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ABSTRACT The automatic identification system (AIS) provides a massive database for ocean science.
The original AIS data are redundant. Direct use will cause a waste of data storage space and computation
costs; hence, data compression must be performed. The Douglas–Peucker algorithm (DP) is an effective
trajectory compression algorithm that can well preserve the spatial characteristics of a trajectory but has
the following shortcomings: first, it has poor track recovery when compressing multi-turn routes; second,
it does not consider the ship speed and heading; and third, it may have the wrong result of the compressed
trajectory crossing the obstacle. To address these situations, this study proposes a multi-objective peak DP
algorithm (MPDP) that adopts a peak sampling strategy, considers three optimization objectives (spatial
characteristics, heading and speed) of trajectory and adds an obstacle detection mechanism to realize a
compression algorithm more suitable for curved trajectories. The classical DP algorithm is compared with
the MPDP algorithm by simulating trajectory and real trajectory experiments. The results show that the
MPDP algorithm optimizes the length loss rate, simultaneous Euclidean distance, and average deviations of
the speed and the heading while maintaining a high compression rate similar to that of the DP algorithm.
Moreover, it can also successfully avoid obstacles. The optimization effect is most obvious for the multi-turn
or hovering trajectory. The optimization rate of length loss, synchronous Euclidean distance, and average
deviation of the heading can reach 40%.

INDEX TERMS AIS data, Douglas–Peucker algorithm (DP), multi-objective peak Douglas–Peucker
algorithm (MPDP), trajectory compression.

I. INTRODUCTION
Since 2002, the International Convention on the Safety of
Life at Sea has required all ships over 300 gross tonnage
to be equipped with automatic identification system (AIS)
equipment [1]. The AIS is an automatic tracking system
that provides identification and location services for ships by
exchanging data with neighboring ships, AIS shore stations,
and satellites, among other devices. Although AIS systems
were originally designed for radar and vessel traffic services,
researchers can collect and store the AIS data generated over
a certain period of time for a given water area. These data
then become a large data source for studying the navigational
behavior of ships in that water area.

The associate editor coordinating the review of this manuscript and
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Over the last decade, researchers have increasingly applied
AIS data to the construction work of smart oceans. For exam-
ple, for ship collision avoidance decision research [2], [3], [4],
Shi et al. [5] identified the collision risk based on the ship
domain and input the data of successful ship encounters
extracted from the AIS dataset into a double-gated recurrent
unit neural network to generate a collision avoidance decision
for unmanned ships through neural network learning. For ship
trajectory prediction research [6], [7], [8], Volkova et al. [9]
input the ship positioning information from the AIS data into
a neural network for ship trajectory prediction to solve the
weak positioning problem of the satellite signals obscured by
obstacles in inland waters. For route planning [10], [11], [12],
Zhang et al. [13] proposed a new automatic maritime route
generation algorithm. In this algorithm, given a set of ship
track AIS data, the data are first compressed and clustered,
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and then an ant colony algorithm is used to perform a route
search on the clustered clusters and recommend a better
route. For maritime logistics and transportation [14], Sungil
Kim et al. [15] applied the AIS data to logistics and trans-
portation economics and used real-time AIS ship tracking
data in combination with historical ship data to propose an
effective method for ship delay detection. For ship emissions,
Huang et al. [16] used the AIS data extracted from ships
to establish a quantitative model for estimating ship engine
emissions under different operating conditions. They fur-
ther applied spatiotemporal analysis to quantify exhaust ship
emissions. In addition to the abovementioned applications,
the AIS data are also widely used in fields like ocean current
detection [17], [18], [19], waterway traffic [20], [21], [22],
environmental noise [23], marine fisheries [24], [25], [26],
and marine trade [27], [28].

However, the AIS was originally designed to aid commu-
nication in ship traffic services; thus, their usage brings many
challenges to scientific research. The most problematic of
which is how to store and analyze them [29]. AIS systems
transmit information every 2–12 s when the ship is in motion
and every 6 min when it is semi-static and static. In other
words, the AIS data are sometimes updated much faster than
the changes in the ship speed, position, and heading during
the voyage. Therefore, the original AIS data contain much
redundant information, which is not conducive to subsequent
research and calculation.

AIS data compression must be performed to reduce the
storage and computational costs of data processing. The com-
monly used compression algorithms are theDouglas–Peucker
(DP) algorithm [30], Bellman algorithm [31], STTrace algo-
rithm [32], sliding window [33], top–down time ratio algo-
rithm (TD-TR), and opening window algorithm (OPW) and
its improved algorithms (i.e., opening window time ratio
(OPW-TR), and opening window spatiotemporal algorithm
(OPW-SP)). The DP algorithm is considered one of the most
accurate and effective data compression methods [34]. This
view is also shared by Muckell et al. [35], who used the
results of GPS data compression experiments to perform
a comprehensive comparison of the compression effects of
the abovementioned algorithms. The results showed that
the DP algorithm outperforms the TD-TR, STTrace, and
Bellman algorithms in terms of the algorithmic computing
time. The authors also compared the spatial error of the
compressed trajectories using simultaneous Euclidean dis-
tances and found that the DP algorithm outperforms the TD-
TR, OPW-TD, OPW-SP, STTrace, and Bellman algorithms.
As regards the DP algorithm-based track compression, Ger-
ben et al. [36] improved the DP algorithm in the direction
of better retention of ship stopping and movement informa-
tion. They also proposed a machine learning framework to
analyze the moving object trajectories from ships. The ship
trajectory data were clustered, classified, and detected by
anomalies. Zhang et al. [37] used the DP algorithm to extract
the feature points to simplify the AIS trajectory data and

