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ABSTRACT In recent years, deep learning (DL) models have demonstrated remarkable achievements on
non-trivial tasks such as speech recognition, image processing, and natural language understanding. One
of the significant contributors to the success of DL is the proliferation of end devices that act as a catalyst
to provide data for data-hungry DL models. However, computing DL training and inference still remains
the biggest challenge. Moreover, most of the time central cloud servers are used for such computation, thus
opening up other significant challenges, such as high latency, increased communication costs, and privacy
concerns. To mitigate these drawbacks, considerable efforts have been made to push the processing of DL
models to edge servers (a mesh of computing devices near end devices). Recently, the confluence point of DL
and edge has given rise to edge intelligence (EI), defined by the International Electrotechnical Commission
(IEC) as the concept where the data is acquired, stored, and processed utilizing edge computing with DL and
advanced networking capabilities. Broadly, EI has six levels of categories based on the three locations where
the training and inference of DL take place, e.g., cloud server, edge server, and end devices. This survey
paper focuses primarily on the fifth level of EI, called all in-edge level, where DL training and inference
(deployment) are performed solely by edge servers. All in-edge is suitable when the end devices have low
computing resources, e.g., Internet-of-Things, and other requirements such as latency and communication
cost are important such as in mission-critical applications (e.g., health care). Besides, 5G/6G networks are
envisioned to use all in-edge. Firstly, this paper presents all in-edge computing architectures, including
centralized, decentralized, and distributed. Secondly, this paper presents enabling technologies, such as
model parallelism, data parallelism, and split learning, which facilitates DL training and deployment at edge
servers. Thirdly, model adaptation techniques based on model compression and conditional computation
are described because the standard cloud-based DL deployment cannot be directly applied to all in-edge
due to its limited computational resources. Fourthly, this paper discusses eleven key performance metrics
to evaluate the performance of DL at all in-edge efficiently. Finally, several open research challenges in the
area of all in-edge are presented.

INDEX TERMS Artificial intelligence, all in-edge, deep learning, distributed systems, decentralized
systems, edge intelligence.

I. INTRODUCTION
The global community is increasingly becoming a data-driven
environment in which end devices are generating vast
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quantities of data outside of the traditional data centers. Inter-
national Telecommunication Union anticipates that global
internet traffic per month will reach 607 Exabytes (EB)
in 2025 and 5016 EB in 2030 [1]. This enormous amount
of data has a positive impact on artificial intelligence (AI)
applications. In particular, deep learning (DL) relies on the
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availability of large quantities of data for its development,
including training and inference [2], [3].

DL has shown promising progress in natural language
processing, computer vision, and big data analysis in
recent years. For example, DL models, such as BERT,
Megatron-LM, GPT-3, and Gropher, are reaching a
human-level understanding of the textual data in natural
language processing tasks [4]. Moreover, DL models have
exceeded human performance on various tasks, including
object classification tasks [5], [6] and real-time strategy
games [7].

DL training and deployment in the majority of scenarios
use a centralized cloud-based structure. However, the need to
collect, process, and transfer vast data to the central cloud
often becomes a bottleneck in many mission-critical use
cases [8], [9]. In this regard, edge computing provides a
high-performance bridge from local systems to private and
public clouds. The edge of the network, which often has mod-
est hardware and memory resources (depending on the net-
work infrastructure provider), can offer vital infrastructure to
facilitate DL at the edge. Traditionally to avoid the bottleneck
in many mission-critical use cases, edge computing performs
tasks such as collection, filtering, and lightweight computa-
tion of raw data before transferring data to the cloud [10].
However, with the proliferation of edge servers and progress
in DL-based architectures and algorithms, there is a possibil-
ity to perform DL model training and deployment efficiently
at the network’s edge.

The convergence of DL and edge computing has given
rise to a new paradigm of intelligence called edge intelli-
gence (EI) [11], [12]. EI aims to facilitate DL deployment
closer to the data-generating source. As EI exploits the full
potential of resources available at end devices, edge servers,
and cloud servers for DL training and inference, based on
resource utilization, it is categorized into six levels [13].
These six levels are defined based on where the DL-model
training is taking place and where it is getting deployed in
the network hierarchy. For simplicity, we assume a network
hierarchy formed of cloud servers, edge servers, and end
devices. DL training and deployment at cloud servers face
significant challenges, including issues such as high latency,
data privacy, network congestion, and security threats such
as Denial-of-Service attacks [14]. On the other hand, despite
being available in huge quantities, end devices suffer from
constrained computation power, which is particularly relevant
in the context of training and deployment of large DLmodels.
In this regard, edge servers are a viable alternative. Moreover,
due to their closer proximity to end devices, edge servers
enable reducing network congestion in comparison to the
centralized cloud architecture. Furthermore, this proximity
minimizes latency, providing for quicker inference when
compared with DLmodels deployed at the cloud server. Even
though edge servers have less computing power than the
cloud, they do have significantly more computational power
than end devices. Thus, edge servers can train and deploy

DL models that require larger computing resources than that
available at the end devices.

The exclusive use of edge servers for both DL training and
deployment is called all in-edge. Innovations and research
on the emerging area of all in-edge DL processing are in
their infancy. Unlike prior surveys [13], [15], [16], [17], [18],
[19] summarized in Table 1, to the best of our knowledge,
none of the existing surveys presents a detailed view from
the all in-edge level perspectives on its enablers, key metrics
of performances and challenges when DL is processed at all
in-edge level. Specifically, this survey answers the following:
leftmargin=0.5cm

1) Which architecture (centralized, decentralized, and dis-
tributed) should be used if the configuration of edge
servers is known at the all in-edge level?

2) What are the state-of-the-art enabling technologies that
facilitate DL training and inference from the all in-edge
level?

3) What are the critical performance metrics required in
addition to the standard metrics (e.g., accuracy and pre-
cision) to evaluate the performance of the DL model’s
applications at the all in-edge level?

This paper is organized in the following way. It first intro-
duces the computing paradigm and the all in-edge level of EI
in Section II. Then, in Section III, it discusses the architecture,
enabling technologies for training and inference of DL mod-
els at the all in-edge paradigm. Besides, this paper examines
the model adaption techniques for effectively deploying DL
models at the edge. Next, it reviews the key performance
metrics used for evaluating all in-edge DL processing in
Section IV. Section V discusses the open challenges and
future direction of research for DL at all in-edge. Finally,
Section VI presents a summary and identifies the primary
conclusions and findings of the paper. Overall, Figure 1
depicts the organization of this paper in the block diagram,
and Table 2 provides the list of important acronyms.

II. PRELIMINARY
The centralized nature of the cloud data center has several
drawbacks. One of the most considerable disadvantages is
the distance between the data centers and end (user) devices,
as it requires more wait time to process the data. On the other
hand, edge computing offers an indisputable advantage by
physically moving storage and processing resources closer
to the source of data generation, thereby achieving lower
latency. This section presents the distinction between the
cloud and edge computing paradigms. Besides, it presents the
all in-edge level of the EI paradigm, which comprises only
edge servers.

A. INTRODUCTION TO THE CLOUD AND EDGE
COMPUTING PARADIGM
The computation of DL can be done by various devices,
including cloud servers, edge servers (ESs) and edge
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TABLE 1. Summary of related surveys. 7: Not included; l: Not considered from all in-edge paradigm; 4: Included.

TABLE 2. List of important abbreviations.

devices(EDs). This determines the following computing
paradigms.

1) CLOUD COMPUTING
Cloud computing is a paradigm for wide-reaching distributed
computing that uses technologies such as grid computing,
service orientation, and virtualization. It enables on-demand
infrastructure access to a shared pool of configurable com-
puting resources that can be acquired and released with min-
imum intervention from the server infrastructure provider.
Cloud servers have significant storage capacity and computa-
tional power to facilitate the overwhelming data coming via
the backhaul network from end-user [20], [21]. Thus, cloud
servers can satisfy resource requirements for aggregation,
pre-processing, and inference for any artificial intelligence-
based applications. The cloud servers are inter-connected,

providing global coverage with a backhaul network. The
cloud computing paradigm involves the end devices that
offload data directly to the cloud for further processing. The
end devices mentioned here are the originators of the data.
In the cloud, data can persist for days, months, and years,
meaning long-term temporal data can be collated and pro-
cessed. For example, cloud data centers facilitate forecasting
models based on a large amount of historical time series
data [22]. Cloud computing is still the appropriate vehicle for
modeling and analytical processing if latency requirements
and bandwidth consumption are not an issue, provided mea-
sures for preserving privacy and security are in place [23].

2) EDGE COMPUTING
With the surge in the proliferation of IoT devices, traditional
centralized cloud computing struggles to provide an accept-
able Quality of Service (QoS) level to the end customers [24].
To meet the QoS of IoT applications, there is a need for
cloud computing services closer to data sources (e.g., IoT
devices, EDs, etc.). As defined by International Electrotech-
nical Commission (IEC), the extension of computing services
from cloud computing to the network edge is called edge
computing (EC) [25], [26]. Edge computing helps application
developers cater to user-centric services closer to clients.
In contrast to cloud computing, latency incurred from edge
computing is significantly less, as a majority of data does
not have to travel via a backhaul network to the cloud [27].
Less consumption of backhaul networks also means the
requirement of bandwidth consumption is considerably less,
as shown in Figure 2.

