IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 12 December 2022, accepted 28 December 2022, date of publication 5 January 2023, date of current version 11 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3234775

== RESEARCH ARTICLE

Local Fitness Landscape Exploration Based
Genetic Algorithms

RAHUL DUBEY !, SIMON HICKINBOTHAM', MARK PRICE"2,
AND ANDY TYRRELL"'!, (Life Senior Member, IEEE)

! Department of Electronics Engineering, University of York, YO10 5DD York, U.K.
2School of Mechanical and Aerospace Engineering, Queen’s University Belfast, BT9 SAH Belfast, U.K.

Corresponding author: Rahul Dubey (rahul.dubey @york.ac.uk)
This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) Programme under Grant EP/V007335/1.

ABSTRACT Genetic algorithms (GAs) have been used to evolve optimal/sub-optimal solutions of many
problems. When using GAs for evolving solutions, often fitness evaluation is the most computationally
expensive, and this discourages researchers from applying GAs for computationally challenging problems.
This paper presents an approach for generating offspring based on a local fitness landscape exploration to
increase the speed of the search for optimal/sub-optimal solutions and to evolve better fitness solutions.
The proposed algorithm, “Fitness Landscape Exploration based Genetic Algorithm” (FLEX-GA) can be
applied to single and multi-objective optimization problems. Experiments were conducted on several single
and multi-objective benchmark problems with and without constraints. The performance of the FLEX-based
algorithm on single-objective problems is compared with a canonical GA and other algorithms. For multi-
objective benchmark problems, the comparison is made with NSGA-II, and other multi-objective opti-
mization algorithms. Lastly, Pareto solutions are evolved on eight real-world multi-objective optimization
problems, and a comparative performance is presented with NSGA-II. Experimental results show that using
FLEX on most of the single and multi-objective problems, the speed of the search improves up to 50% and
the quality of solutions also improves. These results provide sufficient evidence of the applicability of fitness
landscape approximation-based algorithms for solving real-world optimization problems.

INDEX TERMS Genetic algorithms, fitness landscape approximation, multi-objective optimization, evolu-
tionary search.

I. INTRODUCTION

Genetic algorithms (GAs) are population-based optimiza-
tion techniques that have been successfully used to tune
parameters to maximize or minimize the fitness of non-linear
problems [1], [2], [3]. Population-based algorithms typically
begin with randomly generated candidate solutions and use
selection and recombination operators to generate offspring
for the next generation. These reproduction operators do not
utilize the local fitness gradient to produce the offspring [4],
and thus do not exploit any potential advantages from the
fitness landscape (FL) that could be used to generate or select
offspring with better fitness characteristics. The complete
fitness landscape of a problem can be obtained by mapping

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen

3324 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

all possible genotypes/solutions to their respective fitnesses.
This approach is similar to “brute-force search™ in that it
gives a complete picture of the mapping but is computation-
ally expensive. Often for real-world complex problems, the
process of fitness evaluation of a genotype is computationally
expensive, and this discourages researchers from applying
GAs with fitness landscape analysis capabilities to compu-
tationally challenging problems. Each solution created by a
genetic algorithm has information (a single position on the
FL), and the availability of this information for a population
of individuals could be used to model the local FL. more
efficiently. This contribution is motivated by the idea that the
speed or quality of search for optimal/sub-optimal solutions
could be improved by appropriate modelling of the local
fitness landscape around each generation in an evolutionary
run.

VOLUME 11, 2023

https://orcid.org/0000-0003-1524-7797
https://orcid.org/0000-0002-4551-4457
https://orcid.org/0000-0002-8533-2404
https://orcid.org/0000-0002-1515-4243

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

IEEE Access

In this paper, a generic ““Fitness Landscape Exploration”
(FLEX) based genetic algorithm is presented that uses infor-
mation from the local fitness landscape of a given problem.
The aim is to generate some of the offspring of the next
generation via FLEX alongside those generated via the con-
ventional genetic algorithm methods, but without increasing
the overall time complexity of the GA. For local fitness
landscape analysis, a genome vector is created and a fitness
vector is computed corresponding to the genome vector, and
these are used to approximate the local fitness landscape.

A genome vector is an n-dimensional vector, where 7 is the
input dimension of the problem, obtained using two neighbor-
ing candidate solutions. A fitness vector is a m-dimensional
vector computed by taking the difference of the fitnesses
of the two candidate solutions, where m is the number of
objectives. Since the genome and fitness vectors can be com-
puted for any m-objective problem, this approach is appli-
cable to single and multi-objective optimization problems.
However, this paper only considers one, and two-objective
problems. To approximate the local fitness landscape with
sufficient accuracy, the distance between two solutions in the
search/design space must be small [5]. Thus, solutions using
FLEX should be encoded in real parameters (not binary)
so that simulated binary crossover (SBX) can be used to
exchange information between two selected candidate solu-
tions. SBX allows the euclidean distance between parents
and the newly generated offspring to be controlled using the
spread factor as described in the NSGA-II algorithm [6].

Novel genetic algorithms using the FLEX concept can
be derived for single and multi-objective problems. In order
to verify the hypothesised performance improvements, the
proposed FLEX-based genetic algorithms are compared with
several other algorithms for both single and multi-objective
problems. For single-objective problems, a simple GA is
the base algorithm and is augmented using fitness land-
scape exploration to derive the proposed FLEX-GA. The
performance of FLEX-GA is compared with a canonical GA,
Differential Evolution(DE) [7], Particle Swarm Optimization
(PSO) [8], and Evolutionary Strategies (ES) [9].

In the case of multi-objective problems, NSGA-II [6]
is the base algorithm, and the version proposed in this
paper is FLEX-NSGA-II. Additionally, the performance
of the proposed FLEX-based approach with the baseline
NSGA-II, multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [10], Strength Pareto Evolution-
ary Algorithm-1I (SPEA-IT) [11], and Adaptive Geometry
Estimation based MOEA (AGE-MOEA) [12] are compared
on benchmark and real-world problems. Experiments were
conducted on 10 single-objective constrained optimization
problems from the IEEE CEC-2006 competition [13], 5 two-
objective test benchmark problems [6], and on eight real-
world two-objective problems [14]. Results indicate that
FLEX-GA generally takes fewer functional evaluations to
find better solutions than other algorithms on more than half
of the problems, and is inferior only in a few. These results

VOLUME 11, 2023

demonstrate the effectiveness of augmenting the capabilities
of existing GAs with fitness landscape exploration.

The three main contributions of this paper are as follows:
1) a GA that incorporates the linear approximation of local
fitness landscape, called “FLEX-GA” is introduced, which
enhances the speed of search for solutions and evolves better
quality solutions compared to standard GAs, 2) it is shown
how the proposed algorithm generalizes and is applicable
to single and multi-objective optimization problems, and
3) The proposed FLEX approach does not increase the time
complexity of the base algorithm.

The remainder of this paper is organized as follows.
Section II describes prior work in fitness landscape analysis-
based evolutionary algorithms. Section III describes the
details of FLEX and local fitness landscape approximation.
Section IV presents the details of FLEX-GA and also com-
pares the results obtained using FLEX-GA, and other algo-
rithms on single-objective benchmark problems. Similarly,
section V presents FLEX-NSGA-II and compares the perfor-
mance of different algorithms on two-objective benchmark
problems. Finally, the last section VI provides conclusions
and discusses future work.

Il. RELATED WORK

The concept of the fitness landscape were studied by
Wright [15] to emphasize the dynamics of evolutionary opti-
mization. FL analysis can provide useful insights on a given
problem [16] and is defined by a search space, objective func-
tion, and neighborhood operators [17]. Mathematically, an FL
(S, f, d) of a problem is composed of a set of samples/points
S, the fitness f assigned to each the samples, and a distance d
between samples, which together define the spatial structure
of the landscape [18]. In this paper, the values of S, f and d are
used to estimate the local fitness landscape, but the samples S
are taken from the current population. A number of research
articles have been published that discuss how FL information
can be utilized to improve the performance of algorithms,
reviewed in [5].

The FL analysis presented by Ochoa [19] highlights the
motivation for using FL analysis with case studies. An FL
may contain valleys, peaks, ridges, plateaus, and landscapes
that could be combinations of smooth and rugged regions.
This information, if available, can be utilized to enhance the
speed of the search. Earlier, in 1998, Ratle [20] studied how to
accelerate the convergence of evolutionary algorithms by fit-
ness landscape approximation. The author in that paper used
a statistical model, Kriging interpolation, to approximate the
fitness landscape using samples/ data points from the first
generation and used this approximated FL model for evaluat-
ing individuals for the next few generations before updating
the model again. The author created a surrogate model to
approximate the fitness evaluator (which is computationally
expensive) to compute the fitness of individuals. Note that
it is difficult to approximate the entire FL using a small
number of samples generated during evolution [5] and thus

3325

IEEE Access

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

the approximated model does not best represent the actual
fitness evaluator. FLEX-GA shares the same motivation of
accelerating the convergence of evolutionary algorithms but
without using surrogate models.