improve the subsequent processing efficiency. Their study
mainly discussed the compression threshold of the unique
input parameter of the DP algorithm and presented an arti-
ficial intelligence-based minimum ship domain evaluation
method used as the criteria for determining the compression
threshold. The final determination threshold was set to 0.8
times the ship length, at which the DP algorithm compres-
sion rate can effectively be balanced with other performance
indicators. Li et al. [38] conducted a similar study to imple-
ment channel density visualization based on the channel den-
sity estimation on a simplified trajectory dataset to ensure
a good balance between AIS trajectory simplification and
visualization performance. Accordingly, a large number of
experiments were conducted to optimally select the appro-
priate threshold value for the DP algorithm. Zhao et al. [39]
proposed a compression method that considered an improved
DP algorithm for determining the ship trajectory shape using
the trajectory information of the track points. The ship tra-
jectory was divided into straight routes and turning routes.
Different retention strategies were used to retain fewer track
points in the straight line section and more track points in
the turning section. The experiments were conducted based
on the AIS data in Zhoushan Islands, China. Compared with
the traditional DP algorithm, themethod significantly reduces
the compression time and shows a better performance under
high compression intensity. The compression times of the
DP and improved DP algorithms were verified as better than
those of the OPW, TD-TR, and OPW-TR algorithms. In 2019,
Tang et al. [40] analyzed the ship motion behavior at each
track point in terms of the motion velocity, stop point, and
motion direction and proposed the trajectory partitionmethod
based on combined motion features (TPMF) for trajectory
partition. In the TPMF, the change points, where nodes move
with significant velocity changes, are first extracted. Next,
the stop points are extracted by detecting the node velocity
changes. Finally, the DP algorithm is applied to partition the
sub-trajectories according to the extracted feature points (i.e.,
change and stop points). Simulations were performed on the
Geolife trajectory dataset. The simulation results showed that
the TPMF achieves a good balance between the simplification
rate and the trajectory partitioning error while shortening
the running time. Liu et al. [41] proposed the adaptive DP
algorithm (ADP) with automatic thresholding for AIS-based
vessel trajectory compression, segmentation framework, and
average distance improvements and additions to the original
DP algorithm. Tang et al. [42] also addressed the adaptive DP
algorithm and proposed another adaptive-threshold DP algo-
rithm. The investigation of the changes in the critical thresh-
old during the compression process showed that most of
the critical threshold changes had obvious inflection points.
Hence, the critical threshold change rate is determined by the
mathematical statistics of the track, which no longer relies on
the ship static information. The advantages of matrix opera-
tions and the point reduction method were used to improve
the algorithm’s computational efficiency. Zhong et al. [43]
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proposed a data compression algorithm based on the spa-
tiotemporal characteristics of theAIS data for velocity change
or stopping points. This algorithm compresses the trajectory
data with orientation and velocity differences and time inter-
vals as its parameters.

Most of the research and discussion on the DP algorithm
have focused on reducing the time of algorithm operation and
setting or adapting the appropriate threshold value. However,
the compression effect of the DP algorithm is not satisfac-
tory in the application of some complex trajectories, such as
multi-turn and circling routes. There is still room for improve-
ment in preserving the spatial feature information of the
trajectory data. Although some scholars have started paying
attention to other ship maneuvering information like heading
and speed in addition to the spatial feature information of
the trajectory, only a few have discussed the DP algorithm
to improve the heading and speed recovery while maintain-
ing a high compression rate. As the first work that must
be performed in AIS data-based research, data compression
must consider map information; otherwise, the simplified
trajectory may intersect with obstacles, consequently affect-
ing the results’ correctness in subsequent studies. There-
fore, the MPDP is proposed here based on the DP algo-
rithm. The main contributions of the proposed algorithm are
as follows:

1) The algorithm adopts a peak retention strategy to
improve the spatial feature retention effect of multi-
turn trajectories, such as circling routes, while reducing
the number of compression layers and improving the
compression efficiency.

2) The algorithm uses a multi-objective fitness function
to comprehensively consider the spatial characteristics
of routes, heading, and speed. It improves the recovery
effect of track heading and speed while maintaining a
high compression rate.

3) The algorithm considers the map information and per-
forms secondary preservation of waypoints when the
compressed track crosses obstacle situations, thereby
successfully avoiding obstacles and ensuring the cor-
rectness of the compressed track.

The rest of this paper is organized as follows: Section II
introduces the trajectory compression method that includes
the principle and implementation of the classical DP algo-
rithm; Section III introduces the proposed improved DP
algorithm, namely the multi-objective peak DP algorithm;
Section IV presents the compression simulation experiments
using real trajectories with simulated trajectories, in which
the compression results of the MPDP and classical DP algo-
rithms are compared and analyzed in terms of six perfor-
mance metrics (i.e., compression time, compression rate,
length loss rate, synchronous Euclidean distance, average
velocity deviation, and heading average deviation); and
Section V discusses the research conclusions and future
research directions.

II. TRAJECTORY COMPRESSION METHOD
A. PREPROCESSING
Using the DP algorithm requires the calculation of the dis-
tance between a point and a straight line. The original AIS
data of the ship trajectory coordinate information are estab-
lished based on the geographic coordinate system. Calculat-
ing the distance between two points on a sphere is compli-
cated. Directly calculating the distance between the trajectory
point and the straight line is difficult, as well. Therefore,
we convert the original geographic coordinates (λ, ϕ) of the
trajectory points into coordinates (x, y) of the Mercator pro-
jection to facilitate the data calculation in the DP algorithm:

x = r0 × λ,

y = r0 × q,

r0 =
l × cos(ϕ0)√

1− (e2 × sin2(ϕ0))
,

q = ln

(
tan(

π

4
+
ϕ

2
)×

(
1− e× sinϕ
1+ e× sinϕ

)e/2)
, (1)

where λ and ϕ denote the longitude and the latitude of
the track point, respectively; x and y denote the horizontal
and vertical coordinates of the track point, respectively; ϕ0
denotes the standard latitude in the Mercator projection; l
denotes the long radius of the Earth’s ellipsoidal sphere; e
denotes the first eccentricity of the Earth’s ellipsoidal sphere;
r0 denotes the radius of the parallel circle of standard latitude;
and q denotes the equatorial latitude.

After the Mercator projection transformation, the distance
Distance from the point to the line is calculated by the vector
method [39], [44] as

Distance =
|a× b|
|a|

, (2)

where a denotes the vector from the start of the line segment
to the end of the line segment, and b denotes the vector from
the start of the line segment to the target point.

B. CLASSICAL DP ALGORITHM
The DP algorithm is the most widely used trajectory com-
pression algorithm, with the main task of extracting a key set
of waypoints KS =

{
K1, . . .Kj, . . .KM

}
j ∈ (1,M) that can

reflect the main morphological features of the original trajec-
tory from the set of waypoints OS = {P1, . . .Pi, . . .PN } i ∈
(1,N ) of the original trajectory. Fig. 1 shows the compres-
sion process of the DP algorithm. The solid line indicates
the original trajectory, while the long dashed line depicts
the compressed trajectory. The compression steps of the DP
algorithm are as follows:
• Step 1: Set the compression threshold ε (ε > 0);
• Step 2: Add the starting and ending points of set OS to

set KS;
• Step 3: Update set KS:
• Step 3-1: Divide set OS into M − 1 subsets by taking

the points in set KS as the splitting points. Let the
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FIGURE 1. Schematic of the Douglas–Peucker algorithm. (a) Origin
trajectory. (b) Finding the farthest point. (c) Judging and splitting.
(d) Judging and retaining. (e) All points meet the threshold. (f) Simplified
trajectory.

subsets corresponding to two adjacent pointsKj toKj+1
be OS_Subj. Take the line between Kj and Kj+1 as the
baseline using Eq. (1) to calculate the distance of each
point in subset OS_Subj to the baseline set DS.