B. ALL IN-EDGE LEVEL OF EDGE INTELLIGENCE
Significant progress has been made in the DL domain in
the last decade. Technical advancements in high-performance
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FIGURE 1. Overview of the structure of the survey paper.

processors [28] coupled with improvements in DL algo-
rithms, and the availability and maturity of big data
processing [29] have contributed to the increase in DL per-
formance. However, DL processing (training and inference)
still occurs mainly in the cloud, as DL models require signif-
icant computational resources. As mentioned earlier, this can
adversely impact the DL’s QoS due to high latency. At the
same time, there has been substantial research focused on
facilitating DL processing at the edge. While edge computing
provides relatively modest computing resources and storage
capacity, the training and deployment of DL applications
on such devices would greatly help in achieving acceptable
QoS for real-time DL applications. For example, real-time
applications that would benefit from the merger between
edge computing and DL include automated driving [30],
and real-time surveillance [31], all of which intrinsically
require fast processing and rapid response time [32], [33].
The concept of edge intelligence is a new paradigm that
utilizes end devices, edge nodes, and cloud data centers to
optimize the processing of DL models (for both training and
inference) [13].

As depicted in Figure 2, edge intelligence is divided into
six distinct levels based on computational resources offered
by the cloud, edge, and end devices for the DL training and
inference phase. The fifth level of edge intelligence, depicted
in Figure 2, corresponds to all in-edge processing. As defined
in [13], all in-edge (fifth level) refers to the edge intelligence
paradigm where both training and inference of the Deep
Neural Network (DNN) take place in the ES (also known as

in-edge manner). This level is critical to satisfying the latency
requirements of real-time artificial intelligent applications.
In addition, it is helpful in scenarios with intermittent or
limited connectivity to the backhaul network [34]. This level
helps in reducing the amount of data that needs to be trans-
ferred from end devices to the cloud whenever the DL model
is being trained. Also, inference provided by the all in-edge
level is faster than any other level of EI where inference takes
place in the cloud data center [35].

The modest computational resources available with ESs
when processing DL models at an all in-edge level facilitate
training and inference of relatively large models [36]. Based
on the DL model’s size, either a single ES can train a DL
model or a group of ESs collaborate to train a DL model.
Technologies for training DL at level five are described in
detail in Section III-B. Similarly, inference from all in-edge
can be produced from either a single ES or multiple ESs
working collaboratively.

III. DEEP LEARNING AT ALL IN-EDGE
This section reviews the current state of the art for training
and adapting DL models from the all in-edge level perspec-
tive. Furthermore, the section details the different architec-
tures employed for DL training within the all in-edge level.

A. ARCHITECTURE
The architecture used for DL training at the ES can broadly
be divided into three main categories: centralized, distributed,
and decentralized, as shown in Figure 3. The architecture
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FIGURE 2. Layered network architecture with cloud, edge and end devices (the left part of the figure), and the ratings of edge
intelligence (EI) into six levels (the right part of the figure).

FIGURE 3. Architecture for training Deep Learning model in-edge: (a) Centralized, (b) Decentralized, and (c) Distributed Architecture.

is defined based on the role of two different types of ES.
The first is the processing ES, which is tasked with train-
ing the DL model, and the second is the decision-making
ES, which coordinates how the model is shared across the
network.

1) CENTRALIZED ARCHITECTURE
In a centralized architecture (Figure 3(a)), the processing ES
sends the data produced by the end devices (without training
local DNN) to the decision-making ES. Decision-making ES
then undertakes the DNN training task acting as process-
ing ES [37], [38]. The centralized ES is assumed to have

sufficient computing power (and typically, the computing
power of the decision-making ES exceeds that of each of the
processing ES). In this architecture, the decision-making ES
is responsible for acting as both the processing and decision-
making ES. Due to decision-making ES acting as processing
ES at the same time makes it vulnerable to a single point of
failure.

2) DECENTRALIZED ARCHITECTURE
In a decentralized architecture, depicted in Figure 3(b), each
processing ES is responsible for training its own local DNN.
Once a local model is trained, the ESs send their local DNN
model copy to a corresponding decision-making ES. This
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FIGURE 4. Model Parallelism.

decision-making ES aggregates the DNN models and subse-
quently shares it with other decision-making ES to whom it
is connected [40], [41]. Compared to centralized architecture,
decentralized architecture addresses the single point of failure
by dispersingmodels amongstmultiple decision-making ESs.
Thus, even if a single decision-making ES was to go offline,
the system could continue operating.

3) DISTRIBUTED ARCHITECTURE
A distributed architecture aims to provide a much more
resilient architecture by making each ES (typically decision-
making ES) capable of processing (training a local copy of
DNN) and making decisions on how to share the data across
the networks with other peers. In this architecture, each ES
establishes a random peer-to-peer connection with another
ES in the network for that specific iteration to share their local
models. The receiving ES aggregates received model weights
with their local copy of parameters. The training of DNN
is stopped once the loss stabilizes in most ESs, and further

updating the model parameters does not change the model’s
estimate for a given classification or regression problem [39].

B. ENABLING TECHNOLOGIES
This section focuses on the technologies that enable the
model training process undertaken by the ES. Model
parallelism, aggregation frequency control, gossip training,
gradient compression, data parallelism, federated learning,
and split learning at the ES are emerging technologies, as seen
by the substantial amount of research interest and citations,
shown in Table 3.

1) MODEL PARALLELISM/DNN SPLITTING
Model Parallelism (also referred to as model splitting or
DNN Splitting) is a technique in which the DNN is split
across multiple ESs to overcome the constrained computing
resources. Model parallelism utilizes a decentralized archi-
tecture such that after DNN partitioning, a number of pro-
cessing ESs train different layers of the DNN model, and a
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decision-making ES coordinate the training and ensure the
correct flow of activations. The model partitioning ensures
that the workload assigned to an individual processing ES
does not exceed its computational capabilities. Model split-
ting can be categorized into either horizontally partitioned or
vertically partitioned, as shown in Figure 4. In the vertical par-
titioning approach, one or more layers of the DNN are housed
in different servers based on the computational requirement
of the layer and the available resources of the processing ES.
Whereas in horizontal partitioning, neurons from different
layers are placed together based on the computational power
of the processing ES. Horizontal partitioning is beneficial
when input data is significantly big (number of attributes in
a dataset) and single processing ES fails to perform a single-
layer operation.

In [40], the authors proposed a framework for scheduled
model parallel machine learning called STRADS for vertical
partitioned parallel machine learning. The DL application
scheduler introduced in the STRADS framework helped con-
trol the update of the model parameters based on the model’s
dependency structure and parameters of the DNN model.
The authors also successfully demonstrated 10× faster con-
vergence of the model parallelism-based topic modeling
implementation over the model without parallelism. In 2021,
research [41] on training the Megatron language model,
authors utilized horizontally partitioned model parallelism
to train a multi-billion parameter language model. In con-
trast to the single-GPU-per-model training, the authors in
this research implemented model parallelism on the same
PyTorch transformer implementations with few modifica-
tions. To train such a big system, 512 GPUs were consumed
to train the transformer-based model. The same model was
then able to achieve the SOTA accuracy on the ReAding
Comprehension Dataset From Examinations (RACE [42])
dataset with improved throughput by 10% as compared to
existing approaches. Model parallelism provides a way to
combine the resources from multiple processing ES to enable
all in-edge training of a single DL model.

2) AGGREGATED FREQUENCY CONTROL (AFC)
AFC adopts a decentralized architecture for training DL
models, in which a finite number of discrete clusters of ESs
are formed, as shown in Figure 5. The task of each of the
discrete clusters is to train an identical DNN model. Each
cluster has one ES that acts as a decision-making ES. The
task of the decision-making ES is to provide all process-
ing ESs in the cluster with an identical copy of the DNN
model. Once each processing ES receives its copy, they train
that model using their local data and send back the updated
DNN model weights to the decision-making ES for aggrega-
tion. The decision-making ES aggregates the weights from
each of the individual processing ESs in the cluster. Once
aggregation is done, the decision-making ES sends back the
updated DNN model to all the processing ESs in the cluster.
In addition, after each aggregation at the decision-making
ES, a ‘‘significance function’’ is computed. This function

FIGURE 5. Aggregated Frequency Control (AFC).

will determine if the current aggregation has led to a signifi-
cant improvement. If the improvement is deemed significant,
then the current cluster’s decision-making ES will inform
the decision-making ES of each of the other clusters of the
new model weights. Hence, each decision-making ES will
have the best available model copy at any given point in
time.

The significance function in AFC influences the fre-
quency with which updated weights are sent from one
decision-making ES to another. This, in turn, can reduce the
communication overhead in the network. The Approximate
Synchronous Parallel (ASP) model [43] is one such model
that targets the problem of geo-distributed DL training. This
research successfully employed an intelligent communication
system based on the AFC technique achieving minimization
in WAN communication by the factor 1.8-53.5× between the
two data centers.

3) GOSSIP TRAINING
Gossip Training provides a way to reduce the training time
in a distributed architecture. Gossip training is based on the
randomized selection of the ES to share the gradient weights
for aggregation [44]. Each ES acts as a decision-making ES
and processing ES to make the whole training system fault
resilient. In this technique, ES will randomly select another
node and subsequently send the gradient weight updates to
the selected ES. Each ES will then compute the average
received weights. Gossip training works in a synchronized
and distributed manner. In [45], researchers demonstrated
that GoSGD (Gossip Stochastic Gradient Descent) takes 43%
less time to converge to the same train loss score when
compared to the EASGD (Elastic Averaging SGD [46])
algorithm used in distributed architecture training. In other
research, PeerSGD [47] modified the GoSGD algorithm [45]
to work in the distributed trustless environment. The algo-
rithm was modified at the stage when the random peer was
selected to share the update. The peer who receives the
update can decide whether to accept the received weights
based on the loss difference (hyper-parameter defined in the
research). PeerSGD was evaluated with various clients rang-
ing from 1 to 100. In the experiment, PeerSGD demonstrated
2× faster convergence when tested with 10 clients compared
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to 100 clients, but it still had comparable accuracy. The
limitation of PeerSGD is its inability to achieve convergence
in a scenario when data classes are segregated across multiple
clients. A modified version of GoSGD was also applied to
Wide Area Networks [48], and heterogeneous edge comput-
ing platforms [49] and demonstrated results comparable to
the original GoSGD algorithm. Gossip training facilitates all
in-edge model training without any central authority, making
the training process more resilient if any ES is not reachable
during training.