Recent trends [21] and a survey [5] show the effective-
ness of different local/global fitness landscape approximation
techniques and their usefulness in different domain-specific
problems. For evolutionary search enhancement, Yan [22]
presented a method based on dimensionality reduction for
fitness approximation and used a Fourier transform to obtain
frequency information of the fitness landscape to drive the
search acceleration. Huang [23] presented a self-feedback
strategy for differential evolution using the FL to improve
the performance of the algorithm. Takagi [24] proposed a
method of estimating the convergence point using the solu-
tions of different generations and used this convergence point
to accelerate the search process. Yang [25] presented a genetic
algorithm back-propagation neural network algorithm that
uses the FL to improve solutions. They use the fitness land-
scape analysis to optimize the learning rate of the back-
propagation algorithm, and the GA evolves a population of
solutions.

Cheng [26] used FL approximation and local search meth-
ods for finding solutions to multi-objective multi-modal prob-
lems. For multi-modal problems, niching approaches have
been used to preserve diverse solutions. Authors [26] show
how a multi-objective multi-modal problem can be recast as
a uni-model multi-objective problem, and using FL approx-
imation, all optimal solutions/peaks can be obtained in a
single run. Tan [27], [28] presented an adaptive mutation
strategy based on FL analysis for differential evolution. These
approaches gather information about the FL during the evolu-
tionary search and use them in subsequent generations. When
solving an optimization problem, FL analysis can be used to
take advantage of the underlying structure of a given problem
where the structure is defined by the search space, objective
function, and neighborhood operator. Traore [29] presented
the fitness landscape footprint, a framework (tool) to compare
search problems. Using the tool, the degree of difficulty of
a network architecture based search of the fitness landscape
is evaluated, with the aim of finding a better architecture in
fewer training cycles.

Techniques based on fitness landscape analysis have been
used not only for parameter tuning but also for traveling sales-
man problems (TSP) and to understand different machine
learning problems [30]. Yafrani [31] presented FL analy-
sis of TSP using Local Optima Networks (LONSs) (origi-
nally presented in [32]). Matheus [33] analyzed the fitness
landscape to characterize the search space explored by neu-
ral architecture search methods for graph neural networks.
In recent years, evolutionary algorithms have been used as
a tool for Neural Architecture Search (NAS) by encoding
convolutional/recurrent neural network (CNN/RNN) archi-
tectures in genomes [34], [35], in evolving strategies to win
intense war simulation games [36], physical simulation [37],
manufacturing process [38], and other expensive-to-evaluate

3326

Algorithm 1: FLEX Based Genetic Algorithms
Input : Pop, Gen, Py, Py, A

1 Py < Initialize(Pop)

2 Evaluate(Py)

3 for ¢ in Gen do

s | Pe=11

5 for i in A do

6 P1, P2, €1, ¢ = Reproduction(Py)
7 Evaluate(cy, ¢2)

8 P..add(cy, ¢2)

9 i=i+?2

[y
=)

cn = LFLA(Ip1, p2], [c1, c2])
for j in len(c,) do

-
-

12 if i < A then

13 Evaluate(cy))

14 P..add(cy))

15 i=i+1

16 end

17 end

18 end

19 P:+1 < NextGenlIndividuals(P;, P;)
20 end

functions [39]. Since all of these problems are computation-
ally expensive, they require a fast search algorithm that can
find optimal or near-optimal solutions through fewer func-
tional evaluations. Both FLEX-GA and FLEX-NSGA-IT have
potential applications in these domain-specific problems.

In this paper, canonical genetic algorithms are modified
without increasing the time complexity of the algorithms.
FL information is leveraged to generate new offspring to
increase the speed of the search and/or to find optimal/near-
optimal solutions to encourage researchers to apply GAs to
more computationally expensive problems.

ill. METHODOLOGY

Genetic algorithms are popular stochastic, gradient-free evo-
lutionary algorithms, that use selection, crossover, and muta-
tion operators to randomly generate new offspring. GAs
have been used extensively to evolve solutions for poorly
understood non-linear problems [1]. In this paper, a u + X
elitist GA is used to preserve good solutions found during
evolution. Readers are advised to use [6] and [40] as refer-
ence algorithms for single and multi-objective optimization
respectively.

A. FLEX BASED GENETIC ALGORITHMS

Algorithm 1 shows the general form of fitness landscape
examination based genetic algorithms where Pop is the pop-
ulation size, Gen is the maximum number of iterations for
evolution, P,, P, are probabilities of crossover and muta-
tion. The algorithm generates new offspring using tourna-
ment selection, SBX crossover, polynomial mutation, and
the proposed local fitness landscape approximation (LFLA)

VOLUME 11, 2023

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

IEEE Access

P |0.20 |0.17 |0.33 |0.79 |0.53 | |0.83 | c |0.18 |0.17 |0.34 |0.81 |0.50 | |0.83 |

c | 0.18 | 0.17 I 0.34 | 0.81 | 0.50 i | 0.83 | "GV | -0.02 | 0.00 | 0.01 | 0.02 | -0.03 | | 0.00 |

U

U

GV | -0.02 | 0.00 | 0.01 | 0.02 | -0.03 | | 0.00 | c’ | 0.16 | 0.17 | 0.35 | 0.83 | 0.47 | | 0.83 |

(@)

(b)

FIGURE 1. Example of genome vector (GV) generated using a parent and a child genome. Here § is one.

approach until A offspring are generated in a generation. Here,
A is the population size.

An FL may contain plateaus, peaks, valleys, and provides
information about both local and global optima. When the
fitness of neighbouring genomes are the same, they create a
plateau region, and this does not help the GA’s crossover and
mutation operators to evolve fitter solutions. However, for a
minimization problem, peaks (low fitness solutions) and val-
leys (high fitness solutions) can provide gradient information
that can be used to determine better fitness solutions in the
search space [19]. These peaks and valleys generally lie on
non-linear surfaces, and due to these non-linearities, it is diffi-
cult to predict the fitness of neighbouring solutions/genomes
reliably.

The FLEX based genetic algorithms presented herein use
a local fitness landscape approximation (LFLA) as shown
in Algorithm 2. In LFLA, a pair of parent (p) and a pair
of child (c) solutions are used to compute a genome vector
locally, a fitness vector/gradient, and LFLA uses these vectors
to generate new offspring. The time and space complexity
of generating a GV is O(n) where n is the length of the
chromosome. However, before using local fitness landscape
approximations a few questions must be kept in mind, 1) since
the fitness landscape is often highly non-linear and deceptive,
following a local vector and fitness vector/gradient may lead
the search to a non-desirable region of the search space,
2) following a local vector and fitness gradient, solutions
may get stuck into local minima, and it would be difficult
to recover or come out of sub-optimal valley/peak, and 3) the
methodology must consider how local FL approximation can
be used to generate offspring for multi-objective problems
where for a genome vector and multiple fitness gradients
exist. This paper attempts to answer these questions.

B. LOCAL FITNESS LANDSCAPE APPROXIMATION
Algorithm 2 presents the proposed local fitness landscape
approximation based technique for generating offspring. The
algorithm takes a pair of parent (pi,p>) and a pair of
child (cy, ¢) genomes and generates new offspring (C,) if
the conditions of the local fitness landscape approximation
satisfy.

p1+p2
2

1
€, e = + 5B8Up2 = p1l) ey

VOLUME 11, 2023

Algorithm 2: Local Fitness Landscape Approximation
(LFLA)

Input :p,c

1 C, = empty list

2 for i in len(p) do

3 idx = Closest Individual(c)
4 d = getDist(p;, Cigx)

5 GV = (ciagx — pi)

6 FV = cigx fit — pi.fit

7 Gradients = A(FV)

8 if d > dy, and Gradients < 0 then
9 C; = Cigy + GV

10 Cy.append (c})

1 end

12 end

13 return Cy,

Equation 1 shows the relationship between p1, p> and ¢y, ¢3,
where pi, p» are the two parents selected from the pop-
ulation of genomes/individuals using a binary tournament
selection, and ¢y, ¢ are the two children generated using SBX
crossover. In this equation, S is the spread factor which is the
ratio of the spread of child points to that of the parent points.

In this context, the spread of points refers to the euclidean
distance between two points. When 8 = 1, the spread of p,
p2 and cq, ¢ are the same whereas for 8 > 1 the distance
between the two child genomes is greater compared to the two
parent genomes and vice-versa for § < 1. Thus, the spread
factor can be varied to generate two children that are close
to the selected parents in the search/design space, allowing
the distance between parents and children to be controlled.
Such solutions are desirable as it allows a linear relationship
between search/design and fitness landscape (linear map-
ping). This type of linear mapping has been studied for local
decision-making in machine learning algorithms [41], [42].
To find a local fitness landscape approximation, two terms,
namely genome vector, and fitness vector are defined. In the
next two subsections, these two terms are explained.