• Step 3-2: Take the maximum value dmax in the distance
set DS corresponding to the index Index. If dmax ≥ ε,
then point OS_Subj [Index] of the maximum distance
taken will be added to the set of key waypoints KS.

• Step 4: Assume that the maximum value of all subsets
OS_Sub is Dmax. If Dmax ≥ ε, then repeat Step 3;
otherwise, end the loop.

C. COMPRESSION PERFORMANCE
This section defines the six performance metrics for measur-
ing compression effectiveness.

Compression time Tc: run time of compressing the trajec-
tory using the DP algorithm.

Compression ratio Rc: ratio of the number of trajectory
points discarded in the compression process to the number
of original trajectory points expressed as

Rc =
n
m
, (3)

where n is the number of eliminated trajectory points, and m
is the total number of original trajectory points.

Length loss rate Rl : ratio of the difference between the
original trajectory and recovered lengths of the compressed
waypoint to the original trajectory length expressed as

Rl =

∑N−1
i=1 PiPi+1 −

∑M−1
j=1 KjKj+1∑N−1

i=1 PiPi+1
, (4)

where N denotes the number of original trajectory points of
each ship; PiPi+1 denotes the distance between two adjacent
points of the original trajectory; M denotes the number of
retained trajectory points of each ship after compression; and
KjKj+1 denotes the distance between two adjacent points of
the compressed trajectory.

Simultaneous Euclidean distance DSE : let Pi = (xi, yi, ti)
be a point in the original trajectory OS, Kj =

(
xj, yj, tj

)
and

Kj+1 =
(
xj+1, yj+1, tj+1

)
be the points in the compressed

trajectory that lie before and after Pi
(
tj ≤ ti ≤ tj+1

)
, respec-

tively, in time order, and P′i =
(
x ′i , y

′
i, ti
)
be the waypoint after

linear recovery using the adjacent points in the compressed
trajectory set KS:

x ′i = xj +

(
ti − tj
t ′j+1 − t

′
j

) (
xj+1 − xj

)
,

y′i = yj +
(

ti − tj
tj+1 − tj

) (
yj+1 − yj

)
. (5)

Let the distance DiSE be the distance between the recov-
ered point P′i and the original point Pi. The simultaneous
Euclidean distance DSE is the average distance between the
original and recovered trajectories often used to respond to
the compression effect and expressed as:

DiSE =
√(

xi − x ′i
)2
+
(
yi − y′i

)2
,

DSE =
1
N

∑N

i=1
DiSE , (6)
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where N denotes the number of original trajectory points for
each ship.

The average deviation of speed Rv used to reflect the
average difference in speed between the recovered P′i and
original Pi track points is expressed as

v′i = vj,

Riv =
∣∣v′i − vi∣∣ ,

Rv =
1
N

∑N

i=1
Riv, (7)

where N denotes the number of original trajectory points for
each ship; vi denotes the speed of the ship traveling to the
trajectory point Pi; v′i denotes the speed of the ship traveling
to the recovery trajectory point P′i, vj denotes the speed of the
ship traveling to the critical trajectory point Kj.
Average deviation of heading Rθ : the average value of the

heading difference between each recovery track point P′i and
the original track point Pi is expressed as

θ ′i = arctan
(
yj+1 − yj
xj+1 − xj

)
,

Riθ =
∣∣θ ′i − θi∣∣ ,

Rθ =
1
N

∑N

i=1
Riθ , (8)

where N denotes the number of original trajectory points for
each ship; θi denotes the heading angle of the ship traveling
to the trajectory point Pi; θ ′i denotes the heading angle of the
ship traveling to the recovery trajectory point P′i; and

(
xj, yj

)
and

(
xj+1, yj+1

)
denote the coordinates at the key trajectory

points Kj and Kj+1, respectively.

D. COMPRESSION THRESHOLD
The DP algorithm steps clearly show that the compression
threshold ε is the only parameter that must be set by the user
in the DP algorithm. Increasing the compression threshold
will reduce the number of retained nodes. This reduces the
data storage cost and improves the compression rate, and at
the same time, reduces the accuracy of the simplified data.
The choice of the threshold value is uncertain and varies
under different application domains. For different scenarios,
appropriate thresholds need to be set, which allows the data
to be compressed and still contain the important information
needed for subsequent calculations. The link between ship
size and compression threshold settings needs to be consid-
ered when compressing AIS data. For example, large ships
usually sail smoothly in open water. Track points slightly
away from the main course do not affect the overall shape
of the ship trajectory. However, small ships usually navigate
in narrow waters, making the above deviated track points
important for recovering their trajectory. The ship turning
radius is also related to its own size; therefore, if a large
compression threshold suitable for large ships is set for a
small ship, many important track points will be discarded in
the trajectory compression result. On the contrary, if a small
compression threshold suitable for a small ship is used, then

FIGURE 2. Situation of the retained route crossing obstacles after the DP
algorithm compression.

several unnecessary trajectory points will be retained in the
trajectory of a large ship, resulting in a lower compression
rate.

Zhang et al. [37] used the ship domain as a threshold
for ship route planning and set it to 0.8 times the captain.
Tang et al. [42] converted the threshold selection problem
into a critical threshold change rate setting problem and used
a statistical analysis of the data within a region to propose an
adaptive critical threshold change rate applicable to the region
to control the compression effect. In threshold selection,
Zhao et al. [39] set the compression threshold to 0.5 times the
captain. Considering the area of water, they stated that the
ratio in open water can be set greater than that in small water,
and in areas with watercourses, the maximum threshold value
can be set according to the river width. The appropriate ratio
for waters near islands is usually between 0.1 and 10 times.

