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ABSTRACT In recent years, the number of older people living alone has increased rapidly. Innovative
vision systems to remotely assess people’s mobility can help healthy, active, and happy aging. In the related
literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition,
the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous
behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people
performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex
evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed
to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset
variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four
deep neural network architectures with feedback connections, even aided by a preliminary convolutional
layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as
the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which
achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning
classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people’s mobility,
since deep networks can evaluate the quality of test executions.

INDEX TERMS Deep neural networks, motion ability evaluation, skeleton based approach, video analysis.

I. INTRODUCTION
In recent years, the research on video analysis for human
activity recognition has received an extensive boost for signif-
icant applications in various contexts, including surveillance,
sports, human-machine interaction, rehabilitation, health
monitoring, and robotics [1]. In particular, in the healthcare
context, the analysis of human movements has allowed the
realization of various functions such as remote diagnosis,
support in the surveillance of fragile patients, recognition
of anomalous events, etc. Many products and services have
been developed for Ambient Assisted Living to aid healthy,
active, and happy aging. The world is experiencing a rapid
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increase in the number of older people, which is expected to
double over the next three decades [2]. Furthermore, there
is an increasing spread of neurodegenerative diseases that
heavily affect the well-being and healthy aging of the elder
population [3]. As a consequence, elderlies need periodic
monitoring to assess their movement skills. However, they
are often unwilling to visit health clinics regularly, because of
disabilities or logistical limitations, such as living in remote
areas, thus wasting time, effort, and travel costs.

In this scenario, the analysis and control of people’s
motion and cognition abilities are fundamental in improving
their social and clinical living conditions. Several studies
demonstrate a strict link between cognitive impairment and
motion dysfunction, including deficits in gait and balance [4],
[5]. So, the study of human movements by video analysis can
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significantly help assess people’s motion abilities, providing
objective evaluations and supporting remote diagnosis. Well-
defined mobility tests exist in clinical contexts to assess
people’s mobility [6]. They consist of postural stability
exercises, usually administrated and observed by physi-
cians or specialized physiotherapists to measure people’s
functional mobility. Automatic video-based systems could
greatly help to monitor these exercises in both home and
clinical environments, obtaining objective and quantitative
evaluations to support both expert personnel and medical
diagnosis.

This paper proposes a vision-based system that observes
elderly people while performing three well-defined mobility
tests and automatically categorizes their mobility perfor-
mance. In particular, the main contributions of this work are
the following:
• The proposed system emulates the complex decision
process of the expert physiotherapists in the evaluation
of the mobility tests.

• The system processes real data acquired using low-cost
commercial RGB cameras, typically implemented for
video surveillance applications. The cameras were
installed in two nursing homes that house older people
who are healthy and affected by neurodegenerative
diseases. The video data have been augmented and
then processed to select the most informative features
to provide a better-generalized model and enhance the
decision process.

• Four classifiers with deep neural network architectures,
based on Long-Short Term Memories (LSTMs) and
Bidirectional Long-Short Term Memories (BiLSTMs),
are proposed to classify the acquired data. The presented
deep neural network architectures have also been
rearranged to develop also regression models to further
compare results with those from the classification task.
Besides, comparisons with various traditional machine
learning methodologies have also been conducted.

The remainder of this paper is structured as follows:
Section II explores works more related to the proposed
system; details about the case study are given in Section III;
Section IV defines the different steps of the applied
methodology; experimental results are in Section V, while
final remarks are in Section VI.

II. RELATED WORKS
A. TECHNOLOGIES
In the existing literature, various instrumented systems have
been proposed for real-time assessment of older people’s
mobility [4], [5], [7], [8]. The most relevant works have been
summarized in Table 1.

Several works propose wearable sensors based on Inertial
Measurement Units [9], or Inertial and Magnetic Measure-
ment Systems for the evaluation of the physical functions of
individuals [10], [11]. These sensors include accelerometers,
gyroscopes, andmagnetometers that measure the acceleration
or angular velocity of the body segments to which they are

attached. Although wearable sensors return valid information
related to the movement of people, their output strictly
depends on their position and orientation, and the activities to
be monitored. Furthermore, older people and especially those
suffering from neurological disorders do not easily accept
unfamiliar devices.

