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ABSTRACT Automatic food recognition systems have been receiving increasing attention in the research
community with the advancements in inductive learning (e.g., classification in computer vision) due to
their applicability in the healthcare and hospitality industry. However, food recognition is challenging due
to its fine-grained nature and its high correlation with culture, geo-location, and language. To make food
recognition systems feasible for the Middle Eastern region, we present a large-scale dataset (MEFood) of
commonly consumed food items in the Middle East, thereby providing a dataset for current development
and establishing a benchmark for future research. We have also thoroughly examined the MEFood dataset
highlighting its challenging aspects and its real-world nature. Additionally, we have conducted a thorough
experimental study benchmarking the mainstream computer vision and mobile networks on classification,
runtime, and resource utilization metrics. Our results highlight that EfficientNet-V2 achieves performance
closer to the best-performing individual model on the MEFood dataset while having the least resource
utilization and minimal inference times. Finally, we have performed a thorough error analysis study to glean
additional insights about the networks and MEFood dataset.

INDEX TERMS Food recognition, benchmark dataset, computer vision, Middle Eastern cuisine.

I. INTRODUCTION
Food is an essential part of life; however, insufficient or
excessive food consumption has negative consequences on
the human body. In addition, certain diseases, such as Type
I diabetes, requires the constant recording of all food intake
to adjust insulin injection levels. This task is still a paper and
pen based approach, which is inefficient and cumbersome.
Similarly, food tracking is important for other scenarios, such
as weight loss/gain and weight monitoring. There have been
some applications developed that facilitate the recording of
food intake, but these applications require a user to manually
type and search for particular foods within a database in the
application. In addition, with international travel and the rise
of food rating applications, it has now become important to
develop methods that can facilitate the automatic identifi-
cation of foods in unfamiliar cuisines as well as streamline
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food identification and tagging in food rating applications.
For instance, such systems are crucial for countries hosting
large-scale sports events like the FIFA World Cup, Asian
Games, and the Olympics to allow visitors the ability to seam-
lessly identify and explore different cuisines and dishes they
may be unfamiliar with. Furthermore, food recognition and
analytics also play an essential role in analyzing social media
content by identifying the cuisine and dishes residents and
tourists prefer. An extensive food analysis can provide cru-
cial insights to the hospitality industry, thereby allowing for
personalized food experiences for visitors and tourists from
differing backgrounds. Another crucial application of AFR
is quality assurance in large-scale kitchens, restaurants, and
fast food chains. The AFR system can detect inadequate food
preparation or presentation to warn the staff to re-prepare the
food before serving.

Due to the aforementioned applications, food computing
has been highlighted as an important research direction by
the research community due to its benefits and wide use
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cases. In recent years, automatic food recognition (AFR) has
received renewed attention due to the success of deep learning
models in classification tasks of computer vision and multi-
media applications [1], [2], [3]. The benefits and application
ofAFR iswide and diverse. However, AFR is still challenging
for many existing deep learning architectures because of its
fine-grained nature. This is particularly true for cuisines with
significant intra-class differences (i.e., diverse representation
of a dish) and low inter-class variance (i.e., minimal visual
differences between different foods). Middle Eastern cuisine,
in particular, has significant intra-class differences and low
inter-class variance. Furthermore, the visual representation of
the same dish varies significantly between the different coun-
tries of the Middle East and North Africa (MENA) region.
Subsequently, this non-rigid nature of food items makes it
challenging for recognition models to extract relevant spatial
features for effectively distinguishing between different food
dishes [35], [40], [41].

In recent years, neural networks have become famous
for image-based classification tasks because of their abil-
ity to extract relevant features, end-to-end character-
istics, robustness, and state-of-the-art performance [7].
Bossard et al. [6] proposed a modification of the Alexnet
architecture for the food recognition task and benchmarked
its performance on the Food-101 dataset. Kyaga et al. [17]
trained a custom CNN architecture and showcased that the
deep learning outperformed the support vector machines and
other conventional image recognition algorithms. Ao et al. [4]
fine-tuned the GoogLeNet architecture to achieve the state-
of-the-art accuracy in 2015. Similarly, Liu et al. [22]
suggested the use of the fine-tuned deep convolutional neural
network (DCNN) and transfer learning for advancing the
classification accuracy on the Food-101 [6], UEC Food-
256 [18], and UEC Food-100 [26] datasets. Myers et al. [27]
introduced a system that recognizes food items in an image
using semantic segmentation and predicts its nutritional
content by utilizing volume estimation. Martinel et al. [25]
proposed a custom architecture that combined slice convolu-
tions and residual blocks to achieve state-of-the-art accuracy
on the Food-101 dataset. Researchers have also introduced
large-scale datasets (e.g., ISIA-500 [28], Food-2K [29]) to
build food recognition systems with wide generalization
capability. Jiang et al. [15] have proposed a deep learning
framework that detects, classifies, and performs nutritional
analysis on images with multiple food items. Recently,
Qiu et al. [32] have introduced a deep learning framework
(knowns as PAR-Net), which employs a convolutional neural
network to generate global image classification, an aux-
iliary network to generate discriminative features, and a
third network for extracting features for different image
crops. The final prediction is based on the concatenation of
the full image and the mined discriminative regions. The
proposed framework achieves 90.4%, 90.2%, 92.0% accu-
racy on Food-101 [6], Vireo-172 [8], and Sushi-50 datasets,
respectively.