In this study, we used 0.8 times captain as the reference
interval for setting the compression threshold. For different
users, the compression threshold can be adjusted according
to the compression intensity demand in their own research.
An unreasonable compression threshold setting in the appli-
cation may lead to the situation depicted in Fig. 2, in which
the compression threshold is set as too large, resulting in a
constant directional line between the key waypoints crossing
non-navigable areas (e.g., obstacles after compression). The
compression result in this case has errors. To address this situ-
ation, we propose herein Improved Strategy IV,which intro-
duces an obstacle detection mechanism. When the reserved
waypoints are connected by the constant direction line to
form the recovery navigation trajectory through obstacles,
we believe that the compression threshold size set at this time
is not applicable to the route and will use Algorithm 2 to re-
compress and avoid the non-navigable area while generating
the recommended compression threshold εnew. By contrast,
when the recovery route does not have the error result of
crossing the non-navigable area, the compression threshold
is applicable at this time and does not generate the recom-
mended compression threshold.

III. MPDP ALGORITHM
This section presents the proposed MPDP algorithm.

First, the traditional DP algorithm in each compression
layer only selects a distance farthest point as the split point
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Algorithm 1 Trajectory Compression
Input: Original track points set OS, Threshold of the compression distance
ε, Threshold of the number of peak points Th_n, Threshold of compression
layers ThJ
Output: Key track point set KS
1: L is the number of compression layers, and the initial value is 0
2: KS <- MPDP( OS, L, c, Th.n, ThJ j
3: function MPDP(PS, Zr} e,Thn, ThJ )
4: n is the size of point set PS
5: L=L+1
6: if PS[O] is same as PS [n—1] then
7: for i=l to u-2 do
8: Calculate the point-to-point distance d from PS[i] to PS[0]

through Equation (11)
9: DS[i| = d
10: end for
11: else
12: for i=l to n-2 do
13: Calculate the point-to-line distance d from PS[i] to PS[0] PS[n-
l] through Equation (2)
14: DS[i| = d
15: end for
16: end if
17: D is the set of distance set DS normalized by Equation (9)
18: A, V are the change rate of heading angle and speed of each track

point after normalization by the Equation (9)
19: FS=oc ∗ D + β ∗ A+ ω ∗ V
20: if L<= ThJ then
21: Index—findpeaks(FS)
22: m is the size of index set Index of points
23: while (m>Th_n) do
24: Index—lindpeaksf FS[Index])
25: end while
26: else
27: [fmax. Index] =max(FS)
28: end if
29: Index ={0. Index, n-1}
30: k is the size of index set. Index of points
31: for i=l to k-2 do
32: if DS[Index[i]] > e then
33: KS r- MPDP( PS[Index[i-l]: Index’i] - 1], L, c., Th_n, ThJ 1
34: KS r- MPDPf PS[Index[i]: Index[i+1]], c, Th.n, ThJ. )
35: else
36: Add PS[Index[i]] into KS
37: E = [E,DC[i]}
38: end if
39: end for
40: return KS

41: end function

and continues the compression by the chain decomposition
of the route. Hence, when the compressed route trajectory is
multi-turn, some track points at the turn cannot be collected
closer to the route point with the largest degree of turn.
We illustrate this situation by assuming an ideal turning case 1
(Fig. 4 (a)). This time, we can clearly see that the ship turning
case is exactly the same at the (ABCD) position. However,
after compression by the DP algorithm, the track points
retained in the four positions show different compression
effects, which is not expected. We hope that in such cases of
track compression, the DP compression algorithm can retain

Algorithm 2 Compressed Trajectory Obstacle Detection and
Obstacle Avoidance
Input: Original track points set OS, Key track point set KS
Output: Key track point set KS, Recommended compression threshold £neiv
1: KS, εnew←-OBAVOID(OS,KS)
2: function OBAVOID(OS, KS)
3: i=l
4: while i do
5: if the obstacles between KS[i] and KS[i+l] then
6: PS is the subset of all trackpoints from KS[i] to KS[i+l] in OS
7: n is the size of point set PS
8: dmax and Index are respectively the maximum distance between
each
point in PS and the line KS[i] KS[i+l] and the index for obtaining the
maximum distance
9: if KS(i] is same as KS [i+1] then
10: for j=0 to n-1 do
11: Calculate the point-to-point distance d from PS[j] toKS[i]
through Equation (11)
12: if d> dmax then
13: dmax = d
14: Index=i
15: end if
16: end for
17: else
18: for j=0 to n-1 do
19: Calculate the point-to-line distance d from PS[j] toKS[i]
PS[i+l] through Equation (2)
20: if d> dmax then
21: dmax = d
22: Index=i
23: end if
24: end for
25: end if
26: Add PS[fndej] into KS
27: E = {E, dmtiz}
28: else
29: if KS[i+l] is same as the last trajectory point in OS then
30: break
31: else
32: i=i+l
33: end if
34: end if
35: end while
36: εnew =min(E)
37: return KS, εnew
38:end function

the same track points for the same turn cases and recover the
track characteristics better.

Therefore, we propose Improved Strategy I, which is a
multi-peak retention strategy. In Step 3-2 of the DP com-
pression algorithm, we find the peaks in the distance set
DS to form point set ES. The distances corresponding to
the waypoints in ES are compared with the threshold ε one
by one. The points are stored in set KS if they are greater
than the threshold ε. This method reduces the number of
compression layers of the chain decomposition of the DP
algorithm, consequently reducing the traversal-style point-
to-linear distance calculation that must be performed when
the subset OS_Subj is compressed and speeding up the DP
algorithm compression.
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There are many small angle changes in the ship’s heading
during navigation; hence, many small peaks are obtained
when finding the peaks, resulting in the retention of excessive
track points. This is different from the ideal situation, where
the track points are not at the critical locations in the trajectory
and need not be retained. Accordingly, we set the threshold
of the number of peaks Th_n. When the number of peaks in
the set of extreme points ES is greater than Th_n, the peaks
are obtained again for the set of extreme points ES until
the number threshold is satisfied. At this point, the retained
extreme points are the peak values with the greatest change in
distance from the set. In general, the Th_n value must be an
integer from 3 to 6. The whole compression process shows a
multi-peak situation for the distance setDS in the early stage.
In the later stage of the compression process, the distance set
mostly remains as a single-peak set at this time because of
the decomposition into small track segments when the great
distance value in DS is the same as the maximum value.
Therefore, we set the peak compression layer threshold Th_l
and use the multi-peak retention strategy when the number of
compression layers is less than the threshold Th_l to retain
multiple track points. We take the maximum value of DS to
retain a track point when the number of compression layers
is greater than the threshold. In general, the value must be an
integer from 1 to 3.