1) GENOME VECTOR
A genome vector (GV) is created by subtracting each gene of
two genomes as shown by Figure 1(a) where a GV (c — p)

3327

IEEE Access

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

V Function Fitness Landscape

0.5

0.4 4

e
w

Fitness
e

b e ——
P —————

1
1
|
|
0.1 1
1
!

0.0

0.0 02 0.4 06 0s 10
variable

(a) Genome Vectors (black arrows)

V Function Fitness Landscape

0.5

0.4 4

e
w

Fitness
e

P —————

b o —— d
b e —— -

1
1
|
|
0.1 1
1
!

0.0

0.0 02 0.4 06 0s 10
variable

(b) New Child (green points)

FIGURE 2. Fitness landscape of V-function. Here, black points show the location of the two parents, red points represent the
location of the two children generated using crossover and mutation operator, and green points represent the two children
generated using genome vector and fitness gradient. The back arrows show the genome vectors.

is created using two n dimensional genomes p and c. The
genome vector is then used to create a new offspring (c’)
according to equation 2 and shown by Figure 1(b). Here,
8 = 1 guarantees that the distance d(p, c¢) is the same as
distance d(c, ¢’). Remember that the distance between p, ¢ is
controlled by the spread factor 8, and in order to make linear
approximation (locally) d(p, ¢) must be small. Thus, 8 ~ 1is
recommended.

d =c+8GV ()

In the equation 2, GV is a vector, § is a scalar, and thus the
distance between each gene of p, c and ¢, ¢’ is the same. How-
ever, varying the § for each gene may guide the evolutionary
search to more promising regions in the search space. A study
of the effect of varying é for each gene is for future work.
The next subsection explains the fitness vector, gradient, and
how the fitness gradient decides whether to generate a new
offspring using a genome vector.

2) FITNESS VECTOR AND FITNESS GRADIENT

Similar to the GV, a fitness vector (FV) is computed by
subtracting two neighbouring genomes’ fitness (fo — fp).
Equation 3 provides a fitness vector computed using p’s and
's 2-dimensional fitness, and Equation 4 shows the gradient
of fitness with respect to each objective.

Jp = (1. fp2)
Je = {(fe1,Je2)
FV = {f1,2) = (o1 —fp1.fe2 — fp2) (3)
0
a_leV = {fo1 —fp1)
0
a—szV = (feo — f2) 4)

In the equation 3, f, and f, are two-dimensional objectives,
and an FV computed using f, and f. provides a direction
of evolutionary search movement in the fitness space. For
minimization problems, FV with a negative fitness gradient

3328

is of importance, and vice-versa for maximization problems.
A negative fitness gradient of FV with respect to an objective
indicates that the quality of solution improved for that objec-
tive as shown by equation 4.

3) GENERATING NEW OFFSPRING

Using the GV, FV, and gradient Algorithm 2 generates new
offspring. To avoid the generation of an offspring ¢’ too close
to a child ¢, the magnitude of GV must be larger than a thresh-
old distance (dy) of 10719 [6]. For each parent, Algorithm 2
finds the closest child (cj4) and then compares their fitness.
If the fitness of the child is smaller than the parent, then this
provides an indication that moving along a vector (GV) in the
design space (search space) from parent to child results in the
reduction of the fitness (thus has negative fitness gradient).
By assuming a local linear mapping between the fitness of
neighboring genomes, the algorithm generates a new child
(cg) from the location of cj4y in the direction of the genome
vector using equation 2. To compare FLEX based genetic
algorithms with existing GAs, the number of children gen-
erated in each generation is kept fixed to A.

IV. SINGLE-OBJECTIVE FLEX

In this section, the FLEX based approach for single-objective
problems is illustrated. Since the mapping from genotype to
fitness is unknown, a genome vector that leads to a negative
fitness gradient may be difficult to identify. Thus the genome
vector must be carefully chosen. For single-objective prob-
lems, a simple GA is the base algorithm, and the proposed
algorithm is FLEX-GA.

A. FLEX-GA

In this section, a simple one-dimensional minimization prob-
lem is used to illustrate how local fitness landscape approx-
imation works within FLEX-GA. This takes the form of a
V-function f(x) = |x — 0.5|, as shown in Figure 2, where
variable x € (0, 1) with the global minimum of f(x) = 0 at
x = 0.5. Through tournament selection, two parents pi, p2

VOLUME 11, 2023

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

IEEE Access

TABLE 1. Genome vector and fitness gradient computed using two
parents and two children.

Genome Vector (¢ — p) Fitness Gradient

c1 C2 C1 €2
p1 | +0.035 +0.665 —0.035 | +0.065
p2 | —0.665 —0.035 —0.135 | —0.035
are selected for crossover with 8 = 0.90. Assuming that

p1 = 0.2, pp = 0.9, the two children will be generated
at c; = 0.235 and ¢ = 0.865 using equation 1. For
simplicity, the mutation is not considered here. The fitness
of f(p1, p2, c1, cp) are (0.3,0.4,0.265, 0.365) as shown in
Figure 2(a) where two black dots show the locations of the
two parents, two red dots show the locations of the two
children, and two black arrows represent genome vectors.
Equation 2 computes GVs, equation 4 computes fitness gradi-
ents, and Table 1 shows these values obtained using p1, p2, c1,
and c,. For this example, a spread factor (8 =~ 1) € {0, 1} is
selected as the global optimal solution lies in the middle of
the search space. For other problems, it’s recommended to
use B = 1 & y, where y is a small value.

As shown in Table 1, negative fitness gradients are obtained
while moving along vectors (p1, c1), (p2, ¢2), and (p2, c1).
Since the mapping between genotype and fitness is generally
not known a priori, finding a vector from two points in
the design space that are close to each other provides an
indication about fitness mapping locally. For example, a GV
(c1 — p1) = 0.035x reduces the fitness by 0.035, thus
assuming a linear genotype-fitness mapping, a new child can
be computed using equation 2. A new child ¢| generated
from ¢ in the direction of GV is at 0.30 where § = 1
(moving one vector length). These small incremental steps
ensure that a search does not lead, abruptly, to non-desirable
regions of the search space. Using the same concept, a child
¢, can be generated from ¢; at 0.83 following a vector GV =
(c2 — p2). However, following a vector that reduces fitness
might be deceptive and can generate a bad solution. For
instance, a vector from p> to ¢ indicates that there will be a
reduction in fitness, but a child generated using a GV (c1 —p2)
will be at point —0.43 which lies outside the search space.
Thus, Algorithm 2 generates a child using a vector whose
magnitude is smaller than the other vectors. However, this
does not guarantee that the search will not diverge, rather the
divergence will be slow and bad solutions will be eliminated
using elitist selection.

As mentioned earlier, the genome vector sometimes can be
misleading and a search could get stuck in a local minimum
if it was used instead of conventional reproduction operators.
To minimize the effect of excessive gradient-based search,
as a maximum, only half of the offspring are generated using
local genome vectors and fitness gradients, the remaining
are generated using the three genetic operators. In future
work, limiting the number of offspring generated using FLEX
to less than 50% will be studied. In the next subsection,

VOLUME 11, 2023

V_function Schwefel

5 2 2
Generation

(b) Schwefel

"Generation
(a) V-function
FIGURE 3. Comparing the average of the best fitness over 30 runs of each

generation on two single-objective test problems obtained using different
algorithms.

results on several single-objective benchmark problems are
presented and a comparison is made with other algorithms.

B. SINGLE-OBJECTIVE RESULTS AND DISCUSSIONS

In this section, the results obtained from using FLEX-GA on
several single-objective benchmark problems with and with-
out constraints are presented. Note that since the proposed
advantage of FLEX is to increase the speed of search for
optimal/near-optimal solutions, the different algorithms are
compared in terms of 1) the number of evaluations used for
searching solutions (convergence), and 2) the quality of the
evolved solution (fitness).

1) EXPERIMENT PARAMETERS AND SIMPLE TEST PROBLEMS
In the previous section, a simple single-objective V-function
was used to explain local fitness landscape examina-
tion/approximation to generate new offspring. On this simple
problem, solutions are evolved with a small population size of
20 for 20 iterations/generations. Figure 3(a) shows the aver-
age of minimum fitness, over 30 runs, obtained in each gen-
eration using FLEX-GA, GA, DE, PSO, and ES. The figure
shows that FLEX-GA quickly converges on the optimal solu-
tion compared to GA, DE, PSO, and comparable to ES. The
fitness landscape of this type of problem is ideal for FLEX
where it can leverage local fitness landscape information
to produce better-quality offspring. To test the performance
of the proposed algorithm on problems with more complex
fitness landscape, another test problem was chosen, Schwe-
fel [43]. The Schwefel function has many local minima and
thus is a good test problem to see how FLEX based approach
performs. Figure 3(b) shows the average of the best fitness of
each generation over 30 runs on Schwefel, and it again clearly
shows that FLEX-GA convergence is faster. FLEX-GA found
better quality solutions in fewer evaluations compared to the
other algorithms. These two simple test experiments provide
evidence that when leveraging fitness landscape information,
the speed of the search improves (against the base GA), and
thus the computational cost/budget reduces.

