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ABSTRACT The use of mobile devices, such as drones and electric vehicles, has rapidly increased in recent
years. This has necessitated estimating the capacity of lithium-ion batteries in various situations. In this
study, a capacity estimation algorithm using multilayer perceptron under different aging states and ambient
temperature is proposed. The proposed algorithm estimates the capacity using charging time, voltage, and
surface temperature, which can be measured during constant-current charging. Particularly, the surface
temperature represents the state of battery differently than voltage. Therefore, the problem that the existing
algorithm required a state of charge estimation was addressed, and the size of the neural network was
significantly reduced. Using experimental data to validate the proposed algorithm, it was confirmed that
the capacity was well estimated with a mean absolute error of 0.38% and a maximum error of 0.83%.

INDEX TERMS Li-ion battery, capacity, ambient temperature, surface temperature, machine learning,
multilayer perceptron.

I. INTRODUCTION
A lithium-ion (Li-ion) battery has higher energy and power
densities than other batteries. Therefore, it is used in various
fields. This Li-ion battery degrades not only under natural
operating conditions, such as cycle aging and calendar aging,
but also in abnormal operating conditions, such as overcur-
rent, overdischarge, and over-charge [1]. The range of mobile
devices, such as electric vehicles (EVs) and drones, may
only be accurately estimated if the decreasing capacity of
a Li-ion battery is accurately estimated. Consequently, the
mobile device may not reach the next charging station. In this
case, the EV must be towed, or the drone will crash. Addi-
tionalyy, if the mobile device ignores the lower voltage limit
and continues to discharge, the battery gets overdischarged.
Overdischarging causes the battery to rapidly degrade, or,
in severe cases, an internal short circuit may occur, leading
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to an explosion [2]. Therefore, evaluating the capacity of a
Li-ion battery is important for its long and safe use.

Existing capacity-estimation algorithms can be broadly
classified into threemethods: direct assessment, adaptive, and
data driven [3]. Direct assessment can estimate the capacity
via Coulomb counting, open circuit voltage (OCV), and elec-
tromechanical impedance spectroscopy (EIS) experiments.
A typical method of direct assessment is Coulomb count-
ing, which measures the capacity of battery by integrating
current while fully charging and discharging. Additionally,
the decreased capacity of a Li-ion battery can be estimated
using changes in the OCV curve or increases in EIS measure-
ments. These methods require a specific environment and are
typically implemented in a laboratory setting. The adaptive
approach is a method for estimating capacity using Kalman
filters, particle filters, and the least square method, all based
on the battery equivalent-circuit model [4], [5], [6], [7]. These
methods are advantageous because their algorithms are appli-
cable in real situations, such as in EVs with acceleration (dis-
charge) and regenerative brakes (charge). However, incorrect

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 2711

https://orcid.org/0000-0003-0659-3911
https://orcid.org/0000-0001-8003-1533
https://orcid.org/0000-0001-6023-1837
https://orcid.org/0000-0001-6694-7289


M. Park et al.: Data-Driven Capacity Estimation of Li-Ion Batteries

model parameter lead to significant variation in the estimation
accuracy. The data driven method can estimate the capacity
using the data accumulated through experiments, without
using the equivalent model. The capacity estimation methods
via the data driven method can be divided into differential
analysis and machine learning methods [8]. The differential
analysis method estimates capacity by using characteristics
that appear in the incremental capacity (IC) curve or dif-
ferential voltage curve by differentiating the capacity-OCV
relationship [9], [10], [11], [12], [13], [14], [15]. Machine
learning is a method of estimating capacity by extracting
features from data collected during constant current (CC) or
constant voltage charging processes or directly learning data,
such as measured voltage and current [16], [17], [18].

The above methods assume a room-temperature
environment. However, in reality, there are various outdoor
air temperature conditions depend on the season or region.
Several studies have been conducted on the characteristics
that change significantly at low temperatures [19], [20]. Due
to the decreasedmobility of ions in a battery and the increased
resistance of the charge transfer process on an electrode’s sur-
face in a low-temperature environment, the internal resistance
increases significantly [19]. Moreover, [20] demonstrated the
change in the resistance of the charge transfer process with
temperature, showing that the internal resistance increased
exponentially. However, incorporating the aging state into
battery modeling at low temperatures is highly challenging
because the mutual influence and nonlinearity of each vari-
able must be considered in the model. Therefore, developing
a capacity estimation algorithm for Li-ion batteries that
considers the ambient air temperature is easy using the data-
driven method.