The above-mentioned work use models trained with mis-
cellaneous food datasets, thus limiting their extensive use in
countries with a defined cuisine and food culture [5], [46].
To resolve this limitation, researchers have been developing
datasets and tuning neural network architectures to cater to
different cultures and cuisine. Subhi et al. [39] proposed a
VGG-16 [38] based architecture to create a food recognition
system for Malaysian cuisine. Tahir et al. [42] suggested
a snapshot ensemble approach using MobileNet-V3 [14] to
overcome sub-optimal local-minima convergence. Addition-
ally, the authors present an explainableAI framework for food
recognition and validate the performance of the proposed
methodology on a comprehensive Malaysian food dataset.
Similarly, Sahoo et al. [33] employed the ResNet and SENet
architectures to create a large-scale food recognition system
for southeast Asian cuisine with a special emphasis on Sin-
gaporean food. Jiang et al. [16] introduce a multi-scale multi-
view feature aggregation scheme in neural network to utilize
fine-grained ingredient information for food recognition. The
authors validate the proposed framework on ChineseFood-
Net [9] dataset. In a similar manner, Temdee et al. [44] sug-
gested transfer learning and fine-tuning on the Inception-V3
model for Thai cuisine. One interesting application of AFR
systems is highlighted by Sarker et al. [37], which identifies
food items that may trigger hypertension and warns the user.
To train robust food recognition networks,Mohanty et al. [30]
have published a dataset containing 273 classes across 24,119
food images gathered from the real-world deployment of
the MyFoodRepo app. One fundamental limitation of this
dataset is the limited image count per class, which may
hamper the performance of deep learning models. Recently,
Qaraqe et al. [31] introduced a dataset for Middle Eastern
dishes and utilized hand-crafted and deep features with par-
ticle swarm optimization and genetic algorithms to classify
food popular in the Middle Eastern region. Although the
dataset developed is unique and the first of its kind, it is
limited in diversity and has insufficient images per class for
training deep neural networks. In addition, the performance
attained provides room for improvement.

To this end, the paper overcomes the shortcoming by pro-
viding the following contributions:

1) Builds a large-scale Middle Eastern food dataset
(MEFood) that spans 70 classes (52,000 images) with
approximately 744±125 images per class

2) Conducts a comprehensive experimental study that
employs transfer learning and fine-tuning on a wide
range of neural networks to benchmark the classifica-
tion accuracy, parameter count, disk utilization, VRAM
footprint, and training/inference times on the MEFood
dataset

3) Performs an extensive analysis of the neural network’s
predictions to realize the inherent challenges of the
proposed dataset and the trained models

The remainder of the paper is structured as follows:
Section II describes the data crawling and cleaning
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procedure and discusses the statistics of the MEFood dataset.
Section III discusses the state-of-the-art neural network
architecture included in the study for the AFR task on the
MEFood dataset. Section V analyzes the performance of the
benchmark AFR model and discusses the insights gleaned
from the dataset and network predictions. Finally, Section VI
summarizes the contributions of this work and discusses
future directions.

II. DATA COLLECTION AND ANALYSIS
This section discusses the Middle Eastern food collection
effort and analyzes the inherit similarities and differences
between the different dishes and dishes within the same class.

A. FOOD CATEGORY DEVELOPMENT
The MEFood dataset aims to capture the diversity of food
dishes in the Middle East with an additional emphasis on
Gulf-based dishes. To develop a representative list of Middle
Eastern and local based dishes, residents in Qatar were inter-
viewed. The participants included Qatari nationals, people
from the MENA region at large, and non-Arab individu-
als from around the world. The survey included questions
to identify favorite traditional foods, comfort foods, most
commonly consumed foods, and fast foods preferred in the
Middle East region. The survey results highlight the diver-
sification of the Qatari and Middle Eastern cuisine, with
some dishes leading as favorites. The results were classified
into four macro categories: namely, appetizers, main courses,
desserts, and snacks. Fig 1 illustrates a sample of the images
of different food dishes present in each macro category.