4) GRADIENT COMPRESSION
Gradient Compression is another approach to reducing com-
munication while training the DL model, which can be
applied to either a distributed or decentralized architecture
to facilitate all in-edge training. Gradient compression min-
imizes the communication overhead incurred by addressing
the issue of redundant gradients. Authors in the research [50]
found that 99.9% of the gradient exchange in distributed
stochastic gradient descent is redundant. They proposed a
technique called Deep Gradient Compression, which reduced
the communication necessary for training ResNet-50 from
97 MB to 0.35 MB. In gradient compression, two approaches
are used in practice: gradient quantization and gradient
sparsification.

In gradient quantization [51], gradient weights are
degraded from having a higher order of precision values
to a lower precision order i.e., representing weights using
float 12 rather than float 64. In [52], the author pro-
posed high-dimensional stochastic gradient quantization for
reducing the communication in the federated learning set-
ting (federated learning setting is explained in III-B6-6).
In the proposed architecture, the authors utilized a uniform
quantizer and low-dimensional Grassmannian to decom-
pose the model parameters, followed by compression of the
high-dimensional matrix of stochastic gradients into its norm
and normalized block gradients. Normalized block gradients
are then scaled with a hinge vector to yield the quantized
normalized stochastic gradient (QNSD). This QNSD was
then transmitted by the processing ES, who trained the model
to the decision-making ES, who then aggregates the various
gradients and updates a global DLmodel. Through the frame-
work of hierarchical gradient quantization, authors reduced
the communication overhead theoretically and, at the same
time, achieved a similar accuracy to the SOTA signSGD
scheme [53].

Another approach to gradient compression is gradient spar-
sification. This technique allows the gradient exchange only
if the absolute gradient values are higher than a certain
threshold [54]. For example, the threshold in the research
ranged from 2 to 15. So if the absolute values of the gra-
dients elements exceed the threshold, they are allowed to
be transmitted. The higher the value of the selected thresh-
old, the lower the communication cost (as the threshold
limits the transmission of gradient weights). This method
reduced the required communication bandwidth by three

FIGURE 6. Data Parallelism.

orders of magnitude for data-parallel distributed SGD train-
ing of DNNs. Recent research [55] found that selecting an
appropriate threshold is challenging due to the variation in
the value of the gradients. This research proposed an alter-
native approach called the edge Stochastic Gradient Descent
(eSGD) method. In eSGD, determining if the gradient update
should be sent over the network is based on the loss function.
The loss function is used to compute the loss against each
coordinate of the gradient at time steps ‘t − 1’ and ‘t’. If the
loss value at time step ‘t’ is smaller than its value at time step
‘t − 1’, the current gradient ‘gt’ will be transmitted to other
ESs to build a global model. The standard SGD, when applied
toMNISTwith 128 batch size and trained for 200000 epochs,
will achieve 99.7% accuracy. In contrast, the eSGD method
with the same setting attained an accuracy of 95.31% and
91.22% with a drop ratio (% of gradients that will not be
communicated by ES) of 25% and 50%, respectively. In [56],
the authors aim to identify an optimal trade-off between the
communication that takes place within the layers of a DNN
(housed in different ESs) and the computations required for
the gradient sparsification. The authors developed an opti-
mal merged gradient sparsification algorithm that required
31% less time per iteration over the SOTA sparsified SGD.
For the all in-edge paradigm, the size of the message being
communicated by the servers utilizes a significant bandwidth.
The gradient compression approach helps reduce the size of
the message being communicated from one ES to another,
thereby freeing up network bandwidth which can then be
utilized by other edge applications.

5) DATA PARALLELISM
Data parallelism (also referred to as data splitting) is a
technique that follows a decentralized architecture at the
all in-edge level. A sizeable primary dataset is split in
data parallelism to form mutually exclusive smaller datasets.
These datasets are then forwarded to the processing ESs.
In this architecture (see Figure 6), the decision-making ES
initially distributes the uninitialized model copy to each
processing ESs. The processing ES starts training after
it receives the dataset and the initial model copy. The
decision-making ES is responsible for producing the global
model by aggregating the local models residing inside the
processing ESs. The global model is next sent back to the
processing ESs so that it can continue to update its local
model [57], [58], [59].
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FIGURE 7. Vanilla federated learning.

6) FEDERATED LEARNING
Federated learning (FL) is a popular framework for train-
ing DL models using a decentralized and distributed archi-
tecture [60]. Although the native framework treats mobile
devices as clients responsible for training the DL model,
recent research shows clients can be extended to the ES [61],
[62], which makes this technology applicable for all in-edge.
In this section, the ‘client’ refers to processing ES with
low computing resources, and the ‘aggregation ES’ refers to
decision-making ES with modestly higher computing capac-
ity than the client.

Federated learning enables ES to collaboratively learn a
shared DL model while keeping all the training data on the
client. As shown in Figure 7, during the first stage, all the
clients download the global DL model from the aggrega-
tion ES, which is responsible for maintaining the global DL
model. Once the global DLmodel is received, the client trains
it using its own private data, making it a local DL model.
Once training is completed on the client, the local model
weights are sent to the aggregation ES. Once the aggregation
ES receives all the weights from the participant client, it is
then aggregated to formulate the new global DL model [63],
[64], [65]. After aggregation, the global DL model is again
circulated to the client for further training, making the whole
approach cyclic. This framework ensures that the perfor-
mance of the aggregated global model should be better than
any of the individual client-side models [66] before being
disseminated.

Federated Learning Systems (FLS) can be further cat-
egorized based on their data partitioning strategy, privacy
mechanism, and communication architecture [66], [67], [68],
[69]. The data partitioning strategy dictates how the data is
partitioned across the clients. There are three broad categories

of data partitioning (i) horizontal data partitioned FLS,
(ii) vertical data partitioned FLS, and (iii) hybrid data par-
titioned FLS. In horizontal data partitioning, all the clients
have the same attributes/features in their respective datasets
needed to train the private DLmodel.Whereas in vertical data
partitioned, all the clients have different attributes/features in
the dataset. By utilizing entity alignment techniques (which
helps find the overlap in other datasets where some of the
features are common) [70], [71], overlapped samples are
collected for training machine learning models. Hybrid data
partitioning utilizes the best of both worlds. The entire dataset
is divided into horizontal and vertical subsets in this category.
So each subset can be seen as an independent dataset with
fewer non-overlapping attributes and data points compared
to the entire dataset [68].

FLS provides privacy to a certain degree by default by
allowing raw data to stay only with the client ES. How-
ever, while exchanging the model parameters, there is the
possibility that exchanged model parameters could still leak
some sensitive information about private data [72]. Therefore,
privacy mechanisms have been employed for FLS. These
mechanisms can be subdivided into either cryptographic
techniques or differential privacy techniques. Cryptographic
techniques require that both the client and aggregation ES
operate on encrypted messages. Two of the most widely used
privacy-preserving algorithms are homomorphic encryp-
tion [73], [74], [75], [76] and multi-party computation [77],
[78], [79]. On the other hand, differential privacy introduces
random noise to either the data or the model parameters [80],
[81], [82], [83]. Although random noise is added to the data or
model parameters, the algorithm provides statistical privacy
guarantees while ensuring that the data or model param-
eters can still be used to facilitate effective global model
development.

The communication architecture of an FLS can be
broadly subdivided into two subcategories: distributed and
decentralized architectures. In a decentralized architecture,
the aggregation server is responsible for collecting and aggre-
gating the local models from each client. It then sends the
updated global model for retraining to each client. In this
architecture, communication between the processing ES and
decision-making ES can happen in synchronous [68], [84] as
well as in asynchronous [84], [85], [86], [87] manner. One
of the significant risks in a decentralized architecture setting
is that the decision-making ES may not treat each processing
ES equally. That is, the decision-making ES may have a bias
toward specific processing ES due to their higher participa-
tion during a training phase. A distributed architecture can
mitigate the potential issues of bias. A distributed architecture
in federated learning can be based on a P2P scheme (ex., gos-
siping scheme as described in Section III-B3), a blockchain-
based system, or a graph-based system. In a distributed
architecture, all the participating ESs are responsible for
acting as processing and decision-making ES. Therefore, if a
gossip scheme is implemented to achieve the decentralized
FLS, all the models will randomly share the updates with

VOLUME 11, 2023 3439



P. Joshi et al.: Enabling All In-Edge Deep Learning: A Literature Review

FIGURE 8. Split Learning.

their neighbors [88], [89]. In contrast, if a blockchain system
is implemented, it leverages smart contracts (SC) to coordi-
nate the DL training, model aggregation, and update tasks in
FLS [90], [91], [92], [93], [94]. Lastly, if graph-based FLS is
implemented, each client will utilize the graph neural network
model with its neighbors to formulate the global models [95],
[96], [97], [98].

FLS provides a much-needed way of enabling the DL
model training and inference at the all in-edge paradigm.
With an FLS, one can easily integrate multiple low-resource
ESs to help train the DL model at the edge. Also, based on
the resources available at the edge and the communication
overhead of FLS, one gets the freedom to select either a
distributed or decentralized architecture.