Few algorithms considering ambient air temperature have
been reported [21], [22], [23], [24]. The algorithms proposed
by [21] and [22] estimate the state of charge (SOC) under
various ambient temperatures using an equivalent model
that calibrate the effect of temperature. The authors of [23]
selected eight features by analyzing the correlation among
the 14 health features proposed. The selected features were
compressed through principal component analysis, and the
capacity was estimated using the relevance vector machine.
On validation with the NASA PcoE dataset, the estimated
result had an error of less than 5% under most conditions, but
the capacity was erroneous with an estimation error of less
than 10% at 4 ◦C . The authors of [24] proposed a method
for estimating capacity using an IC curve and analyzed the
changes in the IC curve according to the aging state, the SOC
of CC charging, and the ambient temperature. This study
demonstrated the characteristics of the change in the specific
peak of the IC curve depending on the initial SOC of charging
and corrected the estimated capacity. Additionally, it has been
shown that the capacity can be estimated using a specific
peak value that is not affected by the ambient temperature.
However, to extract the peak unaffected by the ambient tem-
perature, charging must start at a low SOC. Consequently, the
consideration of the ambient air temperature in the existing

algorithm is at an early stage, and a study on estimating
capacity under various ambient temperatures and charging
conditions is insufficient.

Meanwhile, using the surface temperature of Li-ion batter-
ies in our previous work [18], the capacity can be estimated
with a low error under various outside temperature condi-
tions. In this case, the multilayer perceptron (MLP) network
becomes very complicated, making it difficult to implement
in a battery management system. Furthermore, the current
capacity of the battery must be known to use the initial SOC
value as an input to the MLP network to estimate the battery
capacity.

In this study, an algorithm is proposed to estimate the
capacity of degraded Li-ion batteries if charging is started
below a specific voltage under various outdoor temperature
conditions. The proposed algorithm estimates the capacity
through an MLP using data at a particular voltage during CC
charging until the end of CC charging. As inputs to the MLP,
the voltage curve, charging time, average ambient tempera-
ture, and surface temperature of the Li-ion battery ranging
from a specific voltage point to the end of CC charging were
selected. By selecting CC charging, the proposed algorithm
canwork at various charging strategies that contain CC charg-
ing phase. Additionally, various methods for inputting the
surface temperature were proposed to compare the estimation
accuracy. The algorithmwith the best estimation performance
could estimate the capacity with errors of mean absolute error
(MAE) 0.38% and maximum error (ME) 0.83%. The primary
contributions of this study are as follows:

1) An algorithm was proposed to estimate the capacity at
various outdoor temperatures using the characteristics
of the CC charging voltage and battery surface temper-
ature.

2) Using the change in the surface temperature of the
Li-ion battery, the feature related to SOC was found
regardless of the outside temperature.

3) An algorithm for estimating capacity without an initial
SOC was proposed.

4) An algorithm was proposed to estimate the capacity
with high accuracy by comparing inputs obtained by
various methods.

5) The proposed algorithm was verified under five tem-
perature conditions of 5◦C, 15◦C, 25◦C, 40◦C, and
55◦C.

II. CHARACTERISTICS OF CC CHARGING
A. CHARACTERISTICS OF VOLTAGE CURVE
The OCV-SOC relationship changes according to the degra-
dation of the cathode and anode active materials [25]. This
change in the OCV-SOC curve reveals the voltage of CC
charging, at which the battery is charged at a low current
rate. In this case, the effect of voltage drop due to internal
resistance is small, and the voltage change due to a change in
internal resistance can be ignored. The changes in OCV-SOC
curves with respect to degradation have been analyzed in
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FIGURE 1. Change in Incremental capacity versus voltage. (a) Effect of
degradation under a 25◦C condition. (b) Effect of the ambient
temperature of fresh battery.

several studies [10], [24]. Existing methods estimate the
capacity using features such as the peak or the valley of
the IC curve. These peaks and valleys are proportional to
the capacity, as shown in Fig. 1. Therefore, the capacity can
be estimated at room temperature by measuring the size of
the peak near 4 V. However, in the case of a low ambient
temperature, the size of these peaks changes significantly
(Fig. 1(b)), making it difficult to distinguish between the
effects of aging and those of the low ambient temperature.
Therefore, estimating the capacity by dividing the two effects
is difficult and requires a complex network.