2) CEC BENCHMARK PROBLEMS
Following the positive results on the proof-of-concept fitness

landscapes, the FLEX-GA algorithm’s performance was next
tested on 10 IEEE CEC-2006 single-objective benchmark

3329

IEEE Access

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

-0.05

-0.10

Fitness
Fitness

— 6
— FLEX-GA
— DE

_1a{ — Pso
— &5

Fitness

-0.15

-0.20 .

— FLEX-GA
—0.28]|— D€ L
— Pso

20 a0 60 80 100 ° 20
Generation

Generation

60 80 100 20 30 a0 50 6 70 80 %0 100
Generation

(a) GO1 (b) G02 (c) GO3
Go4 GO7
208000 — A -4500 — e
— FLEXGA 1200 — FLEXGA
— D — o
-28500 = ::o -5000 1000 — =0
n e # _ss00 9 oo
o o Q
.é 29500 é g 600
ic iL -000 i
400
-30000
-6500
200
-30500
-7000 °
[20 a0 60 80 100 20 a0 60 80 100 20 a0 60 80 100
Generation Generation Generation
(d) G04 (e) GO6 (f) GO7
G09 G10

800000

600000

Fitness
itness

400000

Fi

200000

— FLEX-GA 15000
— DE
— Pso 14000
— &

13000

12000

Fitness

11000

10000

[20 a0 60 80 100 ° 20
Generation

(g) GO8

Generation

(h) G09

60 80 100 40 50 60 70 80 %0 100
Generation

(i) G10

FIGURE 4. Comparing the average of the best fitness obtained in each generation over 30 runs on G01-G10 (except G05) obtained using different
algorithms. (On problem GO05 feasible solutions are not found using any algorithm).

problems (G01-G10) [13]. The CEC-06 competition provides
highly constrained single-objective optimization benchmark
functions and has been used extensively [13]. Experiments
were conducted 30 times with different random initialization
on each problem with a population size of 100 for 100 gen-
erations. (The population size and number of iterations were
varied, and a similar performance pattern has been observed.)
To compare the performance in terms of the number of evalu-
ations required to find solutions, the minimum fitness of each
generation plotted, averaged over 30 runs, in Figure 4.
Figure 4 shows the convergence of average fitness on all
problems (except GO5). Since all 10 problems are constrained
optimization problems, the figure only shows the average of
the best feasible solution of each generation. In the early
stage of these runs, evolved solutions are usually infeasible,
so for some problems the fitness of initial generations are
not presented. In all figures, the blue line represents the
fitness curve of FLEX-GA, the red line for GA, green for
DE, black for PSO, and magenta for ES. On GO1, Figure 4(a)
shows that the fitness obtained in the 507 generation with
FLEX-GA is equal to the fitness obtained on and after the 80"
generation using the GA, which leads to a saving of more than

3330

30% of computational cost/budget. Similarly, on G04, the
performance of FLEX-GA and GA are comparable until 30"
generation, and thereafter FLEX-GA’s performance is better
than GA. Figure 4(d) shows that the average GA’s fitness
of the 100™ generation is similar to the average FLEX-GA’s
fitness of the 50" generation. On this problem, FLEX-GA’s
search for optimal/near-optimal solution is twice as fast com-
pared to than canonical GA’s. The figure also shows that the
convergence of FLEX-GA is much faster than PSO whereas
the quality of solution is better compared to DE and ES.
A similar performance pattern is observed on GO7 and G10
where FLEX-GA’s convergence is better (faster) than others
leading to saving of computational budget.

On GOS8, FLEX-GA’s, GA’s, and ES’s convergence are
comparable but better than DE and PSO whereas, on G09,
each algorithm converges quickly. On GO02, GA’s perfor-
mance is better than others and on G06, ES performed the
best. On G03, PSO’s performance is slightly better than oth-
ers, however far from optimal. GO3 is a polynomial equation
with an equality constraint and none of the algorithms achieve
near-optimal solution. In depth analysis suggests that on GO3,
genome vectors and fitness gradients lead the search towards

VOLUME 11, 2023

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

IEEE Access

TABLE 2. Comparing the best, worst, and median fitness obtained using
different algorithm over 30 runs.

Problems FLEX-GA GA DE PSO ES
Best -14.99 -14.96 -11.25 -9.799 -9.990
GO1 (-15) Worst -12.44 -14.56 -4.482 -2.868 -5.694
Median -14.99 -14.80 -7.159 -6.113 -7.748
Go2 Best -0.786 -0.791 -0.519 -0.384 -0.275
(:0.8036) Worst -0.629 -0.706 -0.269 -0.132 -0.195
) Median -0.740 -0.761 -0.345 -0.325 -0.216
Go3 Best -0.085 -0.184 -0.195 -0.640 NA
“1.0) Worst 0.0 0.0 0.0 0.0 NA
) Median -0.007 -0.014 -0.009 -0.251 NA
Go4 Best -30665 -30663 -30633 -30665 -30378
(-30665) Worst -30614 -30475 -29599 -30242 -29902
Median -30660 -30609 -30276 -30639 -30194
Go6 Best -6955 -6935 -6961 -6932 -6961
-6961) Worst -6584 -6391 -703.6 -978.2 -6951
Median -6823 -6720 -6961 -5985 6959
GO7 Best 24.30 25.37 32.03 27.35 NA
(24.30) WorAst 34.61 39.02 2151 57.37 NA
” Median 27.18 27.60 66.17 32.90 NA
GO8 Best -0.0958 -0.0958 0.0958 -0.0958 0.0958
(:0.0958) Worst -0.0958 -0.0958 0.0258 -0.0291 0.0958
) Median -0.0958 -0.0958 0.0958 -0.0958 0.0958
G09 Best 684.01 684.35 684.63 684.51 703.10
(680) Worst 688.73 694.74 1010.2 700.49 902.65
Median 684.61 685.58 705.93 685.43 757.80
Glo Best 7436.3 7694.2 7634.1 7533.7 NA
(7049) Worst 11438 18207 28610 14544 NA
Median 8408.9 8484.9 14302 19321 NA

TABLE 3. Ranking different algorithms in terms of the speed of the
search and quality of the evolved solutions.

Problems
Gl G2 G3 G4 G6 G7 G8 @G99 GI0

FLEX-GA 1 1I v 1 11 1 1 1 1

Algorithms

GA 1I 1 1T 1I v 1I 1 1I 1T
DE Iv 1 1T v 1I v 1I v v

PSO \ v 1 111 \ 11 I 1II 11T
ES 1T V. NA V 1 NA 1 v NA

infeasible regions of the search space and thus performance
is worse than the base GA. Similarly, GO5 has three equality
constraints, and no feasible solutions were found using any
of the five algorithms and thus not shown in Figure 4. Addi-
tionally, it has been found that FLEX-GA is inferior to its
base algorithm on problems with equality constraints. These
figures show that on most problems either FLEX-GA found
better fitness solutions compared to others, or if the quality
of solutions are the same, then FLEX-GA took less func-
tional evaluations (computational cost) for searching those
solutions. This shows that the FLEX approach can yield better
convergence in shorter time on many benchmark problems.
While Figure 4 shows the average of the best fitness of
each generation to see how these algorithms are converging
over generations, to comment on the best-evolved solution
Table 2 shows the best, worst, and median fitness obtained
using the five algorithms over 30 runs. Table 3 ranks these
algorithms using the information from Figure 4 and Table 2.
Table 2 shows that on GO1, G04, GO7, G09, and G10 the best,
worst, and median performance of FLEX-GA is better than
others, whereas comparable to others on GO8. On G02, the
FLEX-GA’s performance is the second best in terms of the
convergence (from Figure 4(b)) and evolved solution (from

VOLUME 11, 2023

15

— sine
—— cosine

1
1
1
1
|
1
1
1
|
)
1
1
1
1
1
|
I
1
1
a

2 3b 4 5 6
Variable

FIGURE 5. Fitness landscape of a simple two objective problem. The two
arrows show that when x < = and x > =/2, a genome vector can generate
better solutions.

Table 2), after GA. Similarly, on G06 FLEX-GA is the third
best. On problems GO03, GO7, and G10, ES did not find
feasible solutions and thus not shown figures and Table2.

These results show that FLEX-GA has the potential to
leverage local fitness landscape information to increase the
speed of search significantly (up to 50% faster) and to find
better fit solutions. In the next section, experimental results
on multi-objective problems are presented.