Contrary to wearable sensors, non-wearable ones are
non-invasive for people, as they are placed in the envi-
ronment. Among the most commonly used for evaluating
motion abilities, there are vision-based systems characterized
by cameras that acquire video information of the human
body and then, by using image processing techniques, extract
relevant parameters useful for the analysis of motion abil-
ities [12]. Marker-based Motion Capture Systems (MCSs),
consisting of several cameras and a set of retro-reflective
markers attached to the body of the monitored subjects,
are an example of vision systems beneficial for capturing
human movements with reliable accuracy [13]. However,
high installation costs, expertise to set up and operate the
system, and marker placement and calibration, limit their use
in the home, and clinical environments [14]. Furthermore,
the need for markers placed on the body brings out the same
drawbacks of wearable systems. Typically, MCSs are used
primarily in research laboratories or controlled environments
to validate other sensory systems, such as webcams or
RGB-D cameras, due to their high accuracy [15].

The limitations of marker-based systems have led to the
development of markerless vision-based systems for human
motion analysis [16]. In the last few years, the progress
in new and low-cost optical technologies, together with
the development of new and accurate pattern recognition
approaches, has led to an increase in vision-based research
works in this context [17], [18]. Monocular RGB cameras,
stereo cameras, thermal cameras, and the recently devel-
oped RGB-D cameras, such as Microsoft Kinect or Intel
RealSense [19], are the most commonly used systems to
capture body movements and postural stability for assessing
physical dysfunctions [20], [21].

A Kinect camera is used in [22] to observe older people
while performing the Sit-to-Stand test to quantify the time
taken to perform the test and to discriminate between
elderly fallers and non-fallers in both laboratory and home
assessments. A Kinect-based system has also been used
to calculate the postural sway of older adults, estimating
the variation of the center of mass of the body to provide
a risk assessment of falls [23] or discriminate postural
abnormalities [24].

A variety of vision systems have been used in the literature
also for gait analysis. In [25], a Kinect camera and a neural
network approach have been applied to identify the most
significant gait characteristics and thus detect the disorders
caused by Parkinson’s disease. In [26], a low-cost thermal
vision sensor has been proposed to continuously monitor
the gait velocity of older people in their homes, showing a
high correlation with that measured with a stopwatch. Two
smartphone cameras have been used in [27] to classify normal
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and abnormal gait. Different stages of Parkinson’s disease,
related to the severity of gait impairment, have been instead
classified in [28] by using a system of two Kinect devices
and by applying several classifiers, such as decision trees,
Bayesian networks, neural networks, and K-nearest neighbor,
for finding the most accurate one. In [29], a low-cost
monocular RGB camera discriminates neurodegenerative
patterns in the early stages of the disease.

B. METHODOLOGIES
In general, gathering data by observing people is not enough
to assess the postural stability problem of human beings. Such
information must be processed and elaborated through proper
advanced systems to extract as much information as possible
regarding the health of the elderly. In recent years, machine
learning techniques for assessingmovement skills are gaining
more and more interest in the healthcare field [30], [31].
In particular, deep learning methodologies prove to be
fundamental in health informatics. The development of
automaticmethods can lead to the generation, processing, and
evaluation of complex data, which is difficult to deal with
without the aid of technological systems. Table 2 gives an
outline of the deep learning methodologies in the literature
related to the presented work.

Several deep learning architectures have been used to pro-
cess different types of data. Among them, the Convolutional
Neural Networks (CNNs) are usually of significant impact
in pattern recognition, from image to voice processing [32].
In [33], two types of CNN architecture, designed to analyze
footprint pressure images from an instrumented walkway,
have been compared to classify Huntington’s disease severity.
Similarly, a CNN was used in [34] to classify three severity
stages of Alzheimer’s disease using accelerometer data
records. Considering the complexity of the classification
problem and the presence of complex pattern sequences of
mixed length, CNN seems suitable for managing this type of
data and obtaining high accuracy rates for the three classes.

Alternatively, Recurrent Neural Networks (RNNs) are
widely used for the analysis of time series in applications
where the outputs depend on the previous computations, such
as the analysis of text, speech, and movements. In [35],
an RNN processes accelerometer signals to detect falls and
estimate corresponding risks in real-time, reaching high
efficiency and accuracy.

An evolution of the RNN is the Long Short-Term Memory
(LSTM) network, which adds cell states to the network to
expand the memory of the RNN [36]. In [37], the LSTM
network has been applied to sequences of spatiotemporal
gait parameters to capture both temporal variations and
asymmetries in gait in patients with Parkinson’s disease.
LSTM network, taking advantage of remembering long-term
dependencies within the data, achieves high accuracy
rates [38].