B. IMAGE COLLECTION AND CRAWLING
MEFood has been generated usingmultiple sources of images
from the internet. Specifically, search engines such as Google
and Bing were utilized to look up images of different food
dishes. The top food images were downloaded using open-
source crawlers.

It was observed that many of the images obtained from
search engines contained high-quality food images intended
for marketing purposes. To make the dataset representative
and generalize with real-world plating and lighting, food
images identified using different hashtags on the Instagram
platform were also collected. It was found that the dataset
generated by incorporating food images using different hash-
tags of Instagram was more representative of images that a
usermay snap using their mobile cameras. However, crawling
images from Instagram was a challenge as the images result-
ing from a hashtag search resulted in many irrelevant results,
compared to Google or Bing.

Another challenge faced in the collection and development
of MEFood was that some Arabic dishes (e.g., Balaleet) did
not result in enough images from the search engines with
English queries. To overcome this barrier, Arabic queries
were used to search dishes with low results in order to max-
imize the image count in the dataset. To avoid the duplica-
tion of images that are crawled from multiple sources, the

following quality control measures in the post-crawling stage
were taken. First, all the images were manually inspected
and cropped to remove irrelevant images and to ensure that
the ratio of food items to background is maximized. Second,
duplicate food items were removed from the dataset by i)
manual inspection and ii) running the images via a developed
image similarity checker to identify images that were iden-
tical. Finally, to ensure that the dataset is balanced, an effort
was put in collecting approximately 800 images per class.

Figure 1 and Figure 2 show a sample of the collected
images under different macro-categories and illustrate the
data distribution of the MEFood dataset, respectively. A total
of 70 food/dish categories were identified, with an average
number of images per class of 744 with a variance of 15625.
Ultimately, MEFood presents a unique, representative, and
multifarious Middle Eastern food dataset that accounts for
multiple image sources, enabling its application in diverse
scenarios.

C. MEFood DATASET ANALYSIS
Figure 3 highlights the complexity of the MEFood dataset.
One of the intrinsic qualities and complexities of Middle
Eastern type food is the high inter-class similarities. For
example, many of the dishes compare similarly in terms
of texture, color, and plating (i.e., Biryani, Maqlooba, and
Mandi). This high inter-class similarity will serve as a chal-
lenge for the deep learning architecture to differentiate the
different classes.

Another observation of theMEFood dataset is that there are
significant variations within some of the same food classes,
as depicted by Figure 3. A simple but clear example is pasta-
based dishes. Due to different methods of preparation (e.g.,
type of pasta, base sauce, etc.), pasta-based dishes can have
diverse shapes, colors, and textures, and appear visually dif-
ferent although the content is the same.

Collectively, MEFood contains food items widely con-
sumed in the MENA region and aims to serve as a benchmark
dataset that is challenging and representative for real-world
use cases.

III. BENCHMARK MODELS
To validate the diversity and richness of the MEFood dataset,
several wellknown benchmark models are trained and tested
on the developed dataset. In specific, this section discusses
the well know architectures that have been proposed in com-
puter vision for image classification. We benchmark two
mainstream models ResNet [13] and ConvNext [24] and two
lightweight models MobileNet-V3 [14] and EffecientNet-
V2 [43] on the MEFood dataset to establish a baseline for
future research in AFR. A short description of the architec-
tures of the models follows.

A. ResNet
He et al. [13] propose residual neural networks (ResNets)
do overcome the problem of exploding and vanishing gradi-
ents in deep neural networks. The authors introduce residual
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FIGURE 1. Four macro food categories with corresponding popular dishes, highlighting the diversity of MEFood dataset.

blocks, which employ skip connections for propagating the
input information to the output, thereby improving infor-
mation flow. As a result, the ResNets can have a depth of
152 layers (8xVGG depth). Limitations:

1) Complex architecture design and backpropagation
strategy due to skip-connections.

2) Deeper networks require larger training datasets and
longer training cycles.