Second, another shortcoming of the DP algorithm is that
speed changes are made at certain moments during the ship’s
navigation, which affects the recovery of the ship’s navigation
behavior. However, the DP algorithm does not consider the
influence of the speed change points in the compression
process. At the same time, the current use of the DP algorithm
in the compression process selects the farthest point as the
splitting point. For the AIS data, the waypoint is dense, and
the farthest point is not the largest point of the turning arc
of the route. Taking the simulation experiment Case 2 as an
example, Fig. 11 shows a certain distance between the farthest
distance point and the point with the largest course bend rate.
Only using the distance as the track point retention criterion
cannot reflect the influence of the speed change on the ship
trajectory.

Therefore, we introduce Improved Strategy II using the
fitness function instead of the point-to-line distance. The
fitness function contains three parts: point-to-linear distance,
heading change rate, and speed change rate. The units and
magnitudes of the three greatly differ and are not suitable for
direct comprehensive comparative analysis. Therefore, each
cost must be normalized separately to eliminate the influence
of units andmagnitudes. Themin–max normalizationmethod
is adopted here. It is the linear transformation of the original
data such that the resultant values are mapped to between
[0,1]. The transformation equation is presented as follows:

F =
f −min

max−min
, (9)

where max and min are the maximum and minimum values
of the group data, respectively; f is the original objective

FIGURE 3. Testing the connectivity steps of the retained route after the
DP algorithm compression.

function, including the point-to-line distance, heading change
rate and speed change rate of each waypoint; and F is the
normalized objective function.

After conversion, the adaptation function fitness is calcu-
lated as

fitness = α × d + β × η + ω × υ,

α + β + ω = 1, (10)

where d is the normalized point-to-line distance, η is the
normalized heading change rate; υ is the normalized speed
change rate; and α, β, ω is the weight coefficient that can be
adjusted according to the actual user requirements. We use
set FS to store the fitness function value of each point. The
extreme or maximum value is calculated using FS instead
of DS. The index set Index of the corresponding points is
obtained. The distances of the points corresponding to index
Index in FS are then read to determine whether or not the
compression threshold requirement is satisfied. This ensures
that all the waypoints added to the keywaypoint setKS satisfy
the compression threshold

When the DP algorithm compression threshold is not set
reasonably, or when the original trajectory is very close to
land or other obstacles, the recovery route obtained using the
key waypoint set KS will be under the situation of cross-
ing non-navigable areas (e.g., obstacles) (Fig. 2). Therefore,
we introduce Improved Strategy III, which is an obstacle
detection mechanism, and add Step 5 to the original DP
algorithm.

• Step 5: Check the conductivity of the compressed seg-
ment. Fig. 3 presents the specific steps.

As shown in Algorithm 2, when a problematic route (e.g.,
obstacle crossing) is detected, the original trajectory will
be compressed and re-calculated with KS (i) and KS (i+ 1)
as the start and end points, respectively. The new critical
waypoint will also be retained until the recovered trajectory
is smoothly navigated. At this time, we define the critical
distance set as KS to store the point-to-line distance in the
corresponding point when the trajectory point is added to the
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critical path set. The minimum value in the updated critical
distance set E is selected as the recommended compression
threshold εnew when the obstacle detection is completed.
Finally, the coordinates of the start and end points of the

segment overlap when the ship is in in-situ hovering or a
round-trip motion. That is, the geographic coordinates of
two points Kj and Kj+1 overlapping during the compression
process will lead to the following error when the DP algo-
rithm executes Step 3-1: when calculating the distance set
DS from each point in subset OS_Subj to the baseline using
the straight line between Kj and Kj+1 as the baseline, the
point-to-straight line distance Eq. (2) cannot be calculated
because the coordinates of the Kj and Kj+1 points are the
same. In this case, we introduce Improved Strategy IV, the
position overlap judgment mechanism.When the coordinates
of two points are same, the point-to-line distance Distance
is changed to use Eq. (11) to calculate the point-to-point
distance Distance′.

Distance′ =
√(

xi − xj
)2
+
(
yi − yj

)2
, (11)

where xi, xj and yi, yj are the horizontal and vertical coor-
dinates of the two points, respectively. At this point, the
algorithm’s correctness is guaranteed without changing its
principle.

Combining the abovementioned improved strategies,
we propose herein the improvedMPDP algorithm (Algorithm
1):

1) To reduce the number of DP algorithm compression
layers and speed up the compression process, the peak
sampling method is used instead of the maximum sam-
pling method.

2) The fitness function is used instead of the point-to-
straight line distance as the sampling criterion, which
can improve the algorithm’s preservation effect in both
heading and speed.

3) The obstacle detection mechanism is introduced.
4) The inner position overlap judgment mechanism is

used to replace the point-to-line distance formula with
the two-point distance equation when there is an end-
point overlap.

IV. RESULTS
A. TEST BACKGROUND
We verified the effectiveness and feasibility of our algo-
rithm by comparing it with the conventional DP algorithm.
It was comprehensively compared in terms of the following
six performance metrics: compression time Tc, compression
rate Rc, length loss rate Rl , simultaneous Euclidean distance
DSE , average deviation of speed Rv, and average deviation of
heading Rθ (Section II, Part C).
We designed four simulated and three real trajectory

experiments. The four simulation experiments mainly corre-
sponded to the four proposed improvement strategies and ver-
ified the effectiveness of each improvement strategy. Two real

TABLE 1. Names of the algorithms used in this paper and their
definitions.

TABLE 2. Settings of the experimental parameters for Case 1.

trajectory experiments were conducted to verify the effec-
tiveness of the MPDP algorithm in real scenarios. The real
trajectory was tested using the AIS data from the Shiyezhou
section of the Yangtze River waters on January 18, 2022. The
algorithm was implemented and run on a computer with the
following specifications: 64-bit Windows with eight cores
(Intel (R) Core (TM) i7-10700 CPU at 2.9 to 4.8 GHz)
and 16 GB RAM) using MATLAB R2020a in the configu-
ration presented below.

For illustration purposes, the algorithm names were
defined according to Table 1.

B. SIMULATION EXPERIMENTS
Case 1: Let the ship navigate according to the trajectory that
can be synthesized y = 3×sin(x). There are 12567 simulated
track points. The DP and DP-i algorithms are used for the
track point compression experiments. Table 2 presents the
algorithm parameters.

Fig. 4 clearly shows that the ship turns are exactly the
same at the (ABCD) position. However, after the compression
of the DP algorithm, the track points retained in the four
positions showed different recovery effects. After the DP-i
algorithm was compressed by adding Improved Strategy I,
the ship track points at (ABCD) were identical and fitted
the original trajectory better. This was because when the DP
algorithm was used (Fig. 5), it kept one track point in the first
layer to split the track into two segments and slit downward
in turn. As shown in Fig. 6, using the DP-i algorithm retained
four waypoints in the first compression layer. At this time, the
trajectory was divided into five segments. Fig. 7 depicts the
critical distance change, where dots of the same color indicate
the waypoints retained under the same compression layer L.
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FIGURE 4. Compression results of Case 1 trajectory using the (a) DP and
(b) DP-i algorithms.