7) SPLIT LEARNING
In federated learning, each processing ES is responsible for
locally training the whole neural network. In contrast, split
learning provides a way to offload some of this computation
between processing and decision-making ESs. More differ-
ences between federated learning and split learning are sum-
marized in Table 3. As we advance in this section, the ‘client’
refers to processing ES with low computing resources, and
the ‘server’ refers to the decision-making ES with a modestly
higher computing capacity than the client. Split learning
divides a neural network into two or more sub-networks.
Figure 8 illustrates the case where we split a seven-layer
neural network into two sub-networks using layer 2 as the
‘‘cut layer’’. After the split, the two sub-networks are shared
between the client, who trains the initial two layers of the
network, and the server, who trains the last five layers of the
network. At the training time, the client initiates the forward
propagation of its confidential data and sends the activa-
tion from the cut layer to the server-side sub-network. The
server then continues the forward propagation and calculates
the loss. During backpropagation, gradients are computed
and propagated initially in the server sub-network and then
relayed back to the client side sub-network. In Split learning,
during the training and testing, the server never gets access to
the parameters of the client-side network or the client’s data.

FIGURE 9. Different configurations of Split Learning- (a) simple vanilla
split learning, (b) split learning without label sharing and (c) split learning
for vertically partitioned data.

Split learning can be broadly categorized into three con-
figurations based on how the input data and labels are
shared across the clients and servers. Figure 9 shows three
configurations- simple vanilla split learning, split learning
without label sharing, and split learning for vertically parti-
tioned data. A main neural network is partitioned into two
sub-networks in simple vanilla split learning. The initial sub-
network, along with the input data for the neural network,
remains with the client, whereas the remaining sub-network,
along with the labels, resides with the server [99]. Split learn-
ing without label sharing is identical to vanilla split learning,
except that the labels reside with the client instead of the
server. To compute the loss, the activations outputted from
the server-side network are sent back to the client, who holds
the last layer of neural network [100]. The loss is calculated,
and gradients are computed from the last layer held by the
client and then sent back to the server, and backpropagation
takes place in the usual way. The final configuration of split
learning is where the clients train their partial sub-network
for vertically partitioned data and then propagate the acti-
vations to the server-side sub-network. The server-side sub-
network then concatenates the activations and feeds them to
the remaining sub-network. In this configuration, labels are
also shared with the server [101].

In a federated learning system, clients can interact with
the server in parallel, which helps achieve faster training
compared to a split learning approach. In split learning,
the server must wait for all clients to send their activations
before propagating the activation through the server-side net-
work. Also, in contrast to federated learning, split learning
reduces the computational requirements on the client-side (as
only a partial amount of the network resides with the client).
Recently, to leverage the advantages of both split learning and
federated learning, a hybrid technique called splitfed learning
was proposed [102].
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In splitfed learning, a DL model is broken down into
the sub-networks shared amongst the clients and servers.
In addition, there is a separate federated aggregation server
for the client and the servers. All the clients perform the
forward pass in parallel and independently of each other
(as not seen in split learning). The resulting activations are
sent to the server-side sub-network, which performs a for-
ward pass for the remaining sub-network portion. The server
then calculates the loss and back propagates the gradients
back to the very first layer on the client-side, as described
earlier with split learning. Once this process finishes, the
servers send their model weights to a federated aggregation
server, which aggregates the independent server-side sub-
network to form a global server-side model. Similarly, the
clients send their sub-network weights to another aggre-
gation server. At the end of aggregation, a global model
can be developed by combining the aggregated client-side
weights with the aggregated server-side weights as shown in
Figure 10 (a) [102], [103].

Splitfed learning can have several variants. For example,
the first one is where each client has its own corresponding
server-side network in the main server, i.e., the number of
client-side models is equal to the number of server-side mod-
els as explained in the earlier paragraph. In the second variant,
there are multiple clients but only a single server. Therefore,
each client-side model sends its activations to a single com-
mon server-side sub-network, thereby reducing the required
aggregation step and the need to keep multiple copies of the
server-side networks as compared to the first variant as shown
in Figure 10 (b). Moreover, as the server keeps only one
copy of the server-side sub-network, it makes the server-side
do forward and backward pass sequentially with each of the
client’s data (activations of the cut layer) [103], [121].

Key takeaways: The above-mentioned enabling technolo-
gies at the confluence of DL and all in-edge contribute to
our understanding of training DL models using only ESs.
The enabling technologies help address issues such as lim-
ited computational resources, communication overhead and
latency between ESs, data privacy, and model robustness.
Model parallelism and split learning provide a means of
decreasing the computational resource required by individual
ES. By splitting the DLmodel, multiple resource-constrained
ESs can train a few layers of the network (rather than the
entire model). Aggregated frequency control and federated
learning enable parallel model training, facilitating faster
model convergence. Gossip training, federated learning, and
aggregated frequency control adopt a distributed architecture,
thereby robustly training a DL model in situations where
the reliability of an ES is not predictable. Also, we have
discussed splitfed, in which federated learning is combined
with split learning. Splitfed overcomes the drawback of fed-
erated learning of training a large ML model in resource-
constrained ESs [122]. At the same time, it eliminates the
weakness of split learning to deal with one client at a time
while training [121].

C. ALL IN-EDGE MODEL ADAPTION
Model Adaption techniques provide a means by which
DL model deployment at the ES can be achieved despite
the lack of computing resources, storage, and bandwidth.
Model adaption techniques can be broadly categorized into
model compression and conditional computation techniques,
as summarized in Table 4.

1) MODEL COMPRESSION
Model compression techniques facilitate the deployment of
resource-hungry DL models into resource-constrained ES by
reducing the number of parameters or trainingDLmodels that
have been reduced in size from the original model. Model
compression exploits the sparse nature of DLmodels by com-
pressing the model parameters. Model compression reduces
the computing, storage, memory, and energy requirements
needed for all in-edge deployment of DLmodels. This section
reviews pruning, quantization, knowledge distillation, and
low-rank factorization.

a: PRUNING
Pruning of parameters is the most widely adopted approach
to model compression. This approach evaluates DL model
parameters against their contribution to predicting the label.
Those neurons that make a low contribution in inference
are pruned from the trained model. Parameter pruning can
significantly reduce the size of a DL model, but it also has
the potential to impact the model’s performance adversely.
In [12], the authors were able to reduce the size of the
AlexNet and VGG-16 by a factor of 9× and 13× respec-
tively, without incurring any loss in the accuracy over the
ImageNet dataset. In another work [123], the authors utilized
pruning to create a compressed speech recognition model
on field-programmable-gate-array (FPGA). This technique
compressed the LSTM model by 10× with negligible loss in
accuracy. SS-Auto [124] is a single-shot structured pruning
framework. In contrast to earlier versions of pruning where
the entire DL model’s parameters were selected for prun-
ing, in structured pruning, independent pruning on columns
and rows of filters and channels matrix (for CNN-based DL
models) is performed. The compressed DL models produced
by the SS-Auto framework did not suffer any degradation
in performance, achieving the original performance levels
when tested on CIFAR-10 and CIFAR-100 datasets. How-
ever, the compressed VGG-16 model reduced the number
of convolutional layers parameters by a factor of 41.4% for
CIFAR-10 and 17.5% for the CIFAR-100 dataset. In [125],
the authors proposed a new framework based on weight
pruning and compiler optimization for faster inference while
preserving the privacy of the training dataset. This approach
initially trains the DL models as usual on the user’s data.
The model then undergoes privacy-preserving-oriented DNN
pruning. Finally, synthetically generated data (with no rel-
evance to the training data) is passed through a layer of
the user-trained model. The decision to prune a parameter
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FIGURE 10. Variants of splitfed learning (a) Splitfed learning with the same number of client and server-side sub-networks and
(b) Splitfed learning with only one copy of server-side sub-network.

or not from the current layer is based on how similar (by
computing the Frobenius norm) the original output of the
layer (without pruning) is when compared with the output of
the layer after the parameter has been pruned. If the outputs
are close enough, then that parameter is pruned. This pruning
technique is named the alternating direction method of multi-
pliers (ADMM). Experimental results of the framework out-
performed the state-of-the-art end-to-end frameworks, i.e.,
TensorFlow-Lite, TVM, andMNN,with speedup in inference
up to 4.2×, 2.5×, and 2.0×, respectively.

b: QUANTIZATION
Data quantization degrades the precision of the parameters
and gradients of the DL model. More specifically, in quanti-
zation, data is represented in a more compact format (lower
precision form). For example, instead of adopting a 32-bit
floating-point format, a quantization approach might utilize
a more compact format such as 16-bit to represent layer
inputs, weights, or both [13]. Quantization reduces the mem-
ory footprint of a DL model and its energy requirements.
In contrast, pruning the neurons in a DL model will reduce
the network’s memory footprint but does not necessarily
reduce energy requirements. For example, if later-stage neu-
rons are pruned in a convolutional network, this will not
have a high impact on energy because the initial convolu-
tional layer dominates energy requirement [13]. In [126], the
authors utilized a dynamic programming-based algorithm in
collaboration with parameter quantization.With the proposed
dynamic programming-assisted quantization approach, the
authors demonstrated a 16× compression in a ResNet-18
model with less than a 3% accuracy drop. The authors in [127]
proposed a quantization scheme for the inference phase of
the DL model that targets weights along with the inputs to
the model and the partial sums occurring inside the hardware
accelerator. Experiments showed that the proposed schema
reduced the inference latency and energy consumption by

FIGURE 11. Teacher-student architecture for Knowledge Distillation.

up to 3.89× and 4.84×, respectively, while experiencing a
1.18% loss in the DL models inference accuracy.

c: KNOWLEDGE DISTILLATION
Knowledge distillation is a model compression technique
that helps train a smaller DL model from a significantly
larger trained DL model. The knowledge distillation com-
prises three key components: (i) The original knowledge,
(ii) the distillation algorithm, and (iii) the teacher-student
architecture [128]. The original knowledge is the original
largeDLmodel, which is referred to as the teachermodel. The
knowledge distillation algorithm is used to transfer knowl-
edge from the teacher model to the smaller student model
using techniques such as Adversarial KD [129], [130], Multi-
Teacher KD [131], [132], [133], Cross-modal KD [134],
[135], Attention-based KD [136], [137], [138], [139], Life-
longKD [140], [141] andQuantizedKD [142], [143]. Finally,
the teacher-student architecture is used to train the student
model. A general teacher-student framework for Knowledge
distillation is shown in Figure 11. In this architecture, the
teacher DL model is trained on the given dataset in the initial
phase. Once the teacher DL model is trained, it assists the
shallower student DLmodel. The student DLmodel also uses
the same dataset used to train the teacher DL model, but
labels for the data points are generated by the teacher DL
model [144]. The knowledge distillation technique helps a
smaller DL model imitate the larger DL model’s behavior.