V. MULTI-OBJECTIVE FLEX

The procedure of local FL approximation of multi-objective
problems is similar to that for single-objective problems with
only one difference, that is instead of having one fitness
gradient, multiple fitness gradients exist. Here, NSGA-II is
the base algorithm for multi-objective optimization, and the
proposed algorithm is referred to as FLEX-NSGA-II.

A. FLEX-NSGA-II

Just as with single-objective problems, in the case of a multi-
objective optimization problem, Algorithm 2 generates a
GV using a parent (p;) and a child (¢;), and multiple fit-
ness gradients that are associated with the GV. Algorithm 2
generates a new child solution (c}) only when the fitness
gradient with respect to each objective is negative, that is
((,,%FV, - a%FV) < 0 where m is the number of objectives.
For two-objective problems, if (%F V, aisz V) < 0, then
¢; dominates p; and a new child i1s generated. To explain
FLEX-NSGA-II domination, assume a simple two-objective
problem where fi(x) = sin(x), f2(x) = cos(x), and x €
{0, 2r}. The fitness landscapes for both objectives are shown
in Figure 5 where the x-axis represents the input variable (x)
and the y-axis shows the fitness.

Consider this as a one variable problem to explain the
concept here, but the concepts apply to problems represented
by an /-dimensional chromosome as well. In Figure 5, two
arrows represent genome vectors associated with negative
fitness gradients i.e. following these GV, both objectives will
reduce when x > a(w/2) and x < b(rr). Thus Algorithm 2
can only generate new child using equation 2 in this region

3331

IEEE Access

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

ZDT1 GD ZDT11GD

ZDT11GD+ ZDT1 HV

— NsGal —
— FLEXNSGA

NSGA-ll
— FLEXNSGA

Indicator Performace Value
Indicator Performace Value

10 a0 50 o 10 a0 50

20 30
Generation

(b) IGD

20 30
Generation

(a) GD

NSGA-Il
— FLEXNSGA

Indicator Performace Value
Indicator Performace Value

a0 50 o 10 a0 50

) 20 0
Generation

(d) HV

20 30
Generation

(c) IGD+

FIGURE 6. Comparing the average GD, IGD, IGD+, and HV of the best Pareto front of each generation obtained over 30 runs using different
algorithms on ZDT1 problem. Figures show that FLEX-NSGA-II outperformed others on all indicator measures.

Comparing Pareto Fronts

124 8 @ 20th Gen FLEX-NSGA-II
@ 40th Gen NSGA-II
@ 40th Gen AGE-MOEA
1.0 « True Pareto

0.0 0.2 0.4 0.6 0.8 10
f1

FIGURE 7. Figure shows that the best Pareto front obtained in the 20th
generation using FLEX-NSGA-II is closer to the true Pareto front compared
to fronts obtained in the 40t generation using NSGA-Il and AGE-MOEA.

only. The three questions raised in previous subsection are
applicable here as well. Remembering the issue that fol-
lowing a vector may lead the search to undesirable parts
of the search space. This issue is less a cause of worry for
multi-objective optimization problems compared to single-
objective problems. Since, Algorithm 2 generates a new solu-
tion only when ¢; dominates p;, thus until a vector is found
that improves both objective values, a new child will not
be created. The multi-objective nature of a given problem
has inherent characteristics that discourage the divergence of
solutions generated using local fitness landscape approxima-
tion given by Algorithm 2. Hence it is safe to expect that
Algorithm 2 will generate more child solutions for single-
objective problems compared to multi-objective problems.

B. MULTI-OBJECTIVE RESULTS AND DISCUSSIONS

In this paper, only two-objective problems are considered.
For these two-objective problems FLEX-NSGA-II is com-
pared with the original NSGA-II, MOEA/D, SPEA-II, and
AGE-MOEA. For all experiments, chromosomes are real-
value encoded, simulated binary crossover is used to create
offspring with the probability of 0.90, the polynomial muta-
tion mutates an offspring with the probability of 0.05. The
population size and number of generations were varied for
different problems between 40 — 100. Finally, to preserve
good solutions found during evolution, u + A elitism is
used. Studies on selection schemes [44] have shown that

3332

quality of solutions improves if convergence is slowed and
greater diversity is allowed in the populations, thus binary
tournament selection is used to select two parent solutions
to produce two offspring.

1) PERFORMANCE INDICATORS

Comparing two Pareto fronts is not straightforward as in the
case of single-objective problems. In the literature, genera-
tional distance (GD), inverted generational distance (IGD),
inverted generational distance plus (IGD+), and hypervolume
(HV) [45], [46] have been used to compare Pareto solu-
tions. From these, only IGD+ and HV are Pareto-compliant
indicators, and thus used for a detailed comparison of
FLEX-NSGA-II’s performance with other algorithms. GD,
IGD, and IGD+ compute the distance from the true Pareto
front where a lower distance means that the evolved Pareto
front is closer to the optimal. However when using the above
three indicators, a true/target Pareto front is required, and
thus these are not applicable to problems with unknown true
Pareto fronts. The HV indicator does not require the true
front [47], and uses a reference point to compute the area
enclose by points in the best Pareto front.

2) UNCONSTRAINED MULTI-OBJECTIVE BENCHMARK
PROBLEMS

First, five unconstrained ZDT benchmark problems are con-
sidered from [6], and results obtained for these problems
(ZDT1, ZDT2, ZDT3, ZDT4, ZDTG6) are presented here. For
each of these problems, the true Pareto front is known [48].
On each problem, solutions are evolved, 30 times with
different initialization, with the population size of 50 for
50 generations and computed GD, IGD, IGD+, and HV
of the best Pareto front (rank zero) from each generation.
Figure 6 shows the comparison of average (a) GD, (b) IGD,
(c) IGD+, and (d) HV per generation obtained over 30 runs
using different algorithms on ZDT1. Figure 6 (a), (b), and
(c) show that the average GD, IGD, IGD+ of FLEX-NSGA-II
converges much faster than other algorithms. For compari-
son, FLEX-NSGA-II converges around the 20" generation
whereas NSGA-II, and AGE-MOEA converge around the
40™ generation. MOEA/D’s convergence is always slower
than others.

VOLUME 11, 2023

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

IEEE Access

ZDT2 IGD+ ZDT2 HV

ZDT3 IGD+ ZDT3 HV

os

Indicator Performace Value
Indicator Performace Value

Indicator Performace Value

Indicator Performace Value

10 a0 10

20 30
Generation

(b) ZDT2 HV

20 30
Generation

(a) ZDT2 IGD+

ZDT4 IGD+ ZDT4 HV

10 a0 10

20 30
Generation

(d) ZDT3 HV

20 30
Generation

(c) ZDT3 IGD+

ZDT6 IGD+ ZDT6 HV

— NsGan
— FLEX-NSGAM
— moeap
— sPEAN

— AGEMOEA

Indicator Performace Value
Indicator Performace Value

Indicator Performace Value

— nsal
— FLEX-NSGA-
— moEaD
— spean

— AGE-MOEA

Indicator Performace Value

10 3 10

30
Generation

(f) ZDT4 HV

30
Generation

(e) ZDT4 1IGD+

10 0 10

30
Generation

(h) ZDT6 HV

30
Generation

(g) ZDT6 IGD+

FIGURE 8. Comparing the average IGD+ and HV per generation over 30 runs obtained using the five algorithms on ZDT2, ZDT3, ZDT4, and
ZDT6. Figures show that FLEX-NSGA-II's performance is better than the others.

TABLE 4. Comparing the five algorithms using different performance indicators on ZDT1, ZDT2, and ZDT3 over 30 runs.

ZDTI ZDT2 ZDT3
Tndicators FLEX- NSGA-Il MOEA/D SPEA-l AGE | FLEX- NSGA-l MOEAD SPEAl AGE | FLEX- NSGA-l MOEA/D SPEA-l AGE
NSGA-II MOEA | NSGA-II MOEA | NSGA-II MOEA
Best 0.0117 0.0223 0.7391 0.1453 00278 | 00134 0.0404 15923 03603 0.0668 | 0.0067 0.0151 08049 0.1617 0.0163
IGD+ Worst | 0.0252 0.0922 15917 04033 0.1149 | 03108 03776 27932 13882 04282 | 0.1542 0.09 17319 03722 0.1956
Median | 00145 0.0425 10774 02954 00407 | 0.1958 0.3208 21543 07274 03417 | 0.0083 0.0279 12341 02494 0.0474
Best 1.0829 1.0616 0.1405 0.8424 1.048 0.745 0.6843 0.0 02361 0.6310 | 1.6246 15929 0.3509 12266 1.5883
HV Worst | 1.0467 0.9385 0.0 0477 09068 | 0.2698 0.1889 0.0 0.0 0.1282 | 1325 1.3987 0.0 08709 1.2441
Median | 10767 1.0186 0.0 06148 1.0231 | 04191 02578 0.0 0.0 02320 | 1.6187 1.5485 00352 10149 15171
TABLE 5. Comparing the five algorithms using different performance indicators on ZDT4 and ZDT6 over 30 runs.
ZDT4 ZDT6
Indicators FLEX- NSGA-IIT MOEA/D SPEA-II AGE FLEX- NSGA-II. MOEA/D SPEA-II AGE
NSGA-II MOEA | NSGA-II MOEA
Best 1.7815 2.3398 5.585 3.7854 3.3586 0.0105 0.5419 0.0211 1.0718 0.4358
IGD+ Worst 6.3919 10.4432 22.4721 11.0587 14.0639 0.1392 1.1069 4.6694 2.1465 1.0343
Median 3.4395 7.1427 13.3954 6.1816 6.8213 0.031 0.773 2.2037 1.6014 0.6096
Best 0.0 0.0 0.0 0.0 0.0 0.6924 0.0922 0.6707 0.0 0.1524
HV Worst 0.0 0.0 0.0 0.0 0.0 0.472 0.0 0.0 0.0 0.0
Median 0.0 0.0 0.0 0.0 0.0 0.6572 0.0076 0.0 0.0 0.0573

