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ABSTRACT This paper considers the shaping of the amplitude spectra of perturbation signals for the
identification of a thermostat system. The current approach in control engineering practice utilizes flat
spectrum signals, which may not result in the highest possible accuracy. This research aims to investigate
the effectiveness of optimal signals with amplitude spectra designed using two state-of-the-art software
approaches, namely the model-based optimal signal excitation 2 (MOOSE2) design and the optimal exci-
tation (optexcit) design, in improving estimation accuracy. Such a comparison on a real system is currently
lacking. In particular, there exists a research gap on how the combined choice of signal and model structure
affects performance measures. In this research, two model structures are used, which are the autoregressive
with exogenous input (ARX) and the output error (OE) model structures. Four performance measures are
compared, namely the determinant of the covariance matrix of the parameter estimates and the minimum
error, mean error and maximum error in the frequency response. Results show that the optimal signals are
effective in reducing the determinant of the covariance matrix and the maximum error in the frequency
response for the thermostat system, when applied in combination with the ARX model structure. The flat
spectrum signal remains very useful as a general broadband perturbation signal as it provides a good overall
fit of the frequency response. The findings from this work highlight the benefits of applying optimal signals
especially if the identification results are to be used for control, since these signals improve key performance
measures which have direct implications on controller design.

INDEX TERMS Estimation, perturbation signals, signal design, system identification, thermostat systems.

I. INTRODUCTION
System identification is widely applied in control engineering
to build models from input-output data [1]. These models are
particularly useful in the design of model-based controllers
such as the model predictive controller [2]. The accuracy
of the model depends on the quality of the input-output
data which is, in turn, determined by the input or perturba-
tion signal used for the identification test. Periodic pertur-
bation signals have the advantages of allowing the effects
of transients to be removed and enabling averaging to be
performed [3]. They can be categorized into fixed spectrum
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and computer-optimized signals [4]. The former category
is constructed based on finite field arithmetic, whereas the
latter category is generated via optimization using computer
programs [5]. One of the characteristics that can be optimized
is the amplitude spectrum.

Flat spectrum signals are ideal when there is little prior
information available about the system under test. However,
they may not result in the highest possible estimation accu-
racy. Fortunately, in some cases, such as in model predictive
control applications, an initial model of the system is avail-
able at the point when an updated model is sought after due to
process aging and revamps. In many other applications, it is
possible to extract information about the system under test
from historical data or preliminary step tests. It is useful to
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capitalize on the a priori information when designing per-
turbation signals since it is known that for the identification
of linear systems, the asymptotic properties of the model
parameter estimates depend only on the input spectrum [6].
Such signals are termed optimal signals. It is important to
investigate how their amplitude spectra affect performance
measures related to estimation accuracy since this will deter-
mine the usability of the models obtained.

Several signal designs are available in the literature, such
as [7], [8], [9], [10], [11], [12], [13], and [14]. In [7],
signal design for non-iterative direct data-driven techniques
was considered for data-driven control, where the ampli-
tude spectrum was designed to minimize the degradation
caused by noise. An online method using past input-output
data was presented in [8], where it was shown to be sam-
ple efficient. In [9], two signal design criteria involving
sensitivity functions were proposed and analyzed for the
identification of systems with uncertainties. The approach
in [10] viewed the signal design from the perspective of
optimizing an input trajectory that maximizes parameter
identifiability. The signal-to-noise ratio (SNR) was utilized
to guide the amplitude spectrum shaping in [11]. Signal
design for kernel-based identification was considered in [12],
where a two-step procedure using quadratic transformation
was applied. A Bayesian A-optimality method was proposed
in [13], which can be utilized for online signal design, also in
the context of kernel-based identification. More recently, the
direct spectrum shaping technique [14] was proposed, with
the advantage of having a significantly lower computational
load compared to that of the Bayesian A-optimality approach.

Of the several designs available, those that come with
user-friendly software implementations are particularly use-
ful. Two of these software approaches represent the current
state-of-the-art, namely the model-based optimal input signal
design 2 (MOOSE2) from the MOOSE2 program [15], [16],
[17] and the optimal excitation (optexcit) design from the
Frequency Domain System Identification (FDIDENT) Tool-
box in MATLAB [18], [19], [20], [21]. The improvement
achieved in the estimation accuracy across an iteration for
the optexcit signal was analyzed in [22] under various SNRs.
In [23], the combined use of MOOSE2 and optexcit signals
for the multivariable case was investigated, but the results are
applicable only to the specific systems tested.