KD provides a viable mechanism of model compres-
sion [128]. This technique helps reduce the number of ESs
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required to deploy the larger DL model at the all in-edge
level. Reduction in the number of ES also helps achieve faster
inference time from ESs (as less communication needs to be
done within ESs).

d: LOW-RANK FACTORIZATION
Low-rank factorization is a technique that helps in condens-
ing the dense parameter weights of a DL model [145], [146],
limiting the number of computations done in convolutional
layers [147], [148], [149] or both [150], [151]. This technique
is based on the concept of creating another low-rank matrix
that can approximate the dense metrics of the parameter
of a DL model, convolutional kernels, or both. Low-rank
factorization can save memory on an ES while decreasing
computational latency because of the resulting compact size
of the DL model. In [152], the authors used the low-rank
factorization by applying a singular value decomposition
(SVD) method. They demonstrated a substantive reduction
in the number of parameters in convolutional kernels, which
helped reduce floating-point operations(FLOPs) by 65.62%
in VGG-16 while also increasing accuracy by 0.25% when
applied to the CIFAR-10 dataset. Unlike pruning, which
necessitates retraining the DL model, after applying low-
rank factorization, there is no need to retrain the DL model.
Further research [153] proposed a sparse low-rank approach
to obtain the low-rank approximation. The sparse low-rank
approach is based on the idea that all the neurons in a layer
have different contributions to the performance of the DL
model. So based on the neuron ranking (based on the con-
tribution made for inference), entries in the decomposition
matrix were made. This approach, when applied over the
CIFAR-10 dataset with VGG-16 architecture, achieved 3.6×
times smaller compression ratio to the SVD.Other commonly
used methods for low-rank factorization are tucker decom-
position (TD) [154], [155], [156] and canonical polyadic
decomposition (CPD) [157], [158].

2) CONDITIONAL COMPUTATION
Conditional computational approaches alleviate the tension
between the resource-hungry DL model and the resource-
constrained ES. In conditional computation, the computa-
tional load of the DL model deployed over a single ES is
distributed with other ES in the network. The selection of an
appropriate conditional computation technique is based on
the DL model’s latency, memory, and energy requirements.
Therefore, depending upon the configuration of the ES and
DL model’s computation requirements, DL model deploy-
ment can utilize one or any combination of the techniques
(Early Exit, Model Selection, and Result Cache) defined in
this section.

a: EARLY EXIT
The main idea behind the early exit approach is to find
the best tradeoff between the deep DNN structure of a DL
model and the latency requirements for inference. In this
approach, a deep neural network trained on a specific task is

FIGURE 12. Early exit adaption of Deep Neural Network.

partitioned across multiple ESs. The partitioning of the DL
model is based on a layer-wise split, such that a single or
multiple layers can reside across multiple ESs based on the
computation power provided by each ES. Each ES that hosts
one or more layers of the DL model also attaches a shallower
model (or side branch classifier) to the output of the final
layer on the current ES. The model is then trained as shown
in Figure 12. The purpose of the side branch classifier is to
provide an early prediction or early exit. During inference, the
data is propagated through the network (and each ES host).
Each host will calculate both the output of the hosted layers
and the output of the local early exit network. If the output of
the early exit layer exceeds a defined confidence threshold,
then the propagation stops (this is the early exit), and the
‘early’ result is returned. If the prediction from the early exit
network is less than the confidence threshold, the output of
the larger DLmodel’s layers is then propagated to the next ES
in the chain, which holds the next layer of the larger DLmodel
and another early exit network. The process of propagating
the layer’s output to the subsequent layer is carried out until
one ES inferences the class with a higher confidence score.
This process can provide ‘n − 1′ exit points for a DL model
with ‘n′ neural network layers; thus, if layer 1 of the larger
DNN along with the side branch can infer the class with the
required confidence that output will be given as a response to
the end user eliminating any further propagation of activation
values along the ES.

Researchers in [159] provided the programming frame-
work ‘Branchynet’, which helps incorporate the early exit
approach into a standard DL model. The framework modifies
the proposed DL model by adding exit branches at certain
layers. With the multiple early exit points, it can also be
considered as an enabler for localized inference using DL
models with less number of layers. For the AlexNet DL
model, ‘Branchynet’ framework was able to reduce the infer-
ence time by a factor of 2× and 6× on CPU and GPU,
respectively. In [160], the authors proposed DeepQTMT to
lower the encoding time spent on video compression. In the
DeepQTMT, the authors utilized a multi-stage early exit
mechanism to reduce the high encoding time. Experimental
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results showed the encoding time was reduced by a factor
ranging from 44.65% to 66.88% with a negligible adverse
impact in bit-rate within the range of 1.32% to 3.18%. There-
fore, while the early exit strategy can decrease latency and
facilitate a faster response time, it does have the drawback
of increasing the memory footprint of the DL model, thus
utilizing more storage at each ES.

b: MODEL SELECTION
The model selection approach selects a specific DL model
for inference from a set of available DL models based on
the latency, precision, and energy requirements of the end
user [16]. In a model selection strategy, multiple DL models
with varying DL model structures are trained. The differ-
ent trained models each have a specific inference latency,
energy requirements, and accuracy. Once trained, each of the
models is deployed to various servers. The model selection
approach will then select the DL model based on the end user
requirements [13].

The model selection approach is similar to the early exit
approach, with only one difference. In model selection, inde-
pendent DL models are trained; in contrast, in the early exit,
only one DL model is trained over which multiple exit points
are created. Authors in [161] proposed a new concept of
BL-DL (big/little DL) based on themodel selection approach.
The authors proposed the score margin function, which helps
in deciding whether or not the inference made by a small DL
model is valid. The score function is computed by subtracting
the highest probability from the second-highest probability
of a class from the last classifier layer of a DL model. Thus,
a score function can be seen ranging from 0 to 1. The higher
the value of the score function, the higher the estimation
that inference is accurate. The lower the value of the score
function, the lower the estimation of inference being accurate.
If the score function estimation is low, then a larger DL
model is invoked to make the inference on the same input
data. The same research showed a 94.1% reduction in the
energy consumption on the MNIST dataset, with accuracy
dropping by 0.12%. Recently in [162], an adaptive model
selection technique has been used to optimize the DLmodel’s
inference. The proposed framework builds a standard DL
model, which learns to predict the best DL model to use
for inference based on the input feature data. To facilitate
the training of the selection model (which is the standard
KNN model in this scenario), different pre-trained models
like Inception [163], ResNet [164], MobileNet [165] were
evaluated on the same image dataset. For each image, the DL
model that achieved the highest accuracy is set as the output.
The training data for the KNN model comprises the features
extracted from the image as input and the optimal DL model
as output. Once the model selector (the KNN) is trained, it is
then used to determine theDLmodel, giving the best accuracy
on the selected image. In the end, the selected DL model
makes an inference on the image as shown in Figure 13.
Experimental results validated the reduction in the infer-

ence time by a factor of 1.8× for the classification task

FIGURE 13. Model Selection of Deep Neural Network.

and 1.34× time reduction in a machine translation task.
While model selection facilitates a decrease in inference time,
it does incur an increased memory footprint across the ESs
due to the number of pre-trained DL models.

c: RESULT CACHE
Result cache techniques help in decreasing the time required
to obtain the prediction from the ES. In this approach, fre-
quent input queries (such as frames in the case of video
classification or images in the case of image classification)
and the associated predictions made by the DL model are
saved in an archive on the ES. So, before any query is
inferred from the DL model, intermittent lookup happens.
In intermittent lookup, if a query is similar to a saved query,
the result is inferred from the archive (cache). Otherwise, the
query goes to the DL model for inference. This technique
becomes more powerful in environments where the queries
can be expected to exhibit similarity. In [166], the authors pro-
posed a cache-based system that leveraged the ES for image
classification. When evaluated on image classification appli-
cations, the approach yielded up to 3× speedup on inference
for image recognition tasks without any drop in the model’s
performance (accuracy). Another system for video analysis
utilized the cached convolution outputs of the CNN layers to
reduce the computation for making an inference [167]. The
idea is again based on the similarity of consecutive frames
in videos. Initially, in this approach, activations from each
layer of DL for a query frame are saved in the cache. For the
next subsequent frame (query), the query is pushed through
the first layer, and the resulting activations are compared with
the previous activation values of the same layer saved in the
cache. Only those activations that differ significantly from the
cached version are calculated and propagated further through
the network. If the activation is deemed similar, they are
carried over with their cache results to the next layer. In the
experiment, the authors showed a significant speedup of 3×
to 4× compared to the vanilla CNN model with no change
in accuracy. In other research [168], the authors proposed a
framework similar to result caching. In this research, queries
were initially passed through the DL model, and activations
of each layer were cached (archived) in the ES along with the
prediction from the DL model. During the inference, after
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passing the image through the layers of DL, activations are
checked with the saved activations of a specific layer. If the
activations of a particular layer for the current query match
with the activations in the cache, further propagation of the
activations is stopped, and the cached result is returned as the
prediction. This research was applied to a VGG-16 architec-
ture using CIFAR and yielded a 1.96× latency gain using a
CPU and a 1.54× increase when using a GPU with no loss
in accuracy. Result caching provides a significant boost in the
scenario where the query (frames processing for the boundary
identification) for inference does not change significantly.
While result caching improves the overall latency of the
neural network, it also incurs a larger memory footprint.