In general, deep learning methods have several short-
comings. They typically have very complex architectures
and time-intensive training phases. Furthermore, they need

a large amount of data to reveal good performance.
As a result, algebraic operations involving dense matrices,
matrix products, and convolutions require equally enormous
resources. Therefore, they must be transferred to Graphic
Processing Units (GPUs) to accelerate machine learning
processes [39]. However, compared to traditional methods,
deep learning methods automatically learn hierarchical
feature representations that capture their spatial and temporal
correlations. In addition, such methods can approximate
complex non-linear functions by composing several transfor-
mations of feature representations among the network layers
from one level to more abstract levels.

C. OPEN CHALLENGES
From the literature analysis, it is evident that reported results
are mostly simulated, whereas other works explore only
partially the analysis of people’s movements [40]. Several
issues are still open:
• The use of video-based systems for classifying the
motion capabilities of older people is not yet widespread
in clinical practice. Many examples have been proposed
to extract parameters for gait analysis, but no work
has been found for clinical evaluations of motion
skills. There is a need to develop vision-based motion
analysis systems to collect accurate kinematic data in a
non-invasive and valid manner to support the evaluation
processes of medical staff in telehealthcare contexts.

• The poor availability of data does not allow the
development and testing of classification methodologies
to analyze human movements according to medical
protocols. The literature shows many works that usually
analyze human movements for binary classification,
such as anomalous vs. normal behavior, healthy vs. sick
people, or extract some parameters for disease recog-
nition, disease stage classification, etc. The datasets in
the literature are related to these limited classifications,
while no data are available for the classification of
motion abilities.

In light of these open challenges, there is a need for a
non-invasive system to automatically assess the abilities of
older people while performing motion tests of a clinical
protocol. In this way, the intelligent system can emulate
specialized clinical therapists who, observing the execution
of the protocol, give a discrete score (class) to categorize the
mobility level of older people.

III. CASE STUDY DESCRIPTION
The system setup used for data acquisition was made up
of two low-cost RGB monocular cameras installed in two
nursing institutes. One frontal camera and one side camera
were placed in the gym of the institutes, where people usually
execute mobility tests as shown in Figure 1.

The motion protocol, defined by medical staff and used
in this work, consists of three mobility tests included in the
so-called Short Physical Performance Battery (SPPB) [41]:
the Balance Test (BT), the Walking Test (WT) and the Sit to
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TABLE 1. Outline and limitations of the most relevant works concerning motion monitoring systems in the literature.

TABLE 2. Outline and limitations of the deep learning methodologies found in the literature related to the presented work.

Stand Test (STST). Figure 2, shows a representative scheme
of these tests. Specifically, in the Balance Test, the person
stands with the feet side-by-side, then in a semi-tandem
position and then in a tandem position, trying to stay in
each of the listed positions for ten seconds (Figure 2 a)).
In the Sit-To-Stand test, the person sits down and stands up
five times with the arms crossed on the chest (Figure 2 b)).
In the Walking Test, the person walks a four-meter linear
path, free of obstacles, and returns to the starting point
(Figure 2 c)).

The SPPB is usually administered to people by a
physiotherapist to evaluate their mobility level as it releases
information regarding body posture, balance, strength, and
stability. The physiotherapist evaluates the execution of each
test, giving a score value between 0 and 3, representing the
mobility class. The classes range from the bad one (0 value),

when the person cannot execute the test, to the best one
(3 value) when, instead, the person succeeded.

All the older people, and their families, where needed, gave
their written informed consent to participate in this study.
There were 20 people affected by neurodegenerative diseases
in the early stages and 27 healthy people, all in the range
of age of 60 to 95 years. The subjects were recorded while
performing the tests included in the SPPB in two separate
acquisition campaigns three months apart. Several difficulties
emerged during the data acquisition phase as the sample of
people who participated in the first acquisition campaign was
reduced in the follow-up as some were no longer able to
perform the SPPB tests independently.

Once the video sequences of RBG images were
acquired, they were appropriately processed to extract
bidimensional skeletal data that have been made publicly
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FIGURE 1. Camera setup used for video acquisition during the execution
of the motion protocol.

FIGURE 2. Representation of the three SPPB tests: a) Balance test: the
patient stands with the feet side-by-side, then in semi-tandem and
tandem positions; b) Sit-To-Stand Test: the patient sits down and stands
up five times with the arms crossed on the chest; c) Walking Test: the
patient walks for four meters.