Despite several signal designs being available, there is a
lack of comparison between them because different signals
were typically tested on different systems in the literature,
making comparison challenging. Additionally, the majority
of the existing works deal only with simulated systems.
This motivates the current work, where the input spectrum
design is implemented on a thermostat system. In particular,
the MOOSE2 and optexcit designs are compared with the
benchmark flat spectrum signal. The results reveal how the
combined choice of signal and model structure affects perfor-
mance measures related to estimation accuracy. A thermostat
system is used in this study for the following reasons. Firstly,
the regulatory function of a thermostat can minimize energy

FIGURE 1. Block diagram of a thermostat system.

consumption and provide cost savings of greater than 40%
[24]. Secondly, the thermostat is rather ubiquitous, being used
in air conditioners, water heaters, refrigerators and ovens,
thus ensuring that the results of this research are very much
applicable to control engineering practice. Thirdly, many
thermodynamic systems such as furnaces [25] share similar
characteristics in terms of the smoothness of the dynamic
responses, allowing the findings from the current work to be
generalized to a wide range of systems.

The rest of the paper is organized as follows. Section II
provides the problem statement. Section III describes the
experimental set-up. Preliminary tests and the identification
of a benchmark model are described in Sections IV and V,
respectively. Comparison between various signal designs is
discussed in Section VI. Finally, concluding remarks and
suggestions for future work are presented in Section VII.

II. PROBLEM STATEMENT
The block diagram of a general thermostat system is depicted
in Figure 1. There are many types of thermostats avail-
able [24], which are suited for different applications. The
controller may range from a simple on-off controller to a
more complicated proportional-integral-derivative class of
controller. The actuator depends on the heating and/or cooling
mechanisms used and may range from a valve to a pulse-
width modulator.

In this paper, the identification of the system under test
is considered, where the input (denoted by u) is the desired
temperature scaled to its corresponding voltage value and
the output (denoted by y) is the temperature of the ther-
modynamic process. The perturbation signal is fed into the
system as the input in order to excite the system. The prob-
lem statement is formally stated as follows. It is required
to compare the estimation accuracy of the system transfer
functionG(z) = Y (z)/U (z) for the flat, MOOSE2 and optexcit
amplitude spectra, where U and Y denote the z-transforms of
u and y, respectively, based on four performance measures:

(i) the determinant of the covariance matrix of the param-
eter estimates defined by

D = det{P} (1)

where P is the covariance matrix of the estimated parameters,
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FIGURE 2. Photograph of ELWE LEHRSYSTEM thermostat.

(ii) the minimum error in the frequency response defined
by

Amin =
min

k (|Ĝ(k)− G(k)|) (2)

where G(k) is the actual system frequency response and
Ĝ(k) is the estimated system frequency response at
harmonic k ,
(iii) the mean error in the frequency response defined by

Amean =
1
F

F∑
k=1

|Ĝ(k)− G(k)| (3)

where F is the highest specified (excited) harmonic, and
(iv) the maximum error in the frequency response defined

by

Amax =
max

k (|Ĝ(k)− G(k)|). (4)

The measureD provides an indication of the uncertainty of
the estimates. It is important in robust controller design where
decisions are guided by the size of the model uncertainty.
On the other hand, accuracy of the frequency response is
crucial in the design of controllers such as the proportional-
integral-derivative controller, where tuning is frequently per-
formed in the frequency domain. The measure that is of prime
importance depends on the application.

III. EXPERIMENTAL THERMOSTAT SYSTEM
In this experiment, the ELWE LEHRSYSTEM thermostat
system [26] was utilized. The entire system (as shown in
Figure 2) has a length of 25.4 cm, a width of 20.3 cm and
a height of 30.5 cm. It can accept manual input through an
adjustment knob, an internally programmed ramp input, and
a user-defined signal from a data acquisition system (DAQ).
The system has a proportional-integral controller.

The ELWE LEHRSYSTEM thermostat can accept input
signals with two different voltage ranges, which are from
−10 V to +10 V and −15 V to +15 V. In this investigation,
the−10 V to+10 V range was utilized. The specifications of
this thermostat are given below:
• Operating temperature range: 0 ◦C – 100 ◦C
• Supply voltage: 230 V

FIGURE 3. Photograph of the experimental set-up.