Note that, the lower the values of GD, IGD, and IGD+ the
closer they are (evolved Pareto front) to the actual/true Pareto
front. Since figure 6 shows that FLEX-NSGA-II converges
much faster than others, the evolved Pareto front from the 20"
generation of FLEX-NSGA-II and from the 40" generation
of NSGA-II, and AGE-MOEA are plotted in Figure 7. The
other two algorithms performed worst compared to these
three, and thus their Pareto fronts are not compared. The
figure shows that the blue Pareto front (FLEX-NSGA-II) is
closer to the true Pareto front (black front) compared to the
red front (NSGA-II’s), and magenta front (AGE-MOEA’s)
while taking 50% fewer function evaluations.

Unlike the distance-based indicators, a larger value of HV
refers to better Pareto solution [47]. To compute the HV for
each of the ZDT problems, a reference point at (1.2, 1.2) is
chosen because the optimal solution’s fitness lies between

VOLUME 11, 2023

0 to 1 for both objectives. Figure 6(d) shows that the HV of
FLEX-NSGA-II Pareto front solutions is significantly better
(larger) than the other four algorithms, again indicating that
FLEX-NSGA-II evolved Pareto front solutions faster, and
contains better solutions. These results provide evidence that
by using fitness landscape information locally, the speed of
search for optimal/near-optimal solution increases signifi-
cantly. The figure clearly shows that FLEX-NSGA-II takes
at least 50% less computational cost to find solutions.
Similar experiments were conducted on the remaining
ZDT problems and for comparison, only IGD+ and HV per-
formance indicators are shown as only these two are Pareto-
compliant indicators. Similar to ZDT1, Figure 8 shows that
except on ZDT4, FLEX-NSGA-II takes at least 50% less
computational evaluations to find solutions (in terms of
IGD+ and HV) that are better (or comparable) than the other

3333

IEEE Access

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

ZDT1 HV ZDT2 HV

ZDT3 HV ZDT6 HV

w
2 . H 2 . Z1e T R Zos ’
> > > g >
£, £ g £
s [g ’ $oe $
2. o - : L & H
5 L. e 5
2 o2] ° = L
3 . $ox a . 2. i
: : : == e

Algorithms Algorithms Algorithms Algorithms

(a) ZDT1 HV (b) ZDT2 HV (c) ZDT3 HV (d) ZDT6 HV

ZDT1 IGD+ ZDT2 IGD+ ZDT3 IGD+ ZDT6 IGD+
: yoe s
g] g s g 1.00 g
L £ £ £ .
0 o @ 075 o2
g.. Z. & H i
2o T : —= E . + e

Algorithms Algorithms Algorithms Algorithms

(e) ZDT1 IGD+ (f) ZDT2 IGD+ (g) ZDT3 IGD+ (h) ZDT6 IGD+

FIGURE 9. Comparing the distribution of HV and IGD+ of the last generation Pareto fronts obtained over 30 runs. Note that higher HV and lower IGD+

refer to better quality Pareto solutions.

® NSGA-ll
® FLEX-NSGA-Il
@ Best Known Pareto Front

0.2 0.4 0.6 0.8 1.0 12 14 16
f1

(a) CS1

® NSGA-Il
® FLEX-NSGA-II
@ Best Known Pareto Front

0.5

0.0 1

-1.0 \
i]
-1.5
. .
.
-2.0 8
0.2 0.4 0.6 0.8 10

f1
(b) CT1

FIGURE 10. Rank zero Pareto fronts from the last generation of each run on CS1 and CT1. Green,
blue, and red points represent the best know Pareto front so far [14], solutions evolved using
FLEX-NSGA-II, and using NSGA-II in 10 runs respectively.

four algorithms. With a population size of 50, and running for
50 generations, the fitnesses of evolved solutions on ZDT4
are larger than the reference point of (1.2, 1.2), so the hyper-
volume is zero. For ZDT4 more evaluations are required to
compute better solutions. Tables 4 and 5 compare the best,
worst, and median values of the IGD+ and HV of the best
Pareto front from the last generation obtained using the five
algorithms. On ZDT1, ZDT2, and ZDT®6 in all combinations
of indicators, FLEX-NSGA-II performed better than others.
The hypervolume of the last generation Pareto front obtained
using MOEA/D is zero because the fitness values of Pareto
solutions are larger than the reference point. When comparing
the best and median of IGD+ and HV over 30 runs on ZDT3,
FLEX-NSGA-II is better and NSGA-II performance is better
on the remaining performance comparison matrix. Results
on ZDT problems show that using the FLEX approach,
the speed of the search and quality of solutions improve

3334

significantly compared to NSGA-II, MOEA/D, SPEA-II, and
AGE-MOEA.

Figure 9 shows the distribution of HV (top) and IGD+ (bot-
tom) values of the best Pareto front from the last generation
obtained using the five algorithms over 30 runs. Remember
that the higher the values of HV, the better the quality of
Pareto solutions. HV distribution shows that the median per-
formance of FLEX-NSGA-II is better than the others. The
p-values of HV for all ZDT problems, except ZDT4, are less
than 0.05 indicating strong statistical significance of results.
In contrast to the HV measure, smaller IGD+ values suggest
that the evolved Pareto fronts are close to the true Pareto front
solutions. The distribution in Figure 9(bottom row) shows
that FLEX-NSGA-II’s IGD+ values are smaller than the rest
of the four algorithms and p-values are smaller than 0.05.
The effect sizes (A) for HV and IGD+ for all ZDT problems
are greater than 0.5 again indicates that FLEX-NSGA-II

VOLUME 11, 2023

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

IEEE Access

CS11GD+ CS1 HV

CT11GD+ CT1 HV

10
— NsGAdl
— FLEXNSGAN

SGA-Il
— FLEXNSGAII

Indicator Performace Value
Indicator Performace Value

— NsGa-l 241 — NsGAd
— FLEXNSGAII — FLEXNSGAN

2

Indicator Performace Value

Indicator Performace Value

50 100 20 50

a0 50
Generation

(b) CS1 HV

a0 50
Generation

(a) CS1 IGD+

20 20

a0 0
Generation

(d) CT1 HV

a0 0
Generation

(c) CT1 IGD+

FIGURE 11. Comparing the average IGD+ and HV values of the best Pareto front from the last generation on CS1 and CT1 obtained using

FLEX-NSGA-1I and NSGA-II over 10 runs.

TABLE 6. Comparing the best, worst, and median values of IGD+ and HV on CS problems over 10 runs.

Indicators FLEX-NSGA-II' NSGA-II | FLEX-NSGA-II NSGA-II | FLEX-NSGA-II NSGA-II | FLEX-NSGA-II NSGA-II
CS1 CS2 CS3 CS4
Best 0.4914 1.03 1.4981 1.5257 30.4956 24.4225 29.5131 32.6533
IGD+ W01tst 7.1144 7.6886 4.4153 5.5952 48.4414 47.3848 101.227 98.4323
Median 2.3922 4.6027 2.5046 2.9762 37.6297 39.7891 64.2075 63.714
Best 122.5058 123.6587 119.3586 116.4083 28.3348 35.9575 37.3196 45.1831
HV Worst 94.2387 90.9137 58.4571 60.4826 10.22 9.6398 6.67 8.2226
Median 105.655 98.4762 96.7949 96.502 18.206 19.6642 24.8328 23.6266
TABLE 7. Comparing the best, worst, and median values of IGD+ and HV on CT problems over 10 runs.
Indicators FLEX-NSGAII _NSGAI | FLEXNSGAT _NSGAI | FLEXNSGA Il _NSGA-I | FLEX-NSGA Il _ NSGAI
CT1 CT2 CT3 CT4
Best 0.0556 0.0578 0.0673 0.0674 0.0814 0.1297 0.3163 0.3666
IGD+ Wor'st 0.0939 0.2507 0.1558 0.1434 0.712 0.5942 1.0178 0.8757
Median 0.0735 0.0868 0.0803 0.0988 0.2347 0.2211 0.483 0.5193
Best 2.4778 2.4567 2.3984 2.4301 1.6696 1.3969 1.4362 1.3372
Hv ‘Worst 2.3439 1.8509 2.1512 2.1952 0.4157 0.586 0.2894 0.4429
Median 2.4162 2.3681 2.364 2.3128 1.1241 1.1621 1.0834 0.9794

performance is significantly better than the others. These
results indicate that FLEX-NSGA-II ranks top compared
to other four algorithms. In the next subsection, real-world
multi-objective optimization problems are considered.