TABLE 3. Comparison of compression performance indicators for Case1.

The original DP algorithm retained all critical waypoints after
five compression layers, whereas the improved DP algorithm
retained all critical waypoints after two compression layers.

Table 3 presents the experimental results. The compres-
sion time Tc of the DP-i algorithm was reduced by 54.6ms
compared with that of the DP algorithm, which was approx-
imately 49.86% optimized. The compression rate Rc was
increased by 0.01%, indicating that the compression situa-
tion was almost the same. Fig. 12 also illustrates that the
DP algorithm finally retains 14 key waypoints, while the
DP-i algorithm retains 12 key waypoints. The length loss
rate Rl was reduced by 0.18%, which was approximately
12.33% optimized. The simultaneous Euclidean distanceDSE
was reduced by 0.0022m, approximately 2.28% optimized.
Fig. 9 shows the overall heading recovery. The average head-
ing deviation Rθ was reduced by 0.0032rad, approximately
2.32% optimized.

The DP-i algorithm preserved fewer key waypoints with
less computing time in this experimental scenario. Mean-
while, the performance metrics of the simplified recovered
routes outperformed the routes preserved by the original DP
algorithm in all aspects. Improved Strategy I can find all
the key nodes to be preserved in fewer compression layers,
thereby speeding up the compression. It also showed bet-

FIGURE 5. Case 1 trajectory compression process using the DP algorithm:
compressions after (a) one, (b) two, (c) three, and (d) four layers. Note:
the same color track points in the figure are in the same subset.

ter preservation of the route characteristic for such curved
routes.

Case 2: Let the ship navigate according to the trajectory
that can be synthesized y = 3 × sin(x) + x. There are
12567 simulated track points. The DP and DP-ii algorithms
were used for the track point compression experiments.
Table 4 shows the algorithm parameters.

In, Fig. 8 the simplified route obtained after the com-
pression by the DP-ii algorithm was closer to the original
route trajectory compared to the DP algorithm. Fig. 9 shows
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FIGURE 6. Case 1 trajectory compression process using the DP-i
algorithm: compression after (a) one and (b) two layers. Note: the same
color track points in the figure are in the same subset.

FIGURE 7. Variation of the critical distance for Case 1. Note: points of the
same color indicate the waypoints retained under the same number of
compression layers.

the values of each objective function in the first-layer of
compression. The normalized distance d , normalized heading
rate of change η, and normalized speed rate of change υ of
this trajectory were optimal at different locations; hence, the
multi-objective fitness function calculation using Eq. (10) can
balance the relationship between the optimization objectives
to retain better route points. The DP-ii algorithm used a

TABLE 4. Settings of experimental parameters for Case2.

FIGURE 8. Compression results of the Case 2 trajectory using the (a) DP
and (b) DP-ii algorithms.

FIGURE 9. Distance set DS value, fitness function value, and key point
selection of the Case 2 trajectory in the first-layer compression using the
(a) DP and (b) DP-ii algorithms.

peak retention strategy for the set of fitness functions FS
while adding the waypoints at the peak to the set of critical
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FIGURE 10. Critical distance variation for Case 2. Note: points of the
same color indicate the waypoints retained under the same number of
compression layers.

TABLE 5. Comparison of the compression performance indicators for
Case 2.

FIGURE 11. Comparison of the heading angles in Case 2.

nodes KS. Fig. 10 depicts the critical distance variation. The
original DP algorithm retained all critical waypoints after
five compression layers, while the improved DP algorithm
retained all critical waypoints after three compression layers.

Table 5 presents the experimental results. The compres-
sion time was reduced by 43.8ms and optimized by 37.3%
using the DP-ii algorithm, and the compression rate were
approximately equal. Fig. 10 depicts that the DP algorithm
finally retained 12 key waypoints, while the DP-i algorithm
retained 14 key waypoints with almost the same compres-
sion intensity. The length loss rate was reduced by 0.49%

FIGURE 12. Comparison of the speeds in Case 2.

FIGURE 13. Compression results of the Case 3 trajectory using the (a) DP
and (b) DP-iii algorithms.

TABLE 6. Settings of experimental parameters for Case3.

TABLE 7. Comparison of compression performance indicators for Case3.

and optimized by 37.69%. The simultaneous Euclidean
distance was reduced by 0.0417m and optimized by 29.22%.
Fig. 11 displays the overall heading recovery. The average
heading deviation was reduced by 0.0253rad and optimized
by 18.45%. Fig. 12 depicts the overall speed recovery with a
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TABLE 8. Settings of the experimental parameters for Case 3 using the
recommended thresholds.

TABLE 9. Settings of the experimental parameters for Case 3 using the
recommended thresholds.

TABLE 10. Settings of experimental parameters for Case4.

0.2395kn reduction in the average speed deviation optimized
by 93.12%.

After the addition of Improved Strategies I and II,
the DP-ii algorithm used less computing time in this
experimental scenario. With nearly the same compres-
sion rate, the performance indices of the retained routes
were better than those retained by the original DP algo-
rithm, with the most significant optimization effect in speed
recovery.

Case 3: Let the ship navigate according to the trajectory
that can be fitted as y = 3× sin(x)+ x. There are 12567 sim-
ulated track points. Three obstacles were set up in the green
area in Fig. 13. The DP and DP-iii algorithms were used for
the track point compression experiments. Table 6 lists the
algorithm parameters.

In Fig. 13, the DP preserved the course through the
green obstacle, while the DP-iii algorithm performed another
split and successfully avoided the obstacle by including the
obstacle detection mechanism from Improved Strategy III.
Fig. 14 shows the critical distance variation. The original DP
algorithm underwent four compression layers and retained
all critical waypoints, whereas the improved DP algorithm
retained all critical waypoints after 13 compression layers,
of which the first two layers were the waypoints retained
by Algorithm 1, and the last 11 layers were the waypoints
obtained by re-splitting during the obstacle detection by
Algorithm 2.

Table 7 presents the experimental results. The compression
time was reduced by 12.4ms using the DP-iii algorithm and
optimized by approximately 13.21%. The compression rate
was reduced by 0.08%. In Fig. 14, the DP algorithm finally
retained five key waypoints, whereas the DP-iii algorithm
retained 15 key waypoints. The length loss rate was reduced

FIGURE 14. Critical distance variation for Case 3. Note: points of the
same color indicate the waypoints retained under the same number of
compression layers.