• Supply current: 0.5 A
• Frequency: 50/60 Hz
Data input and output were performed through a National

Instruments (NI) myDAQ device, which is controlled through
the NI LabVIEW-based software appliance [27]. It has
the combined functions of digital multimeter, oscilloscope,
function generator, variable power supply, Bode plot ana-
lyzer, dynamic signal analyzer, impedance analyzer, two-
wire current-voltage analyzer and three-wire current-voltage
analyzer.

In this investigation, the NI myDAQ was applied as an
arbitrary waveform (input signal) generator, which provided
input voltage to the ELWE LEHRSYSTEM thermostat. Con-
nections to the thermostat were made using probe wires. The
NI myDAQ device was connected via a universal serial bus
cable to a laptop with LabVIEW software installed. This
enabled experimental data to be displayed and stored in the
laptop for analysis. A photograph of the experimental set-up
is shown in Figure 3.

IV. PRELIMINARY TESTS
Preliminary tests were first conducted to check the signif-
icance of nonlinear distortion as well as to obtain suitable
values of the sampling time ts and the measurement time TN .
A positive step test was applied, stepping the input from 0 V
to +10 V. The output was observed to change from 0 ◦C to
around 100 ◦C.A negative step test was applied next, stepping
the input from +10 V to 0 V. The output decreased back to
0 ◦C. In both cases, the time taken to reach 63% of the total
temperature change was found to be around 50 s. The output
reached steady state after 250 s. The positive and negative step
responses were largely symmetrical, indicating that nonlinear
distortion was negligible. Based on the preliminary step tests,
the sampling time ts was set to 5 s, whereas the measurement
time TN was set to 250 s according to the recommendations in
[5]. The signal period was calculated using N = TN /ts = 50.

An initial model, Gi(z), was identified based on the step
response tests as

Gi(z) =
0.7953

1−1.1218z−1 + 0.2013z−2
. (5)

Only a low order model could be identified because the
step inputs lacked high frequency components and because
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FIGURE 4. Five periods of the measured output.

FIGURE 5. DFT magnitudes of the measured output. Only the first
50 harmonics (out of 250 harmonics) are shown for better clarity.

the system suffered from the presence of significant distur-
bances. Gi(z) has a gain of 10. It will be subsequently used in
Section VI to design optimal signals, where the parameters
of Gi(z) will affect the shape of the amplitude spectra of the
optimal signals.

V. IDENTIFICATION OF BENCHMARK MODEL
A benchmark model was subsequently obtained by exciting
the system with a flat spectrum multisine signal of period
N = 50 and 20 consecutive excited harmonics (from harmon-
ics 1 to 20). The highest specified harmonic F was set to
approximately 0.4N , according to the recommendation in [5].
The sampling time ts was set to 5 s based on the preliminary
tests. The signal amplitude ranged from 2.96 V to 7.03 V,
with a nominal value of 5 V. The flat multisine signal u was
fed ten times into the system and the output data of periods 1
to 10 (y1, y2, . . . , y10) were measured in synchrony with the
input. The last five periods of the output data (y6 to y10)
were averaged to reduce the effects of noise. The SNR was
approximately 17 dB, hence justifying the need for averaging
in the quest for a benchmark model. Figure 4 depicts the

FIGURE 6. Time domain signals with mean removed. Top: input; bottom:
output. For the bottom subplot - solid line: measured; dashed line:
benchmark model; dashed-dotted line: error.

non-averaged output and the averaged output signals as well
as the difference between them.

The effects of averaging can be clearly observed in the
frequency domain, as depicted in Figure 5. Taking a 250-point
discrete Fourier transform (DFT), contributions of the lin-
ear component of the system will appear at harmonics
5, 10, 15, 20, 25, . . . These are at multiples of five because
five steady state periods were taken. The power at the rest of
the harmonics such as harmonics 1, 2, 3, 4, 6, 7, 8, . . . can be
attributed to the effects of noise [3]. These are non-periodic
components and they can be removed via averaging. This will
ensure that the resulting benchmark model will have high
fidelity since it will be used as a basis for the comparison
of different input spectrum designs.

The average of the last five periods of the output data (y6 to
y10) served as the training output for the identification of the
benchmark model. The second to fifth periods of the output
data (y2 to y5) were also averaged; this served as the validation
output. The training data and validation data were fed into the
System Identification Toolbox [28] in MATLAB. The mean
values of the signals were set to zero, as is the typical practice
in system identification. Transient effects were removed by
discarding the first period (y1).
The benchmark model order was selected using Akaike’s

Information Criterion [29]. The Rissanen’s Minimum
Description Length Criterion [30] also resulted in the same
order. The resulting benchmark model, Gb(z), is given by

Gb (z)

=
1.839+1.344z−1−1.213z−2−0.3446z−3−0.02459z−4

(1− 0.7649z−1 − 0.5904z−2 + 0.6471z−3

−0.2626z−4 + 0.1912z−5 − 0.06777z−6)

.