B. MobileNet-V3
Howard et al. [14] suggest MobileNet-V3 architecture
for maximizing performance and minimizing inference on
machines with lower computational resources (i.e., com-
puters with only CPUs and mobile devices). To minimize
the computational resources required by the network, the
authors employ a hardware-aware neural architecture search
(NAS) (implemented by the NetAdapt [47]), which is supple-
mented with novel architecture design choices. Specifically,
the network introduces squeeze and excitation blocks over the

residual connections and a hard-swish non-linearity for
enhancing performance on mobile devices. Limitations:

1) The paper introduces a method that modifies the results
of NAS with an intuitive network design. However, the
article doesn’t suggest ways to accommodate intuitive
network design within existing NAS techniques.

C. EfficientNet-V2
Tan et al. [43] present the second generation of efficient archi-
tecture (EfficientNet-V2) that aims to minimize training time
and network size while maximizing the classification accu-
racy of the networks. The authors employ NAS to generate a
combination of MBConv and fused-MBConv blocks, which
can effectively scale with lower training times. Addition-
ally, progressive training with adaptive regularization rates
assists in faster network training with large image resolutions.
Limitations:

1) The paper lacks evaluation of the lighter models of the
EfficientNet-V2 family compared to MobileNet-V3 in
terms of accuracy and inference time.
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FIGURE 2. Global distribution of images in the MEFood, indicating overall balanced dataset.

FIGURE 3. Challenging images in MEFood dataset with low inter-class and high intra-class variability.
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FIGURE 4. Convolutional building blocks of the ResNet-50 [13] and recently proposed ConvNext [24] architectures.

D. ConvNext
Liu et al. [24] propose the ConvNext architecture by improv-
ing the well-known residual neural network with modern
training practices. ConvNext utilizes depthwise convolutions,
layer normalization, and GELU activations to obtain higher
accuracy. The network outperforms the recently proposed
Swin transformer (i.e., vision transformer with convolutional
priors) while maintaining the simplicity of the convolu-
tional networks. Figure 4 highlights the innovative changes
in the ConvNext architecture relative to the ResNet block.
Limitations:

1) The robustness of ConvNext compared to the trans-
formers has not been evaluated.

2) ConvNext may work best for specific tasks, while the
transformers are more flexible and have applicabil-
ity in tasks requiring discretized, sparse, or structured
outputs.

IV. IMPLEMENTATION AND EVALUATION DETAILS
We implement the models benchmarked, mentioned previ-
ously, using Keras1 framework. All images have been resized
to 224× 224×3 for all models except for ResNet-50, which
requires input images of dimensions 229 × 229×3. We ini-
tialize all the models with Imagenet pre-trained weights.
During training, we unfreeze (i.e., set as trainable) the last
stack of residual blocks in ResNet-50 and ConvNext blocks
(i.e., three blocks with 768 channels) in ConvNext_tiny.
Similarly, we unfreeze the last three convolutional blocks

1F. Chollet, ‘‘keras,’’ https://github.com/fchollet/keras, 2015

in MobileNet-V3 large (i.e., expand_block 12, 13, and 14)
and EfficientNet-V2B0 (i.e., blocks 6, 7, and 8). We add
custom top layers (MLP) to each of these networks, which
comprises global average pooling (GAP) followed by three
fully connected layers (with 1024, 512, and 70 neurons).
To minimize overfitting, the dropout layer is used after GAP
and the first two fully connected layers (with probabili-
ties 0.3, 0.35, and 0.25). We have implemented an image
generator that feeds images to the network after applying
random data augmentation such as horizontal flip, rotation
(by at most 25 degrees), horizontal and vertical transla-
tions (by at most 10%), and zoom (upto 15 %) to reduce
over-fitting and overcome other challenges of the MEFood
dataset. We employ the categorical cross-entropy loss func-
tion with Adam optimizer and batch size of 32 to update
the weights of the network. Every network is trained for
50 epochs for effective convergence. Furthermore, we save
the weights at the end of epochs that resulted in maximal test
set classification accuracy. At the end of training, we load the
best weights of the networks to robustly evaluate the networks
using a suite of classification metrics. We also measure the
disk utilization and inference time of the networks on GPU
and CPU (on a workstation, gaming laptop, and standard
laptop). To elaborate, we perform ten consecutive evaluations
of the test set on the CPU and GPU and report the average
inference times. Figure 5 shows the complete workflow of
fine-tuning neural networks and performing inference on the
trained networks.