TABLE 3. Statistical analysis of the videos of each test BT, WT, and STST,
respectively.

available [42], [43]. Table 3 gives some information about
the acquired videos. In particular, 74, 76, and 96 videos
have been captured for the BT, WT, and STST, respectively.
As proved by the standard deviation values, the number of
frames varies considerably among the three tests. For this
reason, the duration of tests is not enough discriminant to
achieve mobility assessment: a qualitative evaluation of test
execution is mandatory to classify people’s mobility.

IV. METHODOLOGY
The proposed system assesses people’s mobility in the same
classes defined by physiotherapists, but in a completely
automatic and objective way, without human bias. The main
steps involved in the proposed methodology are reported in
Figure 3:

1) Commercial low-cost RGB cameras for video surveil-
lance capture videos of test execution;

2) A preliminary processing extracts skeletal joints to
evaluate complex details related to body postures,
inclinations, and orientations of body parts;

3) A data augmentation technique enlarges the dataset
made of the temporal evolution of joints in the image
plane;

4) Significant features are extracted to construct input
vectors to feed neural networks.

As primary output, this paper proposes deep neural
network architectures for classification based on Long-Short
Term Memory (LSTM) and Bidirectional Long-Short Term
Memory (BiLSTM). Following an ablation study, prelimi-
nary convolutional blocks are added for feature mixing to
improve classification results. Further comparison with stan-
dard classifiers from shallow learning (Decision Tree, Naive
Bayes, SVM, KNN) and deep neural network architectures
for regression, i.e. labeling people’s mobility with continuous
scores, are also presented. The next subsections will better
detail the feature extraction process (Section IV-A), the
network architectures used for classification (Section IV-B),
and the data augmentation technique (Section IV-C).

A. FEATURE EXTRACTION
In this work, the well-known OpenPose library [44] is used
to extract human skeletons from RGB frames. OpenPose
efficiently detects the 2D pose of multiple people in an image,
representing both the position and orientation of human
limbs. The implemented model identifies 18 skeletal joints
and 17 links between joints, as shown in Figure 4. Joint
positions are not directly used to model people’s mobility.
Instead, a set of features is designed in agreement with
clinicians to characterize anomalies during the SPPB tests.
These features are based on 2D pairwise joint distances,
normalized to body height, and geometrical angles between
consecutive body segments (i.e. bones) to highlight posture
variations and walking or balance problems. Features are
evaluated at each frame and then put together in time series.

Figure 4 and Table 4 show the features of each SPPB test,
providing detailed descriptions and indicating the camera
used for their extraction. In the following, each SPPB test is
analyzed together with the related features.
• Balance/Walking Test:
Both balance and walking tests are administered to
people to assess their static and dynamic skills. In the
two cases, the following features have been considered:
– Distance between feet ((i) in Figure 4). This

distance can help evaluate the patient’s confidence
in following the predefined path of the WT.
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FIGURE 3. Pipeline of the proposed approach for classifying people’s mobility level.

FIGURE 4. Features defined for the Walking and Balance Test (WT/BT)
and Sit to Stand Test (STST), respectively.

– Distance between the right (or left) hand and the
right (or left) hip from the frontal camera ((ii) or
(iii) in Figure 4). This feature is fundamental for
evaluating an eventual loss of balance and, in this
case, for restoring balance with the help of the
arms.

– Body posture, i.e. the column projection of
the distance vector that connects the neck and
the middle point M between the hips ((iv) in
Figure 4). It provides information on people’s torso
inclination, indicating whether they keep their back
straight.

It is worth noticing that, in the case of BT, the side-
by-side, semi-tandem, and tandem tests are captured in
three different videos. Homologous features are thus
concatenated in vectors of increased lengths.

• Sit-To-Stand Test:
The STST is slightly different from the previous two
tests, as it provides a method to quantify the functional
strength of the lower limbs and/or to identify how
a person completes transitional movements between
sitting and standing. In this case, the features are:

TABLE 4. Description of the features for each test (BT, WT, and STST), with
specified the camera used for their extraction. The joint numbers in the
table are shown in Figure 4.

– The angle between the legs and the torso ((j) in
Figure 4) and the knee angle ((jj) in Figure 4). Both
angles describe the action of sitting as captured by
the side camera.