FIGURE 15. Compression results of case3 trajectory (Use recommended
thresholds), where (a) using DP algorithm (b) using DP-iii algorithm.

by 2.39%, showing approximately 68.48% optimization. The
simultaneous Euclidean distance was reduced by 0.26m and
optimized by approximately 63.45%. The average heading
deviation was reduced by 0.12rad, which was approximately
48.26% optimized. The average speed deviation was reduced
by 0.74kn and optimized by 88.85%.

The experimental results revealed that the DP-iii algorithm
used less computing time. In addition, no error cases of
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FIGURE 16. Variation of critical distance for case3 (Use recommended
thresholds). Note: Points of the same color indicate waypoints retained
under the same number of compression layers.

obstacle crossing occurred in the reserved routes. Meanwhile,
all performance indices of the simplified routes of the DP-iii
algorithm were better than those of the routes reserved by the
original DP algorithm. This proved that the algorithm has a
better effect of preserving route characteristics for such routes
with excessively large threshold settings or routes that are too
close to obstacles.

The route compression threshold was set 0.038m which is
the recommended threshold of the DP-iii algorithm. Table 8
presents the remaining parameters to reverify the DP and DP-
iii algorithms.

Fig. 15 shows that both the DP and DP-iii algorithms
retained routes to avoid obstacles when using the com-
pression threshold recommended by the DP-iii algorithm.
In other words, the DP-iii algorithm recommends an effec-
tive compression threshold. Table 9 shows that the DP-iii
algorithm computing time was reduced by 17.3ms, optimized
by approximately 12.11%. In Fig. 16, the DP-iii algorithm
reduced three compression layers. The compression rate was
reduced by 0.01%, and the length loss rate was reduced by
0.01%. The synchronous Euclidean distance was reduced
by 0.0066m and optimized by approximately 22.53%. The
average heading deviation was reduced by 0.0007rad, while
the average speed deviation was reduced by 0.1565kn and
approximately 100% optimized.

The DP-iii algorithm showed a slight advantage in time,
while the retained track points were optimized best in terms
of both synchronous Euclidean distance and average air-
speed deviation for approximately the same compression rate.
These results indicated that the DP-iii algorithm compressed

FIGURE 17. Compression results of the Case 3 trajectory: (a) and (b) plain
and top views using the DP algorithm, respectively, and (c) and (d) plain
and top views using the MPDP algorithm, respectively.

tracks better in terms of both spatial location and airspeed
recovery.

Case 4: Let the ship hover with a uniform speed in the in-
situ elliptical trajectory, forming point 505 simulated way-
points. The start and end points were geographically iden-
tical. The DP, DP-iv, and MPDP algorithms were used to
compress the trajectory points. Table 10 lists the algorithm
parameters.

Fig. 17 illustrates that the MPDP algorithm retained the
trajectory closer to the original trajectory and maintained
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FIGURE 18. Case 4 trajectory compression process using the DP
algorithm: compressions after (a) one, (b) two, (c) three, and (d) four
layers. Note: the same color track points in the figure are in the same
subset.

a consistent effect for each trajectory compression loop.
Combining Fig. 18 with Fig. 19, for the in-situ circling tra-
jectory, the MPDP algorithm retained five track points in
the first compression layer when Improved Strategy I was
introduced. This was equivalent to splitting what was origi-
nally a five-turn overlapping track into six non-overlapping
segments in time and performing further splitting. The DP
algorithm cannot spatially split the route faster because only
one track point was retained in the first compression layer.
Thus, it can only spatially and gradually split the route. This
resulted in a track that was originally identical per lap but

FIGURE 19. Case 4 trajectory compression process using the MPDP
algorithm: compression after (a) one and (b) two layers. Note: the same
color track points in the figure are in the same subset.

TABLE 11. Comparison of the compression performance indicators for
Case 2.

retained track points with completely different positions after
the DP algorithm calculation.

Table 11 shows that the DP algorithm failed to produce
results in this simulation experiment because the point-to-
linear distance was required in the DP algorithm solution
process. Correspondingly, Eq. (2) failed when the coordinates
of the two breakpoints were same. We then compared the
DP-iv algorithm, which introduced Improved Strategy IV,
with the MPDP algorithm. The operation time of the MPDP
algorithm was reduced by 5.7ms. The compression ratio
was equal. The DP-iv algorithm retained all key nodes after
12 compression layers, while the MPDP algorithm retained
all track points after only four compression layers (Fig. 20).
The lost track length obtained by the MPDP algorithm was
reduced by 0.30% and optimized by 17.14%. The simulta-
neous Euclidean distance was reduced by 0.0251m and opti-
mized by 8.36%. The average heading deviation was reduced
by 0.0450rad and optimized by 18.66%.

The MPDP algorithm maintains a high compression rate
with less computing time in this experimental scenario.
Meanwhile, the performance indices of the simplified recov-
ery routes were better than those retained by the original
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FIGURE 20. Critical distance variation for Case 4. Note: points of the
same color indicate the waypoints retained under the same number of
compression layers.

FIGURE 21. Case 5 to 7 original AIS data.

TABLE 12. Case 5 to 7 basic route information.

DP algorithm in all aspects, showing the most significant
optimization effects in the route length and heading recovery.

C. REAL SCENARIO VERIFICATION
The real trajectory was tested using the AIS data from the
Shiyezhou section of the Yangtze River waters on January
18, 2022. Fig. 21 depicts the three test routes taken. Table 12
shows their basic information, and Table 13 presents the
experimental parameters of cases 5 to 7.

The compression results of Case 5 in Fig. 22 combined
with the MPDP algorithm in Table 14 showed a compu-
tation time increased by 0.3ms. The compression rate was

TABLE 13. Settings of experimental parameters for Case 5 to 7.

TABLE 14. Comparison of compression performance indicators for Case5
to 7.

FIGURE 22. Compression results of the Case 5 trajectory using the (a) DP
and (b) MPDP algorithms.

reduced by 1.99%. The MPDP algorithm retained five more
waypoints (Fig. 23). The length loss rate was reduced by
0.01%. The simultaneous Euclidean distance was reduced
by 3.7454m. Fig. 24 depicts the overall heading recovery.
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FIGURE 23. Critical distance variation for Case 5. Note: points of the
same color indicate the waypoints retained under the same number of
compression layers.

FIGURE 24. Comparison of the heading angles of Case 5.