Key takeaways: This section described model adap-
tion techniques, which facilitate the efficient deployment
of large DL models at the all in-edge level, divided into
segments- model compression and conditional computation,
summarized in Table 4.
Model compression techniques such as pruning, quan-

tization, knowledge distillation, and low-rank factorization
provide practical ways of reducing the size and memory
footprint of the DL model. Reduction in model size due to
model compression techniques also decreases the amount of
computation needed for making an inference. However, there
lies a need for DL model retraining while adopting pruning
and knowledge distillation, whereas no retraining is required
for quantization and low-rank factorization. Also, a drop in
accuracy is observed amongst all model compression tech-
niques leaving low-rank factorization.

Conditional computation techniques such as early exit,
model selection, and result caching provide practical ways
to utilize the computational resources of the available ESs
to provide faster inference. In contrast to a reduced mem-
ory footprint observed while using the model compression
technique, the memory footprint increases while adopting
conditional computation. Also, no significant drop in accu-
racy is observed while utilizing the conditional computation
techniques.

IV. KEY PERFORMANCE METRICS OF ALL IN-EDGE
The application of DL at the edge has gathered significant
momentum over the last few years. Typically research evalu-
ates the performance of a limited number of DL models often
adopting a different set of standard performancemetrics (such
as top-k accuracy [193] and mean average precision [194]).
Unfortunately, these standard metrics fail to provide insights
into the runtime performance of DL model inference at
ESs. Relevant performance metrics for DL services include
but are not limited to latency, use-case-specific metrics,
training loss, communication cost, privacy-preserving met-
rics, energy consumption, memory footprint, combined met-
rics, robustness, transferability, and lifelong learning. Table 5,
summarizes themetrics/ description against KPI utilized at all
in-edge.

This section will discuss the different metrics that should
be evaluated when developing all in-edge based DL models.

A. USE-CASE SPECIFIC METRICS
Use-case specific metrics are used to determine the quality
of the trained DL model and are dependent on the problem
statement. For example, if the use-case is a classification
problem, then accuracy, F1-score, roc_auc, etc. can be evalu-
ated [195], [196], [197]. Accuracy and F1-score are the most
common metrics used to determine the quality of classifica-
tion problems. In the classification problem, the DL model
is trained to correctly predict the class of interest, i.e., true
positive (TP) and the class of dis-interest, i.e., true negative
(TN). Equation 1 represents the mathematical formulation
of Accuracy, where FP is a false positive (classes that are
wrongly classified as positive), and FN is a false negative
(classes that are wrongly classified as negative).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
. (1)

Equation 2 denotes the calculation of F1-score, com-
monly used when there is class label imbalance, and both
classes hold the same importance in classification metric.
In Equation 2, precision is the measure of the proportion of
positive identifications that are actually correct, and recall
is the measure of the proportion of actual positives that are
correctly identified.

F1-score = 2×
precision× recall
precision+ recall

. (2)

To assess the DL model for regression problems, metrics like
max variance, R-square, root mean squared error (RMSE),
etc. are evaluated [198], [199], [200], [201], [202]. RMSE
defined in equation 3, is a widely used metric for regression-
based problems. In equation 3, yi and ŷi are the actual and
predicted labels, and N is the total number of samples.

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2. (3)

While these metrics are widely used, they are essential for
the performance comparison of different models’ architecture
and strategies deployed on the same dataset over the ES.

B. TRAINING LOSS
The process of training a DL model requires the optimization
(typically minimization) of a specific loss function. The train-
ing loss is a metric that captures how well a DL model fits the
training data by quantifying the loss between the predicted
output and ground truth labels. Different metrics are selected
based on the type of problem, i.e., classification or regression.
Some of the widely used loss functions to capture the learning
of the DL model at the edge while training are mean absolute
error [203], [204], [205], mean square error [206], [207], neg-
ative log-likelihood [208], [209], cross-entropy [210], [211],
[212], Kullback-Leibler divergence [213], [214], [215] etc.

Cross-entropy, also called logarithmic loss, log loss,
or logistic loss, is a widely accepted loss function for classifi-
cation problems. In cross-entropy, the predicted class proba-
bility is compared to the actual class label. A loss is calculated
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TABLE 5. Key performance metrics at all in-edge.

that penalizes the DL model higher if the probability is very
far from the actual value. The penalty itself is logarithmic,
which yields a significant score for large differences close
to 1 and small score for small differences tending to 0. The
cross-entropy loss function is defined as

L(y, ŷ) = −
n∑
i=1

yi log (pi) , for n classes, (4)

where pi is the predicted class probability of the ith class. Sim-
ilarly, for regression problems, mean squared error (MSE) is
the most commonly used loss function. The loss is the mean
of the squared differences between true and predicted values
across the dataset. MSE is defined as:

L(y, ŷ) =
1
N

N∑
i=0

(
y− ŷi

)2
. (5)

C. CONVERGENCE RATE
When training a DLmodel, we typically monitor its loss until
it reaches some measure of convergence. We would expect
the loss to decrease until any further updates to DL model
parameters will not change the test dataset inference made by
the DL model, known as the convergence of the DL model.
The convergence rate is normally computed when using a
distributed and decentralized architecture to train a DLmodel
at the edge. One of the primary goals of the distributed/
decentralized DL model training at the edge is to speed up
the convergence of DL models getting trained at multiple
locations. Thus, DL models at different ESs need to collec-
tively converge to a consensus that any further updates in the
model will not change the estimate of the model for a given
classification or regression problem [216]. Convergence rate,
as a metric, defines the number of iterations one algorithm
will take to converge to an optimum solution [217]. Thus,
in a decentralized/ distributed architecture at all in-edge, the
convergence rate as a metric becomes crucial because the
different combinations of the architecture selected along with

synchronization schemes (synchronous, asynchronous, etc.)
have different convergence rates [218], [219], [220], [221].

D. LATENCY
When inferring from a model at the edge, both the compu-
tational latency and communication latency become critical
key performance metrics. Computational latency provides
an estimate of the time that the DL model will require to
process a query input and infer on the same [222], [223],
[224]. Whereas communication latency provides an estimate
of the time from when a query is sent from the origin server
until the result is returned [175], [225], [226], [227]. For
mission-critical cases [228], DL models with low compu-
tational and communication latency are more favored. This
metric becomes critical because one of the reasons to move
from cloud to all in-edge is to reduce the latency incurred
during the DL inference phase. The measuring unit of latency
can range from milliseconds to seconds based on the latency
requirement from DL-based applications.

E. COMMUNICATION COST
When a DL model is deployed for inference on an ES, many
requests by the end user(s) are raised to get inference from
the DL model. The volume of data, e.g., kilobytes (KB) or
megabytes (MB), transmitted from the end user(s) has the
potential to create congestion at the ES. The communication
cost metric evaluates the amount of data (message size of each
query) flowing to the ES from the end user [56], [229]. It also
takes into consideration the inference data, which is reverted
to the end user. Active monitoring of the communication
cost is important to prevent potential congestion points [230],
[231], [232]. In typical cases, measuring the unit of commu-
nication cost is kept in KB or MB based on how much data is
required to make an inference.

F. PRIVACY PRESERVING
Privacy-preserving metrics provide a means to quantify
the level of user privacy offered by a DL model using
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privacy-preserving technologies [233]. We can assess the
ability of a model to retain data privacy during the train-
ing and inference phases. In both phases, there are two
types of data leakage: direct and indirect. Direct leakage
at the training phase occurs when an external party gains
access to non-encrypted training data sent to a centralized
ES. In addition, direct leakage can also occur when in a
decentralized/distributed setting when an external party gains
access to activations or gradients that are sent from one edge
server to another during training. Similarly, direct leakage
at the inference phase occurs when an external party gains
access to non-encrypted client data sent to an ES hosting
the DL model. Indirect leakage at the training phase occurs
when an external party gains access to DL model parameters
which can indirectly provide information regarding training
data. Indirect leakage from the inference phase comprises
results provided by the DL model, which can leak sensitive
information regarding the data DL model, is trained upon,
i.e., membership inference attack and model inversion attack.
Well-established encryption algorithms manage direct leak-
age from non-encrypted data at the training and inference
phase, like DES, 3DES, AES, RSA, and blowfish, which
don’t require evaluation [234].

During the training phase, we can use the mutual informa-
tion score (MIS) tomeasure the level of direct leakage (activa-
tion or gradients being sent from one edge server to another)
or indirect leakage (access to DL model parameters) [121].