– The angle at the right (or left) elbow from the frontal
camera ((jjj) or (jv) in Figure 4). These features
characterize people’s confidence while performing
the STST.

To highlight how the defined features represent the
different situations that occur when the SPPB tests are
performed, Figures 5, 6 and 7 show features plots for each
SPPB test and in both cases of one person who performed
the test correctly and one who failed. In Figure 5a), for
example, the graphs of the hand-hip distances show the poor
postural stability of the subject. Significant fluctuations in the
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FIGURE 5. Plots of features extracted from the skeletons of two people performing the Tandem position of the BT:
a) people of class 0 (unable to maintain balance); b) people of class 3 (correct body posture). The red circle on the
feature plot of the Right Hand-Hip Distance indicates the subject’s attempt to maintain balance by moving the right
arm.

FIGURE 6. Plots of features extracted from the skeletons of two people performing the WT: a) people of class 1 (long
execution time); b) people of class 3 (high walking confidence). The graphs of the hand-hip distances and walking
widths show the different behavior of the two people in performing the test.

graphs represent the subject’s attempts to maintain balance.
In contrast, Figure 5b) shows minor fluctuations in the
graph, as the subject maintains balance while performing the
test.

In the case of WT, in Figure 6a) the feature plots clearly
describe a person who needs more time to walk the path,
as shown by the sequence of small steps in the walking width
graph. On the other hand, the subject in Figure 6b) performs
the WT with more confidence, without balancing with the
arms.

Finally, in the case of STST, it is evident by the feature
plots shown in Figure 7a) how the subject succeeds only two
times in standing up. Furthermore, the subject does not keep
his arms crossed on the chest, thus failing the test. On the
contrary, Figure 7b) shows the case of correct execution of
the STST.

B. DEEP NEURAL NETWORK ARCHITECTURES
In this work, the four deep neural networks in Figures 8 and 9
are compared to evaluate the best configuration. The input
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FIGURE 7. Plots of features extracted from the skeletons of two people performing the STST: a) people of class 0
(unable to perform the STST); b) people of class 3 (stands up and sits down 5 times). The left graphs of Leg/Torso
and Knee Angles demonstrate that the subject succeeds only two times in standing up. The elbow angles further
show the inability to keep the arms crossed on the chest.

FIGURE 8. Architecture of a) the LSTM network and b) the BiLSTM
network.

layer builds the feature vectors by concatenating the features
(f1, f2, . . . , fk ) from all the frames contained in the video of
the SPPB test, where k depends on the test under examination
(see Table 4). Taking into account both side and frontal views,
in the case of WT k = 5, for STST k = 4, while for BT
k = 15, since BT involves three tests (side-by-side, semi-
tandem, and tandem).

The deep network architectures are based on LSTM and
BiLSTM models. An LSTM neural network is an extension
of a recurring neural network (RNN), suitable for processing
time series [45]. Its core is the LSTM block, shown in
Figure 8a), which captures essential input features and pre-
serves them over a long period, learning which information
is worth storing or erasing through a gating mechanism

that controls the memorizing process. In the Bidirectional
LSTM (BiLSTM) neural network of Figure 8b), a Backward
LSTM and a Forward LSTM cooperate to capture past and
future information by letting the data flowing forward and
backward [46]. BiLSTM is well-known to achieve better
performance than LSTM by modeling the sequences along
both directions. In the proposed experiments, both blocks
have 100 hidden units

In the proposed work, deep neural networks are designed
for two purposes: classification and regression.

• Classification: the input features are processed to select
a discrete class C among four classes of interest
(C ∈ 0, . . . , 3). The result is the same as for the phys-
iotherapists, who assign C = 3 to successful tests and
C = 0 to indicate complete inability. The architecture
is then completed by a Fully Connected layer, which
mixes the information returning a normalized vector,
and a Classification layer, which converts the output of
the Fully Connected layer into probabilities through a
Softmax function and compares them to minimize the
cross-entropy.

• Regression: the networks process the input features to
produce a continuous score R. This output is strictly
dependent on the target class, but, for its nature, can
estimate intermediate mobility levels. In this case, the
networks are still completed by a Fully Connected
layer, whose output is directly interpretable as the final
regression result R. During training, the networks try
to minimize the half mean-squared error loss, based on
the same example of the classification task, i.e. using
discrete targets to generalize then and predict continuous
scores.
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FIGURE 9. Architecture of a) the Conv-LSTM network and b) the
Conv-BiLSTM network.

