we have experimented with the employ-
ment of cosine similarity as a substitute for dot-product
self-attention in the encoder sub-layer of Transformer archi-
tecture. To evaluate our proposed approach, we construct
our own NER dataset by manually extracting several drone
forensic image datasets that are publicly available from the
VTO Labs. For a relatively small dataset, we obtain a good
result indicated by the F1 score of 91.348% achieved by the
dot-product attention supported by CNN character embed-
ding and BERT word embedding. Our proposed approach
outperforms the RNN-based state-of-the-art by achieving the
F1 score of 91.146%. The proposed model can achieve high
scores even if the test data are generated from different drone
models. This proves that NER can be used as an extraction
tool to assist the forensic investigation by only utilizing the
log message data to recognize some incident-related infor-
mation.

We plan to further analyze the trade-off between the con-
vergence speed with the decrease in the number of parameters
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in the simpler architecture when using cosine as the attention
type. Since the number of epochs is a one-time cost, and
the inference time is a repetitive cost, we plan to explore
further how many epochs are needed to train the simpler
model having fewer parameters after employing the cosine
in the self-attention sublayer without losing performance.
As this research is still an initial step in information extrac-
tion, we plan to deploy the NER model so that it can be used
as a practical solution for the forensic investigator.
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