The mutual information score (represented as I , in
equation 6) measures how much information a random vari-
able X (e.g., smashed data/ model parameters) can reveal
about another random variable Y (e.g., non-encrypted train-
ing data/ another set of model parameters). For X and Y with
joint distribution of p(x, y), it is defined as follows:

I (X ,Y ) =
∑

x∈X ,y∈Y

p(x, y)log
p(x, y)
p(x)p(y)

. (6)

This metric ranges from 0 to 1, where 0 implies the raw
data are independent of the intermediary activation vec-
tor or model parameters differ from another set of model
parameters.

During the inference phase, two attacks (the model inver-
sion attack and the memberships inference attack) can lead to
indirect leakage. A model inversion attack allows an adver-
sary to recover the confidential dataset utilized for training
a supervised neural network. In an image-based model to
evaluate model inversion, the structural similarity index
measure (SSIM) is used to evaluate the reconstruction accu-
racy [235]. The magnitude of the deformation field resulting
from non-linear registration of the original and reconstructed
images is used to evaluate the reconstruction accuracy. The
structural similarity indexmeasure between two images x and
y of common size N × N is:

SSIM(x, y) =

(
2µxµy + c1

) (
2σxy + c2

)(
µ2
x + µ

2
y + c1

) (
σ 2
x + σ

2
y + c2

) , (7)

where

1) µx the average of x,
2) µy the average of y,

3) σ 2
x the variance of x,

4) σ 2
y the variance of y,

5) σxy the covariance of x and y,
6) c1 = (k1L)2 , c2 = (k2L)2 two variables to stabilize

the division with weak denominator,
7) L the dynamic range of the pixel-values (typically this

is 2# bits per pixel
− 1 ), and

8) k1 = 0.01 and k2 = 0.03 by default.

A membership inference attack, in contrast, does not
recover the training data but allows an adversary to query
a deployed DL model to infer whether or not a particu-
lar example was contained in the model’s training dataset.
An adversary in this approach trains another DL model to
infer whether a specific example was present in the training
dataset. Accuracy as ametric is utilized to evaluate the quality
of the adversary’s DL model. One of the current metrics
proposed to measure membership inference is the ratio of the
true-positive rate to false-positive rates. This metric provides
more strict measures to make the DLmodel provide a guaran-
tee that in an ideal scenario, none of the positive cases should
be incorrectly identified. This metric becomes different from
AUC- ROC curve as TPR is only reported for fixed low FPR
(e.g., 0.001% or 0.1%) [236].

G. ENERGY CONSUMPTION
There is a wide range of available DL models, and their
individual energy requirements for computation can vary
significantly. For some resource-constrained environments,
it becomes infeasible to host models with a larger energy
footprint [237]. The energy requirements of different models
should be evaluated for their training and inference phase at
the all in-edge level [238], [239], [240]. Power consumption
(watts and kilowatts units) as measurement can be utilized to
determine energy consumption [241]. Clearly, this metric is
particularly relevant to an ES when hosting all the parts of a
deep learning model.

H. MEMORY FOOTPRINT/MODEL SIZE
For an ES with limited computational resources, it can be
challenging to host a DLmodel with a huge number of param-
eters. The larger the DL model the more parameters it will
have, and consequently the more memory space (in RAM)
required to host the model. Model size or memory footprint
is computed having ‘MB’ as their unit of measurement [242],
[243], [244], [245], [246]. For a specific image classifica-
tion problem, if MobileNet V2 with 3.54 million parame-
ters is selected, it will have 14 MB as model size whereas
if InceptionV4 with 42.74 million parameters is selected
for the same problem, it will have a 163 MB model size
requirement [241].
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I. COMBINED METRICS
As all in-edge needs to satisfy multiple constraints (i.e.,
energy, quality of DL model, latency etc.), it becomes more
important to introduce hybrid metrics that combine multiple
metrics. For example, the energy-precision ratio (EPR) [247],
provides a way to combine the classification error with the
energy consumed per sample. In equation 8, energy-precision
ratio (EPR) is defined as:

EPR = Errorα × EPI, (8)

where Error is the classification error, α is the adjustment
parameter, and EPI is the energy consumption per sample.

J. ROBUSTNESS
Adversarial examples can manipulate DL models, and
negatively affect the models’ performance or lead to misclas-
sification. Thus the models need to be either robust to these
examples by default or integrate various defence techniques
to strengthen their robustness properties. The robustness of a
model is defined as the insensitivity of the model to small per-
turbations made to any plausible input. Moreover, the robust-
ness can be defined as the reciprocal of the KL Divergence:

ψ(x) =
1

max
δ∈set

DKL(ŷ, ŷ′)
, (9)

where DKL is the KL Divergence, ŷ and ŷ′ are the predictions
for a sample x and x + δ, respectively [248]. Another simple
way to measure the robustness can be the difference in the
accuracy with and without the adversarial examples. The
defence techniques for robustness include PixelDP, which
is a certified defence for norm-bounded adversarial sam-
ples [249], adversarial training and ensemble learning.

K. TRANSFERABILITY AND LIFELONG LEARNING
The ability to reuse previously learned information for a
related task indicates the transferability of a model. Thus,
there is no need to train the model from scratch for a
new task if the model is transferable from another related
domain [250]. The transferability can be measured by using
transfer accuracy and LEEP score (T (θ,D)) [251].

T (θ,D) =
1
n

n∑
i=1

(
∑
z∈Z

P̂(yi|z), θ(xi)z), (10)

where xi is a sample, θ is the source model, D is the target
dataset, z ∈ Z is the label in the label set Z of the source task,
and P̂(yi|z) is the conditional distribution of the predicted
labels given an original label.

The environment can change over time, and the model
needs to adjust accordingly to capture the changes. Thus,
models capable of lifelong learning are preferable. In lifelong
learning, the model retains the previously gained knowledge
and also keeps learning new information with time. Overall,
transferability and lifelong learning capability make the DL
models data and computation efficient.

V. OPEN CHALLENGES AND FUTURE DIRECTION
Thus far, we have discussed DL architectures, technologies,
adaption techniques, and the key performance indicators
required to facilitate DL to all in-edge. In this section, we now
articulate the key open challenges and future research direc-
tions in the area of DL at all in-edge.

A. CHALLENGES WITH RESOURCE-CONSTRAINED
EDGE SERVERS
It’s necessary to know the configuration of ESs before starting
the training and deployment of the DL model at ESs. This
section discusses challenges that arise from heterogeneous
ESs provided by different edge infrastructure providers (e.g.,
Motorola Solutions, Hikvision, ADT) and associated future
directions of research.

1) MEMORY EFFICIENCY
There are significant challenges to facilitating both the train-
ing and inference of DL models on ESs due to the limited
resources and heterogeneous configuration of different ESs.
DL models can vary significantly in their overall size. For
example, inception-v3 has a size of 91 MB [252], while
vgg-19 has a size of 548 MB [253]). Thus, based on the
selected DL model (assuming it to be vgg-19) and enabling
technology (assuming it to be federated learning), it can
become impossible for some ES to participate in DL model
training due to insufficient memory (if memory is less
than 548 MB). The lack of availability of certain ESs can
negatively impact the DL model convergence rate (a small
number of available ESs for distributed training will mean
a slower convergence rate). Also, due to the fairly large
size, some DL models will be limited to being deployed
for inference at a small number of ESs. In the future,
explore the direction of utilization of heterogeneous ESs by
answering: How can we train a DL model at ESs where
some models can train fairly large models due to exten-
sive memory, and some can partially train those models?
How can we design DL models to facilitate training across
heterogeneous ESs?

2) ENERGY REQUIREMENT
As ESs in remote locations can be battery-powered, mini-
mizing energy consumption is a critical ongoing challenge.
One way to achieve it is by limiting the computation
required in the training and inference phase, which inher-
ently lowers the energy requirement. Another important
avenue of research is to investigate the performance of
battery-operated ESs when different DL models are trained
and deployed. While chipset designers continuously strive
to reduce the energy requirements of their products (GPUs,
TPUs, etc.). The same understanding of the interaction of
the rest of ES composition (computing chipset, storage
drives, batteries, etc. are required) to find a fair trade-off
between battery management and compute resources is
required.
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B. QUALITY OF SERVICE (QoS) ATTRIBUTES FOR DL
MODEL AT AN ALL IN-EDGE LEVEL
In order to be competitive with a centralized cloud model,
the all in-edge model needs to provide quality of service
guarantees. This section discusses the ‘‘DL model at all in-
edge guarantees’’ to build a complete all in-edge framework
for DL.

1) LOW LATENCY
Low latency is the first attribute that needs to be fulfilled at an
all in-edge level. Low latency can be achieved by providing
faster communication during model training and a quicker
inference response from a deployed DL model. Due to the
closer proximity of a deployed DL model to the end users,
reduced latency has been observed in edge-based models
compared to the traditional cloud-based models. For real-
world applications, DL applications like image segmenta-
tion, object detection, etc., require very low latency. Using
edge-based DL models, academic and industrial researchers
actively seek ways to reduce latency [254], [255], [256],
[257], [258]. Although progress has been made in this area,
the current state-of-art still results in significant latency,
specifically when dealing with high dimensional input data
(e.g., image, time series). For example, a constrained model
architecture can process between 5 to 15 frames per second
(fps) with an image resolution set to 1920 × 1080 [259].
However, processing 5 to 15 frames per second is relatively
lower than the fps at which videos are captured (typically
24 fps higher). Processing a higher number of frames will
result in delayed latency at the inference stage; This remains
an open research problem and as such new techniques are
required to deal with high dimensional data.

Similarly, model compression provides approaches to
reduce latency by enabling larger DL models to be deployed
at an ES. This reduces the computation required (as the DL
model is quantized and compressed). However, DL networks
have continued to grow in size (leading to a correspond-
ing increase in the number of parameters). This necessitates
further research on providing more powerful compression
techniques for DL networks.