(6)

Gb(z) has a fit of 100×
(
1−

√∑
n (y(n)−ŷ(n))2∑

n y
2(n)

)
% = 98.47%,

where n is the discrete time index and ŷ denotes the estimated
output. Gb(z) was identified using the autoregressive with
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FIGURE 7. DFT magnitudes. Top: input; bottom: output. For the bottom
subplot - circles: measured; asterisks: benchmark model.

exogenous input (ARX) model structure; a lower fit was
obtained using the output error (OE) model structure. The
system gain of Gb(z) is 10.5.
The measured output and the benchmark model output in

the time domain are compared in Figure 6. From Figure 6, the
benchmark model output matches the measured output very
well, with the error being almost zero. In Figure 7, the DFT
magnitudes are compared. The trend in the DFT magnitude
has been successfully captured by Gb(z). The high accuracy
was made possible by the averaging of multiple periods of the
input-output data.

VI. COMPARISON OF SIGNAL DESIGNS
Three different spectra were considered, namely the flat
spectrum, MOOSE2 spectrum and optexcit spectrum. Per-
turbation signals with these spectra were implemented
using multisine signals of period N = 50 and 20 consecutive
excited harmonics (from harmonics 1 to 20). The sampling
time ts was set to 5 s based on the preliminary tests. The flat
spectrum signal was the same as that used for identifying the
benchmark model and it is non-optimized. TheMOOSE2 and
optexcit signals are optimal signals, and they were designed
based on Gi(z) given in (5).
To obtain the MOOSE2 signal, the MOOSE2 program

[15], [16], [17] was applied to generate the MOOSE2 spec-
trum. The MOOSE2 program was set to minimize the deter-
minant of the covariance matrix of the estimated parameters
based on the D-optimality criterion. This made the objective
function of MOOSE2 as similar as possible to that of optex-
cit. The MOOSE2 spectrum was parameterized as a transfer
function. The flat spectrum signal was passed through this
transfer function which works like a shaping filter. The output
of the filter gives the MOOSE2 signal.

The optexcit signal was generated by making use of the
optexcit algorithm in the FDIDENT Toolbox in MATLAB
[18], [19], [20], [21]. The algorithm optimizes the power
spectrum of the input signal in the sense that it min-
imizes the volume of the uncertainty ellipsoid of the
estimated parameters. This power spectrum was fed into

FIGURE 8. Perturbation signals in the time domain. Top: flat; middle:
MOOSE2; bottom: optexcit.

FIGURE 9. Perturbation signals in the frequency domain. Top: flat;
middle: MOOSE2; bottom: optexcit.

a time-frequency swapping algorithm [31] to generate the
optexcit signal.

The three signals with different spectra were scaled to
give the same root-mean-square value of 2.68 V, for fair
comparison. The signal and their DFTmagnitudes are plotted
in Figures 8 and 9, respectively. The signals were fed into
the thermostat system in three separate experiments after
being shifted by the nominal input voltage of 5 V. In each
experiment, transient effects were removed by collecting two
periods of the output and discarding the first period. Noise at
the non-excited harmonics was filtered to improve the output
SNR. The input and output data, with mean values removed,
were fed into the System Identification Toolbox inMATLAB.
The training set was the same as the validation set as only
one period of steady state data was available. The experiment
was designed to test the accuracy of the identification under
stringent limits on the experiment time.

Two model structures were considered, namely the ARX
and OE model structures. Six different models were esti-
mated, which are GFA(z) and GFO(z) obtained using the flat
spectrum signal, GMA(z) and GMO(z) obtained using the
MOOSE2 signal, and GOA(z) and GOO(z) obtained using the
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FIGURE 10. Bode plots comparing the benchmark with the estimated
models. Top: GFA(z); middle: GMA(z); bottom: GOA(z).

optexcit signal. GFA(z), GMA(z) andGOA(z) areARXmodels,
whereas GFO(z), GMO(z) and GOO(z) are OE models. The
estimated models are (7)–(12), as shown at the bottom of the
next page.

FIGURE 11. Bode plots comparing the benchmark with the estimated
models. Top: GFO(z); middle: GMO(z); bottom: GOO(z).