To enhance the correlations among features at each time
step, we introduce a Convolutional Block (Conv-Block),
as shown in Figure 9, obtaining the so-called Conv-LSTM
and Conv-BiLSTM networks. The Conv-block consists of
a Convolution Layer, a Batch Normalization Layer, and
a ReLU Layer, as shown in the yellow box in Figure 9.
The Convolution Layer applies several convolutions having
k × 1 kernels to the sets of input features at each time step.
The Batch Normalization Layer then normalizes the output
vectors and is finally rectified using the ReLU function. This
block generates a new representation of the input time series
to feed the recurrent networks LSTM and BiLSTM of Fig. 8.

C. DATA AUGMENTATION
One of the most frequent problems in machine learning,
especially in deep learning, is the lack of a sufficient
amount of training data or uneven class balance within the
datasets. This problem is even more stringent in this work,
where the amount of real data is limited for several reasons
(see Section III).

Data augmentation encompasses a suite of techniques that
enhance the size and quality of training datasets to build better
deep-learning models. In the context of image data, data
augmentation includes classical image transformations such
as rotation, cropping, zooming, histogram-based methods,
color space augmentations, image mixing, and so on [47].
However, these image-based transformations, performed
before the skeleton extraction, can induce artifacts in 2D
body reconstruction. For this reason, the proposed procedure
directly augments the dataset by working on the position of
the joints. With reference to Figure 10, data augmentation is
made by a set of A rigid geometric transformations of human
skeletons, which create different views of the same people,

FIGURE 10. Skeleton augmentation process: 2D projective
transformations are applied to the original skeletons, obtaining new
sequences of augmented skeletons.

maintaining the relationships between the joints. It is worth
noticing that data augmentation is performed after splitting
the data into the training and testing sets, to avoid having the
augmented features of the same subject in different sets.

Let indicate the joint points in 2D coordinates as Jp =
[xp, yp]T ∈ R2 in the camera coordinate system, with
p = 0, · · · , 17. In general, a point P = [x, y]T ∈ R2 in
the 2D Euclidean plane can be described in homogeneous
coordinates H as follows [48]:

H =

w xw y
w

 ∈ P2 w ∈ R− {0} (1)

where P2 is the 2D projective space defined as P2
= R3

−

[0, 0, 0]T . For the sake of simplicity, w is typically equal
to 1 to have direct transformations between 2D Euclidean
and 3D homogeneous coordinates (P = [x, y]T ↔ H =
[x, y, 1]T ).

Let Ti (i = 1, · · · ,A), the non-singular 3 × 3 matrix
designed to produce the 2D projective transformation:

Ti =

1 0 Ei
0 1 Fi
0 0 1

 i = 1, · · · ,A (2)

where Ei and Fi are discrete values representing the
influence of the vanishing point to the final projection. Large
values of Ei and Fi induce close-to-the-origin vanishing
points, i.e. parallel lines converging faster. For this reason,
these couples of values have been kept small (between
0.001 and 0.01), in the experimental phase, to guarantee
reasonable augmentations. Therefore, the new homogeneous
2D coordinates J ′p,i of the p-th joint are:

J ′p,i =

x ′p,iy′p,i
1

 = Ti

xpyp
1

 i = 1, · · · ,A (3)
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FIGURE 11. a) Plot of a sample feature (knee angle) extracted from the
skeleton in an acquired video of STST. b) Different plots of the same
feature extracted from the transformed skeletons by applying four
different 2D projective transformations.

Since each transformation applies equivalently to all the
skeletons, i.e. to all the frames of each video, the size
of the resulting dataset after augmentation is A times higher
than the initial one in terms of the number of frames. The
A parameter has been fixed heuristically by evaluating the
performance of the classifiers varying it.

Figure 11 reports the plots of one feature, the knee angle,
extracted from the acquired video of a subject performing
the STST (Fig. 11a)) and that of four skeletons (Fig 11b))
obtained by applying four different 2D projective transforma-
tions. From a first qualitative analysis, the features extracted
from the transformed skeletons are still coherent inmagnitude
and time with the original ones. This aspect is of enormous
importance since the features extracted from both original and
transformed skeletons differ numerically, ensuring sufficient
dataset variability. Still, they refer to the same target class that
resembles the same high-level behavior. In the experimental
section, we report the classification accuracy, demonstrating
the quantitative evidence of the proposed data augmentation
procedure.