B. CHARACTERISTICS OF SURFACE TEMPERATURE
The surface temperature of the Li-ion battery is related to this
heat generation. This heat generation can be expressed as the
sum of the irreversible joule heat and the reversible reaction

FIGURE 2. Change in surface temperature versus SOC (a) effect of
degradation under 25◦C condition, (b) effect of ambient temperature of
fresh battery.

heat, as in (1).

HeatGeneration = IVov + IT
∂Voc
∂T

(1)

Vov shows a voltage drop caused by internal resistance and
Voc represents the OCV. The joule heat can be expressed as
the product of current and Vov, whereas the reaction heat
is defined as the product of current, temperature, and ∂Voc

∂T
due to the endothermic and exothermic chemical reactions
in the Li-ion battery. This joule heat characteristcs is shown
in common Li-ion battery [26]. When charging with a low
current, due to the decrease in Voc at a low current, the effect
of the reaction heat is more dominant than the effect of joule
heat. Additionally, ∂Voc

∂T has a maximum value at 50% SOC,
and an inflection point can be observed at 70% SOC. Due
to these characteristics, identifiable issues can be observed
even at the surface temperature of the Li-ion battery (Fig. 2).
Therefore, information about the SOC at different points can
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be indirectly obtained using the surface temperature. Due to
necessity of this SOC information for calculating capacity,
a capacity evaluation can be improved.

III. SOH ESTIMATION ALGORITHM
A. NO SURFACE TEMPERATURE METHOD
The existing algorithm presented in [18] estimates the battery
capacity when charging is started at initial SOC but does
not consider ambient temperature changes. To account for
the temperature change in this algorithm, the capacity was
estimated by adding the average surface temperature to the
existing inputs, such as the initial SOC, charging time, and
charging voltage curve. The number of input nodes config-
ured in this case was 103. The number of hidden layers and
nodes in each layer was changed and compared to determine
the structure with the highest estimation performance. There-
fore, the optimized structure required a significant number
of multiplication operations. This structure is too large to
be implemented in a battery management system with low
computational capabilities.

B. PROPOSED METHOD
In the case of the previous algorithm, the complexity of the
neural network increases when a broad range of initial SOC
cases are considered. During CC charging, the data from the
specific voltage point to the end of the CC charging point
were selected to simplify the NN. IC curves and surface
temperature curves in various cases were plotted to select a
specific voltage point (Fig. 3). After approximately 3.9 V, the
peak of the IC (Fig. 3(a)) and the inflection point (Fig. 3(b))
can be observed. Therefore, the capacity was estimated using
the data measured during CC charging in the voltage range
of 3.9 V-4.2 V. The measured data comprises the voltage,
ambient temperature, surface temperature, and period of the
selected range. The voltage curve was sampled at 100 points
at equal intervals. An average of the ambient temperature is
employed because the ambient temperature is approximately
constant. The charging time in seconds was divided by 1,000
for scaling. In the case of surface temperature, we propose
five input methods and compare the estimation precision of
each method. The first method estimates the capacity with-
out considering the surface temperature. The second method
uses the average surface temperature, and the third uses
100 sampled points, similar to voltage sampling. In the fourth
method, the initial temperature is subtracted, as shown in (2),
to exclude the influence of the ambient temperature. The
last method uses the rate of change in surface temperature,
as shown in (3), so that the change in heat generation relative
to phase change can be directly reflected.

Tsurf ,0(k) = Tsurf (k)− Tsurf (0) (2)

Tsurf ,del(k) = 500(Tsurf (k)− Tsurf (k − 1)) (3)

In the above equation, Tsurf (k) represents a value obtained by
sampling 100 points at equal intervals. Moreover, the scale is
adjusted by multiplying by 500. This constant was arbitrarily

FIGURE 3. Incremental capacity and change in surface temperature in
various conditions. (a) Incremental capacity. (b) Change in surface
temperature.

selected. By configuring the inputs as above, the number of
input nodes for the first and second NNs was 102 and 103,
respectively, and the number of input nodes for the third,
fourth, and fifth NNs was 202.

IV. MULTILAYER PERCEPTRON
The structure of neural network used for machine learning
has various structures such as MLP, recurrent neural network
(RNN), and convolutional neural network (CNN). Particu-
larly, the RNN is suitable for processing time-series data, but
it specializes in recognizing input patterns such as those in
natural language processing. The CNN structure is suitable
for extracting local characteristics from inputs through kernel
and pooling layer. However, the CC charging curve and the
surface temperature of the Li-ion battery represent different
characteristics in each part. Therefore, the ability of CNN
to extract characteristics from the local part is inappropri-
ate. It can also be confirmed by a previous study [18] that
the MLP structure shows a lower estimation error than the
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FIGURE 4. Structure of basic multilayer perceptron neural network.