The results of the performance comparison are shown in
Table 1. For the frequency responsemeasures, the range of the
frequencies considered was from 0.025 rad/s to 0.503 rad/s,
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TABLE 1. Performance measures for six different estimated models. The
smallest value in each column is shown in bold font.

corresponding to the range covered by harmonics 1 to 20. The
Bode plots are shown in Figures 10 and 11.

In terms of D, the MOOSE2 signal with the ARX model
outperformed the other combinations, with optexcit ARX
following close behind. The flat spectrum signal resulted in
much larger values of D. This means that the uncertainties
in the model parameters are much larger than those obtained
using theMOOSE2 and optexcit signals. Nevertheless, all the
values ofD are in fact very small, implying that all six models
are rather accurate. The ARX models generally performed
better than the OE ones on all performance measures because
the ARX model can be solved using least squares, which is
more robust compared to the recursive solution for the OE
model when the estimated model order is quite high (in this
case, 6).

The flat spectrum signal with the ARXmodel achieved the
lowest values of Amin and Amean. However, the optexcit ARX
combination led to the smallest Amax. This implies that the
distribution of the error is more uniform across the frequency
range of interest for the optexcit ARX combination, as is

evident from Figure 10. Comparing Figures 10 and 11, the
different weightings in the cost functions for the ARX and
OE model structures led to higher estimation accuracy at the
higher frequencies for the ARX models, at the expense of a
larger bias at the lower frequencies.

Results from this study show that the combined choice of
signal and model structure affects the performance measures
in different ways. The best choice is application-dependent.
Optimal signals with specially designed spectra are effective
in reducing the covariance matrix of the parameter estimates
and making the error distribution more uniform. However,
the flat spectrum signal remains very effective as a general
broadband perturbation signal for system identification.

VII. CONCLUSION
Perturbation signals with three different amplitude spectra
corresponding to the flat, MOOSE2 and optexcit designs
were tested on a thermostat system. The optimal signals were
designed using a priori information from an initial model
identified through step tests. It was found that the combined
choice of signal and model structure can significantly affect
the performance measures, and the optimal choice depends
on the measure that is of prime importance. The covariance
matrix of the parameter estimates and the maximum error in
the frequency response can be reduced using optimal signals.
The use of optimal signals will be beneficial when the iden-
tification results are applied for controller design. Neverthe-
less, the flat spectrum signal remains very useful as a general
broadband perturbation signal for system identification as it
provides a good overall fit of the frequency response. For the
thermostat system, the ARX model structure outperformed
the OE model structure because the estimated model order

GFA (z) =
1.848+ 1.662z−1−0.5800z−2 − 0.1874z−3 − 0.01262z−4

(1− 0.5908z−1 − 0.5163z−2 + 0.4387z−3

−0.1882z−4 + 0.1454z−5−0.03711z−6)

, (7)

GFO (z) =
1.833+ 1.691z−1−0.7826z−2 − 0.6832z−3 − 0.6899z−4

(1− 0.5884z−1 − 0.6134z−2 + 0.2858z−3

−0.1886z−4 + 0.3669z−5−0.1325z−6)

, (8)

GMA (z) =
1.875+ 1.563z−1+0.7189z−2 − 0.3289z−3 − 0.4997z−4

(1− 0.6219z−1 + 0.2137z−2 − 0.6075z−3

+0.3130z−4 + 0.003562z−5+0.01934z−6)

, (9)

GMO (z) =
1.871+ 3.236z−1+1.627z−2 − 0.8734z−3 − 0.8129z−4

(1+ 0.2640z−1 − 0.5885z−2 − 0.6843z−3

+0.4227z−4 + 0.05260z−5+0.01895z−6)

, (10)

GOA (z) =
1.875+ 1.090z−1+0.3457z−2 − 0.1856z−3 − 0.3799z−4

(1− 0.8742z−1 + 0.3822z−2 − 0.5053z−3

+0.2464z−4 + 0.0004366z−5+0.01466z−6)

, (11)

GOO (z) =
1.861+ 1.517z−1+1.217z−2 + 0.02236z−3 − 0.8698z−4

(1− 0.6720z−1 + 0.5946z−2 − 0.9701z−3

+0.3208z−4 + 0.07414z−5+0.01314z−6)

. (12)
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was quite high. The findings from the current work can be
generalized to a wide range of systems since the thermostat
system has dynamics that are similar to those of many practi-
cal systems. The insights from this work are hence useful for
control engineering practice.

Suggestions for future work include amplitude spectrum
design of perturbation signals for multivariable and nonlinear
systems.
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