V. EXPERIMENTS
This section describes the experimental results and details
the different data processing steps: data acquisition and
classification. All computations have been performed on
a 64-bit HP Z840 Workstation, with Intel R© Xeon R©

E5-2699v3CPU@2.30GHz processor and 256GB of RAM.
To accelerate the training process, all operations have been
transferred to a NVIDIA R© Quadro R© K5200 GPU.

A. DATA ACQUISITION AND PROCESSING
The cameras used for data acquisition are low-cost 4k
cameras by HIKVision with 3849×2160 resolution at 20 fps,
usually used in video surveillance applications. Due to the
dimensions of the gym of the nursing institutes, where videos
were acquired, the frontal camera had a focal length of
2.8 mm, whereas the side camera had a focal length of 4mm.
The videos are 246 in total, 74 videos relative to BT, 76 to
WT and 96 to STST (see Table 3). Video durations can vary,
depending on the test and the participant.

TABLE 5. Accuracy, Precision, and Recall. These quantities are evaluated
starting from the computation of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN).

Due to the low-level setup of the cameras, the acquired
videos presented some limitations, such as a lack of camera
synchronization, slightly different camera frame rates, and
misalignment of video frames. Therefore, the videos acquired
by the side and frontal cameras were first projected on the
same timeline, based on the lowest recorded frame rate to
improve video uniformity. Then, the couples of videos were
manually shifted by as many frames as the delay between
the two cameras to achieve synchronization. A signal given
by the physiotherapist at the start of each SPPB test was
used for this aim. Furthermore, the videos were trimmed to
extract only the clips containing the execution of the tests.
Finally, a camera calibration procedurewas applied to remove
image distortion. The OpenPose library is then applied to
extract the skeletons. A skeleton tracking procedure has also
been developed to detect only the skeleton of the person
performing the test, discarding the skeletons of other subjects
present in the scene, such as physiotherapists. The first frame
of each video is manually labeled by the user to identify who
is running the test. Then, for every frame, a Region of Interest
(ROI) of 30 × 30 pixels is selected around each joint of all
the subjects in the scene. With an automated process, each
joint-related-ROI is compared with the corresponding ones
of the subject of interest at the previous frame. Following a
voting mechanism, the skeletons of other people in the scenes
are discarded, while one of the subjects performing the test is
retained.

Then, the obtained dataset of skeletons has been aug-
mented by applying the data augmentation procedure
described in Section IV-C.

B. CLASSIFICATION
This section presents the classification results obtained by
applying the deep neural network architectures (LSTM,
BiLSTM, Conv-LSTM, and Conv-BiLSTM) described in
section IV-B. In the following, classifiers will be compared in
terms of Accuracy, Precision, and Recall, whose definitions
are in Table 5. These metrics are computed by reducing
the multi-class problem to multiple binary problems in a
OneVsAll strategy. Eachmetric is thus computed four times to
assess the classification of each class against the others. The
final evaluation metrics are then computed as the arithmetic
mean of the four results, weighted by the population of the
corresponding class (weighted average).

In the learning phase, the dataset of the extracted features
has been divided into training, validation, and test sets. The
samples included in the training and validation sets have
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FIGURE 12. Percentages of weighted mean Accuracy of the deep neural
network architectures (LSTM, BiLSTM, Conv-LSTM and Conv-BiLSTM) for
each SPPB test (BT, WT, and STST).

been exclusively used for the learning phase. The validation
set has been used to assess the model’s convergence and
stop training when accuracy does not increase for eight
consecutive epochs. The test set has been used to evaluate
the network’s performance in labeling unknown input data.
The learning phase results from optimizing a cross-entropy
loss function, performed using the Adam optimizer.
A 5-fold cross-validation technique has been applied to verify
the generalization ability of the networks. For each SPPB
test, after cross-validation, only the models with the highest
accuracy have been selected to classify elderly people into
the four classes (0, 1, 2, 3) defined in Section IV-B.