3) CONSTRAINED MULTI-OBJECTIVE REAL WORLD
PROBLEMS

Picard [14] in 2021 presented 20 real-world industrial con-
strained multi/many-objective benchmark problems to design
electro-mechanical actuators. Eight of those 20 are two-
objective problems that aim to minimize cost (C), maximize
the minimum torque excess (T), and maximize the safety
factor (S) of actuators. These eight problems are combi-
nations of CS (CS1, CS2, CS3, CS4) and CT (CT1, CT2,
CT3, CT4) with different constraints. Each problem is of
20 dimensions and has between 6 and 11 constraints. For
more details regarding the problem statement and constraints
see Picard [14]. Note that since the local fitness landscape
information is only used to create new offspring without look-
ing at the constraints, constraint handling in FLEX-NSGA-II
is identical to NSGA-II.

These real-world problems are computationally expensive
to evaluate, and thus Pareto optimal solutions are evolved
10 times using FLEX-NSGA-II, NSGA-II on each prob-
lem with the population size of 100 and for 100 genera-
tions. Figure 10 shows the best evolved Pareto front of each
run using FLEX-NSGA-II and NSGA-II on two problems

VOLUME 11, 2023

(CS1, CT1) where blue points represent Pareto solution
of FLEX-NSGA-II, red points refer to Pareto solutions of
NSGA-II, and green points show the actual/true Pareto solu-
tions. Both Figures 10(a) and (b) show that FLEX-NSGA-II
evolved Pareto solutions are closer to the true Pareto com-
pared to NSGA-II evolved Pareto solutions.

Figure 11 shows the comparison of average IGD+ and HV
of the best front from the last generation on CS1 and CT1 over
10 runs. Recall that lower IGD+ and higher HV refer to bet-
ter solution/front and the figure shows that FLEX-NSGA-II
performance is better than NSGA-II on these two problems.
Both CS1 and CT1 are constrained two-objective problems
and results show that in the initial few generations no feasible
solutions are found, thus the average IGD+ and HV values are
plotted only when feasible solutions are found. Figure 11(a)
and (b) show the IGD+ and HV values from the 8 generation
for CS1. Similarly Figure 11 (c), and (d) show the IGD+ and
HYV from the 57 generation for CT1. These figures show that
FLEX-NSGA-II’s convergence (IGD+ and HV values over
generations) is faster than NSGA-II, and thus takes fewer
evaluations to evolve similar quality solutions. Table 6 and 7
list the best, worst, and median IGD+ and HV values obtained
from the best Pareto front of the last generation evolved using
FLEX-NSGA-II and NSGA-II on the eight problems. Table 6
shows that the performance of FLEX-NSGA-II on CS1, and
CS2 is better than NSGA-II, comparable and/or inferior on
CS3 and CS4 to NSGA-II. Similar observations can be drawn

3335

IEEE Access

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

from Table 7 where FLEX-NSGA-II is performing better on
CT1 and CT4, comparable to NSGA-II on CT2, but inferior
to NSGA-II on CT3.

Results on these eight real-world multi-objective problems
show that FLEX-NSGA-II improved the speed of the search
and quality of evolved solutions on four of the eight problems
and inferior only in two against NSGA-II. This provides
further evidence that using the local FLEX approach, the
speed of the search and/or quality of solutions improves.

VI. CONCLUSION

This paper presents fitness landscape exploration-based
genetic algorithms. The main aim of FLEX-GA is to lever-
age the FL information to increase the speed of the search
and to find better quality solutions. Assuming a local linear
relationship between neighbouring/local genomes’ fitness,
a genome vector is created and the fitness vector/gradient
corresponding to the GV is computed. The GV and fitness
gradient are used to generate a new child in the search/design
space. Experiments were conducted on several single and
two-objective optimization test benchmark problems, and
eight real-world two-objective problems. Results show that
on single-objective problems, FLEX-GA evolved better or
comparable solutions while only requiring as much as 50%
fewer evaluations compared to existing simple GAs and other
algorithms. On most of the problems, the best solutions of the
last generation were also better than the other four algorithms.
In the case of two-objective problems, again FLEX-NSGA-II
took as much as 50% fewer functional evaluations to generate
better or comparable Pareto solutions/fronts than standard
NSGA-II and other multi-objective optimization algorithms.
Lastly, solutions evolved on eight real-world multi-objective
problems show that FLEX-NSGA-II evolved better Pareto
solutions than NSGA-II.

These results provide evidence that FL information can be
utilized effectively to enhance the search capacity of genetic
algorithms and thus encourages researchers to use GAs for
computationally expensive problems. Results also show that
on a few problems FLEX approach did not work well as com-
pared to GA. These can happen because the fitness landscape
might be too rugged and local fitness approximation is not
able to produce better results. To deal with such problems
global FL approximation might be well suited. Future work
will extend this work in the following ways: 1) what will be
the impact of generating a genome vector using the entire
population information, not just with the two selected parents,
2) how to vary delta for each gene of a genome vector, and
3) how to scale the FLEX approach for three or more objective
problems.

REFERENCES

[1] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algo-
rithm: Past, present, and future,” Multimedia Tools Appl., vol. 80, no. 5,
pp. 8091-8126, 2021.

[2] C.K.H.Lee, “A review of applications of genetic algorithms in operations
management,” Eng. Appl. Artif. Intell., vol. 76, pp. 1-12, Nov. 2018.

3336

[3] D. Whitley and A. M. Sutton, “Genetic algorithms—A survey of models
and methods,” in Handbook of Natural Computing. Berlin, Germany:
Springer, 2012, pp. 637-671.

[4] M. Alzantot, Y. Sharma, S. Chakraborty, H. Zhang, C.-J. Hsieh,
and M. B. Srivastava, “GenAttack: Practical black-box attacks with
gradient-free optimization,” in Proc. Genetic Evol. Comput. Conf., 2019,
pp. 1111-1119.

[5] K. M. Malan, “A survey of advances in landscape analysis for optimisa-
tion,” Algorithms, vol. 14, no. 2, p. 40, Jan. 2021.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-IL,” IEEE Trans. Evol. Comput.,

vol. 6, no. 2, pp. 182-197, Aug. 2002.

K. V. Price, “Differential evolution,” in Handbook of Optimization (Intel-

ligent Systems Reference Library), vol. 38. Springer, 2013, pp. 187-214.

R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”

Swarm Intell., vol. 1, no. 1, pp. 33-57, Jun. 2007.

T. Asselmeyer, W. Ebeling, and H. Rosé, “Evolutionary strategies of

optimization,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.

Top., vol. 56, no. 1, p. 1171, 1997.

[10] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712-731, Dec. 2007.

[11] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” ETH Ziirich, Ziirich, Switzerland, TIK-
Report 103, 2001.

[12] A. Panichella, “An adaptive evolutionary algorithm based on non-
Euclidean geometry for many-objective optimization,” in Proc. Genetic
Evol. Comput. Conf., Jul. 2019, pp. 595-603.

[13] J.J.Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Suganthan,
C. C. Coello, and K. Deb, “Problem definitions and evaluation criteria for
the CEC 2006 special session on constrained real-parameter optimization,”
J. Appl. Mech., vol. 41, no. 8, pp. 8-31, 2006.

[14] C. Picard and J. Schiffmann, “Realistic constrained multiobjective opti-
mization benchmark problems from design,” IEEE Trans. Evol. Comput.,
vol. 25, no. 2, pp. 234-246, Apr. 2021.

[15] S. Wright, “The roles of mutation, inbreeding, crossbreeding, and selection
in evolution,” in Proc. 6th Int. Congress Genetics, 1932, pp. 1-11.

[16] E. Pitzer and M. Affenzeller, “A comprehensive survey on fitness land-
scape analysis,” in Recent Advances in Intelligent Engineering Sys-
tems (Studies in Computational Intelligence), vol. 378. Springer, 2012,
pp. 161-191.

[17] J.-P. Watson, “An introduction to fitness landscape analysis and cost
models for local search,” in Handbook of Metaheuristics (International
Series in Operations Research & Management Science), vol. 146. Springer,
2010, pp. 599-623.