2) HETEROGENEOUS DATA DISTRIBUTION AND
ASYNCHRONOUS EDGE SERVER PARTICIPATION
The second attribute required by the DL model at the all
in-edge level is its ability to be trainable at ESs with het-
erogeneous data distribution. Heterogeneous data distribution
is caused by the non-Identical and Independent Distribution
(non-IID) of the data among the multiple ESs, which leads
to severe statistical heterogeneity challenges when training
a DL model. For example, one extreme case is when an end
server only has data from a particular class. Usually, DL algo-
rithms trained in a distributed environment with multiple
ESs with an overall non-IID data distribution will perform
poorly [260]. This opens an interesting future direction of
research. Adaptive optimization is one approach that can

be used to improve the convergence speed of a DL model
and can effectively mitigate the concerns of non-IID data
distribution. For example, [261] proposed adapting FedAvg
to use a distributed form of Adam optimization to implement
adaptive federated learning, which converges to a target accu-
racy in 6× fewer rounds than compressed FedAvg. In the
future, exploring momentum, adaptive optimization, learning
rates, and other hyperparameters is a worthwhile research
direction in the context of a non-IID distribution. In addition,
the participation of the ESs can be inconsistent due to com-
munication or computational reasons. This results in either a
slowdown in the convergence rate or an inability to converge
at all [262], thus placing more emphasis on asynchronous
ES participation in the training phase. Future research into
the robustness of training models in such scenarios is also
warranted.

C. PRIVACY AND SECURITY CONCERNS
Despite the rapid development of privacy-preserving
DL [263] and security mitigation techniques [264] in recent
years, there are still open research challenges that need to
be addressed. This section discusses potential open research
problems and future directions regarding privacy and security
concerns impacting DL model development and deployment
at all in-edge.

1) PRIVACY-PRESERVATION
Providing adequate privacy preservation for DL applications
is an area with open research challenges. To preserve the
privacy of the client’s data at the ES, different enabling
technologies are utilized with or without cryptographic tech-
niques, perturbation techniques, and anonymization tech-
niques [265], [266]. While these techniques provide a means
of better safeguarding client data, they struggle to maintain
the original level of model performance simultaneously. For
example, the inclusion of these techniques can not only
negatively impact the predictive performance of a model
(accuracy, F1-score, etc) [103], [267], [268] but can also
significantly lengthen the training [99], [269], and infer-
ence [270], [271]) time of a model. Therefore, there are
opportunities in this area to preserve privacy while mitigating
the negative consequences outlined above.

2) SECURITY
The ESs need active participation while enabling DL
at the all in-edge level. However, due to hardware
constraints (e.g., low computational capability) and soft-
ware heterogeneities of the ESs, this also represents an
increase in the attack surface. Moreover, various attacks
such as Distributed Denial-of-service(DDoS) targeting
network/virtualization infrastructure, side-channel attacks
targetting user data/privacy, malware injection targeting
ES/devices, authentication and authorization attacks target-
ing ES/devices and virtualization infrastructure are possible
for all in-edge computing system [272]. However, finding
efficient and suitable countermeasures for these attacks is
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challenging due to constantly evolving attackers’ tactics,
techniques, and procedures [273]. Besides, DL approaches
such as federated learning and split learning for edge intelli-
gence suffer from adversarial attacks on the federated models
to modify their behavior and extract/reconstruct original
data [274]. To that end, novel techniques are required to
identify security attacks/breaches and mitigate such attacks
in the future.

D. FRAMEWORK AND ARCHITECTURAL CHANGES TO
FACILITATE DL MODELS AT ALL IN-EDGE LEVEL
The convergence of DL at the all in-edge level is a rela-
tively new paradigm, with concerns about effective resource
utilization, management, and interoperability amongst het-
erogeneous ESs, requiring new frameworks and architectural
changes. This section will discuss promising directions that
can help mitigate the concerns at the convergence.

1) MICROSERVICES
As computing is getting pushed away from being cloud-based
to edge-based, architectures to facilitate DL model training
and deployment are also shifting from monolithic entities
to graphs of loosely-coupled microservices [275]. Microser-
vices provide a promising way of modularizing DL-based
applications at the process level. For example, a single
DL application can be decomposed into a non-overlapping
atomic set of services in a microservice architecture. How-
ever, sometimes one DL model inference can depend on
another DL model inference. At the same time, another
DL model may require different computing languages
(e.g., python, R), language dependencies (e.g., PyTorch,
TensorFlow), and software dependencies (e.g., pycharm,
GitLab). Microservices architectures provide a means for
those DL models with different requirements to communi-
cate effectively. Currently, the introduction of microservices
for deploying and training at the edge is at a very early
stage [276]. The research opportunity exists to build a robust
microservice framework that can handle the deployment and
management of the DL model. Another opportunity lies in
migrating microservices-based DL applications from devel-
opment to production with minimal downtime.

2) MANAGEMENT OF DL-BASED APPLICATIONS AT ESs
The confluence of DL models deployed at ESs and the emer-
gence of smart cities has led to a new interesting research
area of DL-assisted smart cities. With many DL models
deployed at ESs in smart cities, it will become challenging
to predict the future requirement of resources for DL com-
putation accurately. Real-time optimization will be required
amongst ESs to accommodate heterogeneous computation
and communication adaptively. As a result, better resource
orchestrators (online ES management applications) will be
required at the edge to facilitate the potentially large num-
ber of requests that will be generated within an ecosystem
of smart cities. Also, with every government taking steps
toward smart cities, these orchestrations will be dispersed

across different geolocations and regions, thus providing an
opportunity for collaboration between individual orchestra-
tors. A flexible coordination mechanism between orchestra-
tors situated adjacent to each other will be required, which
can also preserve citizens’ privacy. An emerging research
direction is utilizing AI to tackle the design complexity of
interconnected smart cities; One of the ways to achieve it is by
using deep reinforcement learning (DRL) [277]. A distributed
DRL-based scheme can provide an efficient way to solve the
data-driven interference mitigation and resource allocation
problem. It also opens up new research opportunities on
the need to develop a uniform API interface for ubiquitous
heterogeneous ESs to ease the deployment of orchestrators.
Due to the highly dynamic nature of this environment (any
ES can go offline and come back into service), an important
and related research direction is the design of efficient service
discovery protocols. Service discovery protocols will provide
necessary information to companion ESs regarding what can
be expected from DL-based applications deployed at that ES.

3) DESIGNING APPLICATION FRAMEWORK TO FACILITATE
DL AT THE ALL IN-EDGE LEVEL
All in-edge paradigm requires new ways of designing appli-
cations. In Section III-A, we presented different archi-
tectures capable of pushing AI to the ES with varying
application requirements. With the enabling technologies
explained in Section III-B) and model adaption techniques
described in Section III-C, developing DL applications
becomes progressively more complex. The aforementioned
microservices-based architecture is another exciting area of
research in the provisioning of DL-based applications at
ESs [278]. Although other research provided the framework
for designing DL-based applications by utilizing ESs, they
all remain confined to the problem they tried to resolve. For
example, in [279] provided a framework for the self-learning
DL model, in which authors proposed a GAN-based synthe-
sis of the traffic images. The proposed framework remains
applicable only for video-based scenarios. Similarly, the
work in [280] provides a framework that was restricted to
work for web traffic anomaly detection. Likewise, other
research [281], [282] has its niche, and the proposed frame-
work is restricted to solving the specific problem type. To the
author’s knowledge, Open EI [283] is the only framework
that provides a generic approach to facilitate the development
of applications for a wide range of problem domains (com-
puter vision, natural language processing, etc.). Still, this
framework lacks the components of hardware (choices in the
selection of hardware accelerators that can help in faster DNN
computation [284], [285], [286], [287]) and the deployment
of the DL-based services (how to distribute load and develop
a global model across the ES III-B). Therefore, there is a need
to find a robust framework that can facilitate the easy devel-
opment and deployment of complex DL-based applications at
the all in-edge level by providing guarantees from DL-based
applications (as mentioned in Section V-B) while adhering to
infrastructural constraints of the ES resources (as discussed
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in Section V-A) alongside mitigating the privacy and security
concerns (as described in Section V-C).

VI. CONCLUSION
This paper reviewed the current states to facilitate the training
and inference of DL models on a fine mesh of ESs (referred
to as all in-edge level). The behavior of centralized, decen-
tralized, and distributed architecture were discussed from the
ES’s perspective to find a trade-off between simplicity (by
centralized architecture) or achieving reliability (by utilizing
a decentralized and distributed architecture) for DL models
deployed at the all in-edge level. Technologies facilitating
the DL training and deployment across ESs were described,
which leverage the layer structure of the DL models and
closer proximity to the origin of the data. Federated learn-
ing and split learning as enabling technologies were more
effective than others as they provided enhanced privacy while
training and providing inference from the DL model. Model
adaption techniques were found to be necessary at all in-edge,
providing benefits of minimizing the energy requirement,
lowering communication message size, and decreasing the
memory footprint. In addition to general performance indica-
tors, this paper identified and put forward additional key per-
formance indicators, measured in silos in several works but
not considered to be evaluated simultaneously.Many research
directions remain open regarding optimizing memory and
energy of resource-constrained ESs for facilitating DL at ESs
while preserving the privacy of the user’s data, incorporating
advancements in cybersecurity to diminish security concerns,
and lastly, close collaboration with networking technologies
(such as network functions virtualization). With new techno-
logical innovations, shifts in DL-based application design,
networking technologies improvements, and ESs hardware
advances, many of the previously mentioned challenges will
be mitigated. This will bring new challenges and opportuni-
ties for further innovation.
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