Theworkstation used for experiments is anHPZ8worksta-
tion equipped with an IntelrXeon(R) Silver 4216 CPU with
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FIGURE 5. Flowchart showing the fine tuning and testing procedure on MEFood dataset.

a 2.10 GHz base clock (64 cores) and 64 GB of RAM. The
networks were trained on a Nvidia Quadro RTX 5000 GPU
with 16 GB of VRAM. For inference, we also employed
a gaming laptop with a 6 core, 10th Gen Intel Core i7-
10750H processor@2.6GHz (max turbo up to 5.0 GHz) and a
standard laptop with a 6 core, 10th Gen Intel Core i7-10710U
processor@1.1GHz (max turbo up to 4.7 GHz).

A. METRICS
In this subsection, we elaborate on the different classification
metrics employed in our study to exhaustively evaluate the
trained neural networks.

1) ACCURACY
Accuracy (also known as Top-1 accuracy) is computed by
taking the ratio of correctly classified images to the total
number of images in the evaluation data set. Top-5 accuracy
is also computed by considering whether the correct label of
the classified image is present in the Top-5 classes with the
highest probabilities.

2) PRECISION
Precision computes the proportion of correctly classified
positive images relative to all images classified as positive
(i.e, true positive/(true positive + false positive)).

3) RECALL
Recall calculates the proportion of correctly classified pos-
itive images relative to actual positive images in the eval-
uation dataset (i.e, true positive/(true positive + false
negative)).

TABLE 1. Classification accuracy of the bench marked neural networks.

4) F-1 SCORE
F-1 score is a combined representation of precision and recall,
obtained by calculating their harmonic mean.

V. PERFORMANCE ANALYSIS AND BENCHMARKING
In this section, we report and discuss the findings of our
comprehensive empirical study aimed at evaluating the clas-
sification accuracy, disk utilization, GPUmemory utilization,
and training/inference speed of the benchmark models on the
MEFood dataset.

A. CLASSIFICATION PERFORMANCE
Table 1 provides an exhaustive evaluation of classifica-
tion metrics for four different benchmark models. Inter-
estingly, we observe that ResNet-50 outperforms the Con-
vNext_tiny and the lightweight models on four different
evaluation metrics. The higher performance of ResNet-50
over ConvNext_tiny, while having a lower parameter count
suggests that higher classification accuracy on the ImageNet-
1k dataset may not translate to downstream food recognition
task. This is because food recognition is afine-grained image
classification, whereas mainstream computer vision empha-
sizes natural image classification. To elaborate, classifying
food images is more challenging relative to natural images
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FIGURE 6. Plot showing the increase in Test set accuracy with epochs
highlighting the learning ability of different neural networks.

due to additional factors, such as geolocation, culture, lan-
guage, and changes in the quantity of ingredients. The varia-
tions in these additional factors may change the class of the
food item (e.g., from Mandi to Khabsa). Therefore, it is cru-
cial to propose network architectures or at the least network
modules that can capture fine details in the image to differen-
tiate food items with similar color and geometrical distribu-
tions. Nevertheless, we can infer from the table that all models
attain high top-5 accuracy, implying that they can serve as a
powerful logging and suggestion tool for applications that can
utilize/process multiple system suggestions. We also observe
that mainstream computer vision models that have been pro-
posed for mobile devices (MobileNet-V3 Large), aiming to
reduce training time and disk utilization (EfficientNet-V2)
perform closely to the ResNet-50 and ConvNext, suggesting
that larger networks with network logic for natural images
may not have a performance advantage over lighter net-
works for fine-grained image classification tasks. Neverthe-
less, Figure 6 suggest that the larger networks with more
parameters are able to generalize better in earlier epochs.
Specifically, ConvNext_tiny achieves more than 90% test
accuracy in less than 10 epochs. Among the lighter models,
EfficientNet-V2 slightly outperforms MobileNet-V3 (Large)
on all classification metrics. Additionally, Figure 6 indicates
that EfficientNet-V2 generalizes better than MobileNet-V3
over the 50 epochs. We also observe that the precision,
recall, and F1-score of each model lie closer to each other
because the MEFood dataset has ample images per class
for network training. Altogether, we have ensured that the
MEFood dataset is a representative dataset for the Middle
Eastern region. We encourage the research community to
make innovative neural network modules to overcome the
challenges in Arabian cuisine image classification tasks.

To interpret the feature representations generated by the
different neural network architectures, we provide a sim-
ilarity matrix generated using centered kernel alignment
(CKA) [20]. Specifically, we use Radial basis function (RBF)
CKA, which has been proposed to quantify the similarity

FIGURE 7. Confusion matrix showing the RBF CKA similarity score
between the neural network representation generated by different neural
networks.

TABLE 2. Disk utilization, training time, and GPU memory consumption
of the bench marked neural networks.