FIGURE 5. Conducted experiment conditions.

CNN structure in the capacity estimation of a Li-ion battery.
Therefore, in this study, the capacity was estimated using the
MLP structure.

The MLP structure consists of an input layer, several
hidden layers, and an output layer, and all layers are fully
interconnected (Fig. 4). In this study, the number of hidden
layers and the number of nodes in each hidden layer are
determined by comparing estimation accuracies.

V. EXPERIMENT AND DATASET CONFIGURATION
Experiments were performed at ambient temperature and
with aging under various conditions to validate the proposed
methods. Three cells of Samsung INR18650-29E battery
were used in the experiment, and the experimental data were
obtained under limited conditions to reduce the experiment
time. The conditions under which the experiment was con-
ducted are depicted in Fig. 5.

In each aging state, a capacity of 25◦C was measured.
Subsequently, after a sufficient rest time at each temperature,

FIGURE 6. Data removal for the no surface temperature method.

the battery was discharged to the lower voltage limit at
0.2C, and the charging voltage was measured via standard
charging. Afterward, all characteristic tests were completed
in the corresponding aging state, and the accelerated aging
process was performed by repeating CC charging and CC
discharging until the next aging state. The data collected in
this case consisted of three cells and 15 temperature-aging
experimental points, totaling 45 data. Among these data,
cells #1 and #2 were used as training sets to optimize the
five proposed methods. In the case of the validation set,
100%-40◦C , 100%-15◦C , 95%-25◦C , 90%-55◦C , 90%-5◦C ,
90%-5◦C , and 85%-25◦C cases of cell #3 were selected,
and the remaining cases were used as test sets. Additionally,
the estimated performance of the algorithm was compared
using three-fold validation. During the three-fold validation,
the validation and test sets were separated with the same
combination.
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FIGURE 7. Estimation result of the no surface temperature method (a) 1792 nodes/layer and five hidden layers, (b) 1536 nodes/layer and
five hidden layers, (c) 1792 nodes/layer and four hidden layers.

TABLE 1. Optimization result of each proposed method. Selected structures are shown in bold.

Because the data set used in the previous study was arbi-
trarily set at the starting point of charging, it is necessary to
generate additional data from the given experimental data.
As shown in Fig. 6, the length of the removed section was
set to 0%, 5%, 10%, . . . , and 90% of the total CC section,
generating 19 data points from one CCCV charging dataset.
Among these data, the data from batteries #1 and #2 were
used as the training sets, and the data from battery #3 were
used as the validation and test sets. In this case, out of the
19 data points generated by a single CC charge, nine were
randomly selected and used as the validation set, and the other
ten were used as the test set.

VI. RESULT AND DISCUSSION
Using the data set configured in the previous section, the
structure of the MLP was optimized for each case, and the
estimation results were compared using MAE and ME. The
equations for obtaining these indicators are as follows:

MAE = E(
|Qtrue − Qest.|

Qtrue
)× 100(%) (4)

ME = max(
|Qtrue − Qest.|

Qtrue
)× 100(%) (5)

The estimation results are organized in the following order:
First, the optimization result of NN is shown. Second, the
three-fold validation results for the proposed voltage range
are shown. Finally, the three-fold validation results for differ-
ent voltage ranges are presented.

A. OPTIMIZATION RESULT
1) No surface temperature method

Fig. 7 shows the estimation results of the opti-
mized MLP structure using the previous study-based

method. In this case, the estimation results are sig-
nificantly high (Fig. 7(a)). However, a considerably
high computational load was required because of the
1792 nodes per layer and five hidden layers. Addi-
tioinally a significant error occurs when the num-
ber of nodes per layer (Fig. 7(c)), or the number
of layers is reduced (Fig. 7(d)) and even under
slight reduction in MLP structures. Therefore, reduc-
ing computational load using the previous method is
difficult.

2) Proposed method
In the five proposed methods, optimization was per-
formed by changing the numbers of nodes per layer and
hidden layers to determine the point where the local
minima appear. Table 1 summarizes the optimization
results of all the methods. In this table, the MLP struc-
ture is expressed in the order of ‘‘nodes per layer’’ and
‘‘hidden layers.’’