FIGURE 25. Comparison of the speeds of Case 5.

The average heading deviation was reduced by 0.0022rad.
Fig. 25 illustrates the overall speed recovery. The average
speed deviation was reduced by 0.023kn and optimized by
approximately 29.56%.

FIGURE 26. Compression results of the Case 6 trajectory using the (a) DP
and (b) MPDP algorithms.

TABLE 15. Comparison of the average compression performance
indicators for 2-hour AIS data from Shiyezhou section of the Yangtze
River waters.

The compression results of Case 6 in Fig. 26 combined
with the MPDP algorithm in Table 14 showed a computation
time reduced by 0.5ms. The compression ratio was reduced
by 1.65%. Nine more waypoints were retained by the MPDP
algorithm (Fig. 27). The length loss rate was approximately
equal. The simultaneous Euclidean distance was reduced by
11.4866m. Fig. 28 displays the overall heading recovery.
The average heading deviation was reduced by 0.0012rad.
Fig. 29 presents the overall speed recovery. The average
speed deviation was reduced by 0.0166kn and optimized by
approximately 29.07%.

Fig. 30 and Table 14 show that the operation time of
the MPDP algorithm was reduced by 2ms in Case 7. The
compression was reduced by 3.44%. In Fig. 31, the MPDP
algorithm retained 13 more track points. The length loss
rate was reduced by 1.78% and optimized by 40.27%. The
synchronous Euclidean distance was reduced by 34.9337m
and optimized by 46.83%. Fig. 32 presents the overall
course recovery. The average heading deviation decreased
by 0.0218rad and was optimized by 3.49%. Fig. 33 dis-
plays the overall speed recovery. The average speed deviation
was reduced by 0.9907kn and optimized by approximately
43.27%.

VOLUME 11, 2023 6817



Z. Zhou et al.: Compressing AIS Trajectory Data Based on the Multi-Objective Peak DP Algorithm

FIGURE 27. Critical distance variation for Case 6. Note: points of the
same color indicate the waypoints retained under the same number of
compression layers.

FIGURE 28. Comparison of the heading angles of Case 6.

FIGURE 29. Comparison of the speeds of Case 6.

Fig. 34 (a) shows the 2-hour AIS data for the Shiyezhou
section of the Yangtze River waters, which contains 262 ves-
sel trajectories with a total of 84,716 waypoints. Fig. 34 (b)
and (c) shows the compression results, where 3118 way-
points were retained after using the DP algorithm and
4540 waypoints were retained after using the MPDP algo-

FIGURE 30. Compression results of the Case 7 trajectory: (a) and (b) plain
and top views using the DP algorithm, respectively, and (c) plain and (d)
top views using the MPDP algorithm, respectively.

rithm. Table 15 shows that the average operation time of
the MPDP algorithm was reduced by 81.1ms. The average
compression rate was reduced by 1.8%. The average length
loss rate was reduced by 0.06%. The average synchronous
Euclidean distance was reduced by 20.4003m and optimized
by 13.98%. The average heading deviation decreased by
0.0168rad and was optimized by 13.22%. The average speed
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FIGURE 31. Critical distance variation for Case 7. Note: points of the same
color indicate the waypoints retained under the same number of
compression layers.

FIGURE 32. Comparison of heading angles of Case 7.

FIGURE 33. Comparison of speeds in Case 7.

deviation was reduced by 0.0421kn and optimized by approx-
imately 21.63%.

V. CONCLUSION
The massive AIS trajectory data generated by ships every
moment during navigation provide a big database for study-
ing maritime traffic and related information. The deep devel-

FIGURE 34. Compression results of 2-hour AIS data from Shiyezhou
section of the Yangtze River waters, where (a) is original AIS data,
(b) using the DP algorithm and (c) using the MPDP algorithm.

opment of the AIS data by researchers is greatly signifi-
cant to the construction of maritime intelligence. However,
unprocessed AIS data contain a large amount of duplicated
and redundant information, leading to the wastage of storage
space and calculation costs and largely affecting the data’s
application scope and effectiveness. In this work, we con-
ducted a study related to AIS data compression and pro-
posed the multi-objective peak DP algorithm incorporating
four improvement strategies. These strategies compensated
for the deficiencies of the DP algorithm in terms of poor
compression of multi-bend tracks and its failure to consider
two important ship maneuvering factors (i.e., heading speed
and failure) to examine the correctness of compressed routes
in combination with maps. Improved Strategy I (multi-peak
retention strategy) can effectively reduce the number of com-
pression layers and time. Using Improved Strategy I alone
can save up to nearly 50% of the running time. However,
even though introducing Improved Strategy III (obstacle
detection mechanism) can effectively solves error cases (e.g.,
classical DP algorithm compression resulted crossing obsta-
cles), it adds additional computation to the algorithm, making
the MPDP algorithm less effective in optimizing the running
time. With fewer waypoints, the running time may be slightly
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larger than that of the classical DP algorithm. By introducing
Improved Strategy II (multi-objective optimization of the
trajectory in spatial characteristics), the speed and the heading
were optimized using the fitness function instead of the point-
to-linear distance. Finally, Improved Strategy IV (position
overlap judgment mechanism) was introduced to effectively
solve the unsolvable situation caused by the spatial overlap
of ship track points.

The results of the simulated and real trajectory experiments
showed that the MPDP algorithm was approximately equal
to or slightly smaller than the classical DP algorithm in terms
of the compression rate. The performance indices of length
loss rate, synchronous Euclidean distance, and average speed
and heading deviations were optimized. In other words, the
MPDP algorithm compressed the trajectory more closely to
the original route while maintaining the high compression
rate of the classical DP algorithm. The compressed trajec-
tory showed a better recovery effect on the maneuvering
performance of ship heading and speed. The MPDP algo-
rithm was particularly effective in compressing circling and
reciprocating trajectories, with an optimization rate of up to
40% for the length loss rate, simultaneous Euclidean dis-
tance, and average speed deviation. Multi-turn or circling
trajectories often exist in inland ormulti-islandwaters. There-
fore, in the research of maritime traffic and related fields
in these waters, the MPDP algorithm can be utilized as a
preprocessingmethod for the AIS data, which can retainmore
critical information than what must be extracted from the
route. In our future research work, we will develop a route-
planning algorithm based on the AIS data compression for
inland waters by using the MPDP algorithm suitable for the
inland waterway characteristics and navigation rules. We will
also conduct further research on the running time aspect of
the MPDP algorithm to better reduce the overall computation
time of a large volume of AIS data and improve the research
efficiency.
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