TABLE 3. Inference time (in seconds) of the four benchmarked neural
networks on the entire test set containing 5176 food images.

between neural network representations generated from dif-
ferent parameter initialization. We can deduce from Figure 7
that ConvNext_tiny, ResNet-50, and EfficientNet-V2 gener-
ate similar feature encoding of food images (nearly 60% sim-
ilarity). Interestingly, MobileNet-V3 feature representation
has a lower similarity score with other network representa-
tions. This difference may be due to the constraints placed in
the network architecture search (NAS) to minimize the com-
putations on Mobile CPUs. On the other hand, EfficientNet-
V2 NAS includes operations from the Fused-MBConv block,
which is inspired by the residual block, thereby explaining
the similarity in the representations between ResNet-50 and
EfficientNet-V2.

B. PARAMETER UTILIZATION AND INFERENCE SPEED
Table 2 presents the parameter count, disk utilization, train-
ing time, and GPU memory utilization of the different
models included in the empirical study. The selected mod-
els have a wide range of parameters to study the impact
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FIGURE 8. Plot describing the increase in inference time when moving
from workstation to consumer hardware.

of parameter count on disk utilization and inference time.
It can be observed that disk utilization is directly propor-
tional to the parameter count of the models included in the
study. MobileNet-V3 (large) has the lowest disk utilization
of 24.7 MB, whereas the recently proposed ConvNext_tiny
model has the highest utilization of 117 MB.

Interestingly, other factors like the training time and GPU
memory consumption also have a significant impact on the
usability and practical application of the neural networks.
Shorter training times can allow the network to be re-trained
for changing data distribution in the live environment. It is
to be noted that the training times reported in Table 2 are
for fine-tuning (i.e., retraining the deeper layers with a
fully connected top) the networks to classify Middle Eastern
foods. Even though ConvNext_tiny has more parameters than
ResNet-50, it has significantly lesser training time (0.58×).
The smaller training time of ConvNext_tiny is due to the
macro and micro-architectural innovations within the model.
The macro design choices include the use of patching strat-
egy in the stem blocks, depthwise convolutions for spatial
mixing, 1 × 1 convolution for channel mixing, inverted bot-
tlenecks, and large kernel sizes. The micro changes involve
using fewer activation and normalization layers, substituting
batch-normalization with linear normalization, and applying
the GELU activation function. These changes allow for
ConvNext_tiny to have much lower FLOPS as compared to
ResNet-50, thereby having lower training times. The design
innovations in ConvNext_tiny also high a significant impact
on the GPU memory (VRAM) consumption during infer-
ence, resulting in 0.35× VRAM utilization relative to the
ResNet-50. Surprisingly, ConvNext_tiny attains lower
VRAMconsumption relative toMobileNet-V3 (large)model,
suggesting that deep learning practitioners and researchers
should consider VRAM utilization as an important factor
while designing networks for mobile deployment. The

faster training time and lower VRAM consumption of Con-
vNext_tiny with classification accuracy closer to ResNet-50
make it ideal for deployment in environments that require fre-
quent retraining and have VRAM constraints (e.g., machines
with low-end GPUs). We observe that lightweight models
(i.e., EfficientNet-V2 and MobileNet-V3) have signifi-
cantly less training time than ResNet-50 (0.36×) and Con-
vNext_tiny (0.62×). This is because the lightweight models
have fewer parameters, requiring fewer computation and
gradient calculations in forward and backward propagation,
respectively. We find that EfficientNet-V2 has the lowest
VRAM utilization among all the models in the empirical
study, indicating that neural architecture search (NAS) should
be employed with scaling strategies to optimize parameter
count, VRAM utilization, and training efficiency.

We perform an inference study across GPU and CPUs of
different machines to note the inference time variations under
different deployment scenarios, thereby aiming to understand
the performance of neural networks on low-end machines
with limited computational resources. Table 3 presents the
net inference time for the entire test set containing 5176 food
images. Figure 8 visualizes the trend in inference times for
predicting a single food image across different hardware.
It can be observed fromTable 3 and Figure 8 that the inference
time of ConvNext_tiny and ResNet-50models nearly doubles
when shifting workstations GPU to workstation CPU. The
increase in inference time is more for the ConveNext_tiny
relative to ResNet-50, suggesting that operations within
the ConvNext block are highly optimized for GPU-based
computations. The inference times further increase linearly
(Figure 8) when inferring on gaming and standard lap-
top CPUs, implying that these models may not scale well
for low-end hardware with limited computational resources.
On the other hand, EfficientNet-V2 and MobileNet-V3 expe-
rience a minor increase in inference time when shifting from
workstation GPU to CPU. Surprisingly, the inference time for
both models decreases when inference is performed on the
gaming laptop CPU (fewer cores, higher frequency) instead
of the workstation CPU (many cores, lower frequency). This
suggests that lightweight models benefit from higher single-
core gaming laptop performance. In other words, the core
frequency of the CPU is more influential for the lightweight
models relative to the core count. Altogether, the lighter
models have a relatively minor increase in inference time
across the different hardware testing environments. Among
the tested models, we recommend the use of EfficientNet-
V2 on resource-constrained machines because of its fast
training and inference times, low disk and VRAM uti-
lization, and performance that is closer to ConvNext_tiny
and ResNet-50.