[18] P.Merz and B. Freisleben, “Fitness landscape analysis and memetic algo-
rithms for the quadratic assignment problem,” IEEE Trans. Evol. Comput.,
vol. 4, no. 4, pp. 337-352, Nov. 2000.

[19] G. Ochoa and K. Malan, “Recent advances in fitness landscape anal-
ysis,” in Proc. Genetic Evol. Comput. Conf. Companion, Jul. 2019,
pp. 1077-1094.

[20] A. Ratle, “Accelerating the convergence of evolutionary algorithms by
fitness landscape approximation,” in Proc. Int. Conf. Parallel Problem
Solving Nature (Lecture Notes in Computer Science), vol. 1498. Springer,
1998, pp. 87-96.

[21] Y. Pei, “Trends on fitness landscape analysis in evolutionary computation
and meta-heuristics,” in Frontier Applications of Nature Inspired Com-
putation (Springer Tracts in Nature-Inspired Computing). Springer, 2020,
pp. 78-99.

[22] Y. Pei and H. Takagi, “Fourier analysis of the fitness landscape for
evolutionary search acceleration,” in Proc. IEEE Congr. Evol. Comput.,
Jun. 2012, pp. 1-7.

[23] Y. Huang, W. Li, C. Ouyang, and Y. Chen, “A self-feedback strategy dif-
ferential evolution with fitness landscape analysis,” Soft Comput., vol. 22,
no. 23, pp. 7773-7785, Dec. 2018.

[24] J. Yu, Y. Li, Y. Pei, and H. Takagi, “Accelerating evolutionary computa-
tion using a convergence point estimated by weighted moving vectors,”
Complex Intell. Syst., vol. 6, no. 1, pp. 55-65, Apr. 2020.

[25] J. Yang, Y. Hu, K. Zhang, and Y. Wu, “An improved evolution algorithm
using population competition genetic algorithm and self-correction BP
neural network based on fitness landscape,” Soft Comput., vol. 25, no. 3,
pp. 1751-1776, Feb. 2021.

[26] R. Cheng, M. Li, K. Li, and X. Yao, “Evolutionary multiobjective
optimization-based multimodal optimization: Fitness landscape approxi-
mation and peak detection,” IEEE Trans. Evol. Comput., vol. 22, no. 5,
pp. 692-706, Oct. 2017.

[7

[8

—

9

[t

VOLUME 11, 2023

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

IEEE Access

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Z. Tan, K. Li, and Y. Wang, “Differential evolution with adaptive muta-
tion strategy based on fitness landscape analysis,” Inf. Sci., vol. 549,
pp. 142-163, Mar. 2021.

Z. Tan and K. Li, “Differential evolution with mixed mutation strategy
based on deep reinforcement learning,” Appl. Soft Comput., vol. 111,
Nov. 2021, Art. no. 107678.

K. René Traoré, A. Camero, and X. Xiang Zhu, “Fitness landscape foot-
print: A framework to compare neural architecture search problems,” 2021,
arXiv:2111.01584.

C. G. Pimenta, A. G. de S4, G. Ochoa, and G. L. Pappa, “Fitness landscape
analysis of automated machine learning search spaces,” in Proc. Eur. Conf.
Evol. Comput. Combinat. Optim. (EvoStar), in Lecture Notes in Computer
Science, vol. 12102. Springer, 2020, pp. 114-130.

M. E. Yafrani, M. S. R. Martins, M. E. Krari, M. Wagner,
M. R. B. S. Delgado, B. Ahiod, and R. Liiders, “A fitness landscape
analysis of the travelling thief problem,” in Proc. Genetic Evol. Comput.
Conf., Jul. 2018, pp. 277-284.

G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos, “A study of NK
landscapes’ basins and local optima networks,” in Proc. 10th Annu. Conf.
Genetic Evol. Comput. (GECCO), 2008, pp. 555-562.

M. Nunes, P. M. Fraga, and G. L. Pappa, “Fitness landscape analysis of
graph neural network architecture search spaces,” in Proc. Genetic Evol.
Comput. Conf., Jun. 2021, pp. 876-884.

L. Xie and A. Yuille, “Genetic CNN,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1379-1388.

Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf, “NSGA-Net: Neural architecture search using multi-objective
genetic algorithm,” in Proc. Genetic Evol. Comput. Conf., Jul. 2019,
pp. 419-427.

R. Dubey, J. Ghantous, S. Louis, and S. Liu, “Evolutionary multi-objective
optimization of real-time strategy micro,” in Proc. IEEE Conf. Comput.
Intell. Games (CIG), Aug. 2018, pp. 1-8.

Y. Xiang, J. S. Arora, and K. Abdel-Malek, “‘Physics-based modeling and
simulation of human walking: A review of optimization-based and other
approaches,” Struct. Multidisciplinary Optim., vol. 42, pp. 1-23, Jul. 2010.
M. Imran, C. Kang, Y. H. Lee, M. Jahanzaib, and H. Aziz, ““Cell formation
in a cellular manufacturing system using simulation integrated hybrid
genetic algorithm,” Comput. Ind. Eng., vol. 105, pp. 123-135, Mar. 2017.
N. Peremezhney, E. Hines, A. Lapkin, and C. Connaughton, “Com-
bining Gaussian processes, mutual information and a genetic algorithm
for multi-target optimization of expensive-to-evaluate functions,” Eng.
Optim., vol. 46, no. 11, pp. 1593-1607, Nov. 2014.

J. H. Holland, “Genetic algorithms,”” Sci. Amer., vol. 267, no. 1, pp. 66-73,
1992.

M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should i trust you?’
explaining the predictions of any classifier,” in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1135-1144.

M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” 2012,
arXiv:1212.5701.

M. Jamil and X.-S. Yang, “A literature survey of benchmark functions
for global optimisation problems,” Int. J. Math. Modeling Numer. Optim.,
vol. 4, no. 2, pp. 150-194, 2013.

D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes
used in genetic algorithms,” Found. Genetic Algorithms, vol. 1, pp. 69-93,
Jan. 1991.

J. G. Falcon-Cardona and C. A. C. Coello, “Indicator-based multi-
objective evolutionary algorithms: A comprehensive survey,” ACM Com-
put. Surveys, vol. 53, no. 2, pp. 1-35, Mar. 2021.

M. Li, S. Yang, and X. Liu, “A performance comparison indicator for
Pareto front approximations in many-objective optimization,” in Proc.
Annu. Conf. Genetic Evol. Comput., Jul. 2015, pp. 703-710.

C. M. Fonseca, L. Paquete, and M. Lopez-Ibanez, “An improved
dimension-sweep algorithm for the hypervolume indicator,” in Proc. IEEE
Int. Conf. Evol. Comput., Jul. 2006, pp. 1157-1163.

J. Blank and K. Deb, “Pymoo: Multi-objective optimization in Python,”
IEEE Access, vol. 8, pp. 89497-89509, 2020.

VOLUME 11, 2023

RAHUL DUBEY received the Ph.D. degree in
computer science and engineering from the Uni-
versity of Nevada at Reno, Reno, NV, USA,
in 2021. He is currently a Postdoctoral Research
Associate with the Department of Electron-
ics Engineering, University of York, U.K. His
research interests include evolutionary computing,
machine learning, explainable Al, and multiagent
systems.

SIMON HICKINBOTHAM received the D.Phil.
degree in computer vision from the University
of York, U.K., in 2000. He joined the Depart-
ment of Electronic Engineering, University of
York, in 2019, where he is currently a Research
Fellow. His main research interests include self-
organization of evolutionary systems, artificial
life, and pattern recognition in big data. He has
published over 50 papers in these areas.

MARK PRICE received the degree (Hons.) in
aeronautical engineering and the Ph.D. degree in
mechanical engineering from Queen’s University
Belfast, in 1987 and 1993, respectively. He is cur-
rently a Professor with the Department of Mechan-
ical Engineering, Queen’s University Belfast.
After a period in industry, he returned to academia
focusing his research on integrating engineering
methods with manufacturing processes and sys-

: tems. He is developing novel bio-inspired engi-
neering design methods for multi-disciplinary problems collaborating
closely with academic and industrial partners. He is a fellow of the IMechE
and RAeS and a member of the British Computer Society.

ANDY TYRRELL (Life Senior Member, IEEE)
received the degree (Hons.) in electrical and
electronic engineering and the Ph.D. degree in
electrical and electronic engineering from Aston
University, in 1982 and 1985, respectively. In April
1990, he joined the Department of Electronic
Engineering, University of York, where he was
promoted to the Chair of Digital Electronics,
in 1998. He is also the Head of the Department of
Electronic Engineering, University of York. This
work has included the creation of embryonic processing array, intrinsic
evolvable hardware systems, and the autonomous robot evolutionary sys-
tems. He has published over 350 papers in these areas. His main research
interests include design of biologically-inspired architectures, evolutionary
robotics, evolvable hardware, and novel engineering design methods. He is
a fellow of IET.

3337