B. THREE-FOLD VALIDATION
The estimated performance of each optimized method was
compared through three-fold validation. In this case, a voltage
corresponding to 3.9 V has been distributed between 43% and
60% SOC.When Tsurf and Tsurf ,avg were used for estimation,
the MAE significantly increased compared to when Tsurf
was not used, and the ME also significantly increased. By
contrast, when Tsurf ,0 and Tsurf ,del were used, high estimation
results were shown in Fig. 9, except for the network trained
with B2 andB3. Even after trainingwith B2 andB3, a particu-
lar sample showed approximately 4% error, resulting in a sig-
nificant ME but only approximately 1% error in MAE. In this
case, the number of product operations among the hidden
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FIGURE 8. Three-fold validation results of the proposed method with 3.9-4.2 V range. (a) MAE of the validation
set, (b) ME of the validation set, (c) MAE of the test set, (d) ME of the test set.

FIGURE 9. Result of proposed capacity estimation algorithm in case of
Tsurf ,del , 3.9-4.2 V range and trained using B1, B2.

layers of Tsurf ,0 and Tsurf ,del is 4×1922 (approximately 150k)
and 2× 2562 (approximately 130k), respectively. Hence, the
no surface temperature method, which is similar to previous
work [18], consists of 1792 nodes per layer and five hidden
layers. This structure needs to perform 12.8Mmultiplications
among its hidden layers. This difference in the number of
multiplications is due to additional information on the surface
temperature.

C. DIFFERENT VOLTAGE THRESHOLD
To compare the estimation accuracy in different volt-
age ranges, additional verification was conducted in the
3.85-4.2 V and 3.95-4.2 V ranges. The SOC corresponding
to 3.95 V was distributed in the range of 50%-66%, and the
SOC corresponding to 3.85 V was distributed in the range of
37%-55%.

1) 3.95-4.2 V range
Fig. 10 shows the estimation results obtained when
the algorithm was constructed based on the 3.95-4.2 V
range. In this case, because a narrower range of data
was input, low estimation accuracy was demonstrated
owing to the lack of input information. The ME of the
validation and test sets increased overall, and the num-
ber of samples with large errors increased, resulting in
a slight increase in MAEs.

2) 3.85-4.2 V range
Fig. 11 shows the estimation results when the algo-
rithms are constructed based on the 3.85-4.2 V range.
In this case, because awider range of datawas input, the
input information was abundant, showing a high esti-
mation accuracy. Particularly, when Tsurf ,0 was used,
low estimation errors were observed in both the val-
idation and test sets. Meanwhile, to sample from a
voltage corresponding to 3.85 V, it is necessary to start
charging at a lower SOC.When implementing an actual
algorithm, an appropriate voltage criterion should be
chosen considering this trade-off relationship.
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FIGURE 10. Three-fold validation results of the proposed method with 3.95-4.2 V range (a) MAE of the
validation set, (b) ME of the validation set, (c) MAE of the test set, (d) ME of the test set.

FIGURE 11. Three-fold validation results of the proposed method with 3.85-4.2 V range (a) MAE of the
validation set, (b) ME of the validation set, (c) MAE of the test set, (d) ME of the test set.

VII. CONCLUSION
In this study, a capacity estimation algorithm was proposed
using the CC charging curve of Li-ion batteries, considering

changes in ambient temperature. CC charging of Li-ion bat-
teries shows characteristics in the voltage curve and surface
temperature. The proposed algorithm estimated the capacity
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using measured data between 3.9 and 4.2 V. By compar-
ing various surface temperature input methods, the method
with highest estimation performance was selected. Com-
paring the optimization results and the estimation perfor-
mance of the proposed methods shows that Tsurf ,0 or Tsurf ,del
increased estimation performance. Additionally, the compu-
tation amount of the proposed method was significantly less
than that of the existing method, and the performance of the
proposed algorithm was estimated with low error rates of
MAE 0.38% and ME 0.83%. Particularly, the proposed algo-
rithm verified the effectiveness of capacity estimation under
various ambient temperature conditions that were not previ-
ously considered and showed that it could be used in various
situations. It was demonstrated that the proposed capacity
estimation algorithm is suitable for a battery management
system, such as when charging an EV in cold regions. The
data used in this study have limited aging points and cannot
account for various charging currents and aging conditions;
therefore, future studies could experiment with an algorithm
to estimate the capacity under different conditions.
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