C. ERROR ANALYSIS AND ENSEMBLE APPROACH
We analyze the misclassified images of the four models in
our study to understand the shortcomings and patterns across
different neural network architectures. Specifically, we exam-
ine the food classes with more than eight misclassifications.
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FIGURE 9. Visual analysis of misclassified food classes by the four
different deep learning architectures showing similarities in color
distribution and dish layout along with a count for misclassified images.

Figure 9 presents the food classes that are misclassified by
multiple models along with the misclassification count. Kofta
and lamb chops are misclassified by all four models. Simi-
larly, Kofta and Falafel are misclassified by the lightweight
models. This is because the circular Kofta shares the color
and shape distributions with falafel, whereas Kofta on sticks
appears similar to lamb chops. Some other common misclas-
sification pairs by the models are Bamia as Ful, Mujaddar
as Freekeh, Hummus as Mutabbal, Mutabbaq as Omelette,
and Rice Pudding as Labneh. Upon closer observation,
we can deduce that the misclassified images have similar tex-
tures and geometrical distributions in their macro ingredients
(e.g., toppings and food containers). To elaborate, we can
observe that Omlette, Mutabbaq and kofta, Falafel have been
stacked on top of one another. Similarly, Rice Pudding, Lab-
neh and Hummus, Mutabbal pairs share the plating layout
(i.e., circular bowls). We believe that the similarity in food
plating and colors in the images suggests the network that
the two food images belong to the same food class, lead-
ing to misclassifications. Over the last two decades, sev-
eral revolutionary modeling techniques (ranging from Bag
of word (BoW) to convolutions) have been proposed in the
literature to effectively capture and differentiate a wide range
of textures common in the real-world [23]. However, it is
challenging for neural networks to generate effective and

robust representations of textures because of significant dis-
tortion, rotation, change of scale, illumination, and image
degradation present in real-world datasets (e.g., MEFood).
The computationally heavy nature of modern neural net-
works adds further complexity to generate compact repre-
sentations for different textures on mobile and edge devices.
Additionally, the texture classification benchmarks in the
literature often employ high resolution images for network
training, which differs significantly in resolution from food
datasets (e.g., MEFood, ChineseFoodNet, UEC Food-100).
Based on these limitations of the existing methodology,
AFR needs efficient techniques for texture classification
in low-resolution images to enable highly accurate while
computationally efficient fine-grained food classification on
mobile/edge devices.

Another consistent pattern across the misclassified classes
of food is the similarity in color distribution, suggesting the
trained neural networks rely heavily on the colors of the
images to differentiate between the food items. Our finding is
consistent with work presented by Christodoulidis et al. [10]
for food recognition in dietary assessment. Surprisingly, the
trained networks accurately classify the western food items
and do not associate them with Middle Eastern food, indi-
cating that there is a significant difference in the ingredi-
ents, color distribution, and food plating between the two
cuisines. The supplementary material for different networks
highlights the precision, recall, and F-1 score of each food
class in the MEFood dataset, thereby validating our findings.
Middle Eastern food is especially challenging to classify
because most dishes have a similar base (e.g., Arabic bread
or rice), protein (e.g., roasted chicken or lamb/beef), and
spices. We believe that augmenting the food datasets with
geo-location andmacro food categories (e.g., appetizer, salad,
main course, etc.) can greatly assist the neural network in
identifying nearly identical dishes from different countries in
the region, enabling the food logging and tracking systems to
be personalized for each country rather than the whole region.

During the error analysis study, we observed that all
models do not misclassify the same image because of their
varying network architecture, which results in different deci-
sion boundaries. Based on this discovery, we implement a
hard-voting ensemble approach to further improve the Top-1
accuracy of the models to 96.17% (i.e., 1.3% improvement
in accuracy over the ResNet-50). However, the ensemble
approach cannot be used for direct deployment on mobile
devices due to limited computational capacity, memory, and
disk constraints. Nevertheless, the increased performance of
the ensemble approach and error analysis study suggests
that the food computing community should aim to design
efficient lightweight networks that can effectively capture
texture, food plating layout, and geometrical distributions
of objects (such as food containers and individual dish
components). We believe that the attention mechanism [45]
that is popularly used in vision transformers [11], [19] and
modern convolutional networks can be tuned to identify
fine-grain ingredients. However, conventional multi-head
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FIGURE 10. Different screens of Aklaty application, highlighting its goal and key features.

attention has quadratic computational complexity in terms
of input size, requiring huge training datasets, computa-
tional power, and time. Therefore, lighter variants of attention
mechanism having lower computational complexity should
be adapted to enable real-time food recognition on devices
with low computational power disk/memory constraints.
A few lightweight variants of multi-head self-attention that
overcome the quadratic computational cost have been pro-
posed in mainstream computer vision [21], [34]. For instance,
Guo et al. [12] present a self-adaptive linear attention mech-
anism that captures short and long-range correlations while
avoiding the pitfalls of conventional attention mechanisms.

In the future, we aim to conduct a thorough experimental
study of alternative linear time attention mechanisms for the
food recognition task. We also aspire to design a network
module based on linear cost attention to effectively capture
the fine-grained intricacies of Middle Eastern food while pro-
viding real-time inference, low memory, and disk utilization.
We believe that a revolutionary architecture for fine-grained
image classification can allow researchers to tackle more
challenging problems in healthcare (e.g., multi-cuisine and
multi-regional food tracking) and the hospitality industry
(e.g., food and advertising technology for restaurants).

D. UPCOMING AFR MOBILE APPLICATION
To accomplish our goal of developing an automatic food
recognition and logging system for diverse use (diabetes
care, hospitality, etc.), we have designed a minimal viable
product (MVP) of our mobile AFR system based on the

MEFood dataset. Figure 10(a) depicts the home screen of
the mobile app ‘‘Aklaty’’and (b) highlights the main aim of
app. Figure 10 (c) is the food recognition screen that shows
the Top-5 predicted classes (ranked by probability) for the
food images captured through camera or uploaded from the
mobile’s gallery. Figure 10(d) shows the built-in gallery of
recognized images that a user had previously logged. The
app also provides user to bookmark their favorite food items.
We aim to deploy Aklaty in the Middle Eastern region to
help diabetes patients streamline their food tracking tasks
while keeping dietitians/clinicians/doctors informed about
their food habits.

Another target market for our app is teenagers and youth
population the Middle East. Saudi Arabia has reported nearly
243 type-1 diabetes cases per 100,000 teenagers between the
age of 13 and 16 [36]. As food imaging sharing is becoming
popular on social media (e.g., Instagram and reels), we aim
to capture the momentum to encourage teenagers to capture
their daily food consumption using Aklaty. Next, Aklaty
will perform recognition and provide healthier alternatives
(i.e., rich in nutrition and low in calories) to encourage
healthy eating habits. Aklaty will also provide informative
summaries to teenagers about their overall food consump-
tion. These summaries will highlight whether the total food
consumed has calories lower/higher than the required amount
(computed based on BMI) to show weight loss and weight
gain patterns. As a whole, Aklaty aims to become a healthy
food recommendation tool, which aims to make food recog-
nition and logging seamless, while providing healthier food
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recommendations and meaningful insights, while being tai-
lored to commonly consumed foods in the Middle East.

VI. CONCLUSION
To conclude, we have assembled a first-of-its-kind, large-
scale dataset of Middle Easter food images (MEFood)
containing 70 different food classes with an average of
744 images per class. The dataset aims to capture the diversity
in commonly consumed food items in Qatar and the Middle
East region, providing ample images for data-hungry learning
algorithms while serving as a benchmark for future research.
We have analyzed and highlighted several challenges of
MEFood. In addition, we have conducted a thorough empir-
ical study benchmarking the performance of recently pro-
posed mainstream computer vision networks and lightweight
mobile networks. Specifically, we evaluated the networks
on classification metrics, resource utilization, and inference
times. Furthermore, we thoroughly analyzed the misclassifi-
cations of the networks to glean insights about their classifica-
tion patterns. Based on our findings, we highlighted the key
challenges in the fine-grained food classification and short-
comings of the existent neural network architectures. Finally,
we presented some essential future directions to improve the
state-of-the-art AFR and introduced our mobile application
that aims to simplify diabetes healthcare.
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