Figure 12 shows the percentages of weighted mean
accuracy of the deep neural network architectures (LSTM,
BiLSTM, Conv-LSTM, and Conv-BiLSTM), for the three
tests BT, WT e STST, respectively. Among the proposed
deep architectures, those implementing BiLSTM produce
better results than those using LSTM. For example, BiLSTM
increases accuracy by an average improvement of 2.31%,
considering all three tests of the SPPB. Similarly, the
Conv-BiLSTM classifier outperforms the Conv-LSTM one
with an average improvement of 14.23%. These results
confirm that taking input in forward and backward directions
increase the amount of available information, capturing the
complex variability of the features. At the same time, intro-
ducing the Convolutional Block before the LSTM/BiLSTM
networks produces a more significant enhancement of
the classification accuracy. In particular, the Conv-LSTM
network increases performance in dynamic tests (WT and
STST) compared to the results of the LSTM one, as well
as the Conv-BiLSTM over the BiLSTM with an average
improvement of 19.91%. Indeed, applying convolutional
kernels to the input feature vectors transforms the data
into new vectors that better characterize the features’
spatial correlation, improving the final classification abil-
ity. In Figure 13, the weighted averages of Precision vs
Recall are reported for each deep neural network archi-
tecture and each SPPB test. Precision/Recall metrics also

FIGURE 13. Weighted mean values of Precision vs Recall of the deep
neural network architectures (LSTM, BiLSTM, Conv-LSTM, and
Conv-BiLSTM). The three markers for each classifier refer to the three
SPPB tests.

confirm that Conv-BiLSTM architecture outperforms the
others.

Additional experiments have been conducted to evaluate
how data augmentation affects the classifiers’ performance.
Figure 14 shows the resulting weighted mean accuracy of the
deep classifiers for each SPPB test when A ranges between
0 and 100. At first glance, increasing the dataset size by
data augmentation results in an improvement in the average
accuracy for any network and any mobility test. However,
adding more data leads to longer training time. Consequently,
A = 50 produces the best trade-off between accuracy and
dataset size. It should be noted that Conv-BiLSTM always
performs better regardless of the size of the dataset defined
by the parameter A.

For the sake of completeness, several machine learning
classifiers have been also considered, namely Decision Tree,
Naive Bayes, SVM, and KNN classifiers [49]. Also in this
case, a 5-fold cross-validation technique has been applied
during the learning phase, while the configuration with the
maximum accuracy has been selected for the test phase.

Figure 15 shows that the considered traditional machine
learning approaches perform worse than the Conv-BiLSTM
approach, thus proving the need for a deep model. Only
Decision Tree has good accuracy performance for what
concerns the BT. In this case, the Decision Tree sets its
first levels to find the end of the test, setting close-to-zero
thresholds at specific samples of the input feature vectors.
Accordingly, the tree classifies the input focusing only on
the duration of the test, i.e. how long the subject stands in
the same position. The performance of the Decision Tree
emphasizes how the duration of the exercise is also an
implicit feature that this specificmodel uses. This quantitative
analysis allows for a good accuracy value compared to the
other standard models. However, this is still below the best
accuracy achievable by deep models, which even consider
the quality of execution. This point is much more significant
for the WT and the STST, whose classification is much more
dependent on the quality of the execution. For this reason, the
classification accuracies of WT and STST of the Decision
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FIGURE 14. Percentages of weighted mean Accuracy of the proposed classifiers varying the A parameter, for BT, WT, and STST
respectively.

FIGURE 15. Percentages of weighted mean Accuracy of the traditional
Machine Learning classifiers compared with the Classification
Conv-BiLSTM network for each SPPB test (BT, WT, and STST).

FIGURE 16. Weighted mean values of Precision vs Recall of the
traditional neural network architectures (Dec. Tree, Naive Bayes, SVM,
KNN) compared with those of the classification model Conv-BiLSTM. The
three markers for each classifier refer to the three SPPB tests.

Tree are 28.64% and 19.49% lower than the corresponding
values, out of the Conv-BiLSTMmodel. In Figure 16, the plot
of the weighted averages of Precision vs Recall leads to the
same conclusion as for the accuracy plot: the Conv-BiLSTM
keeps the best performances for the three tests. The Decision
Tree classifier has a comparable value only for the BT.

C. REGRESSION
As presented in IV-B, the four deep neural networks have
been designed also for regression tasks. To have a proper
comparison between Classification and Regression networks,
the Root Mean Square Error (RMSE) has been calculated.
In classification output, these metrics are computed between
discrete integers (expected classes and predicted ones).
In contrast, for regressionmodels, they are computed between
discrete expected classes and predicted regression values R.
RMSEs are summarized in Figure 17.

As first remark, the best result of the regression, i.e. the
lowest RMSEs, is achieved with the Conv-BiLSTM architec-
ture. This result is in agreement with what has been found for
classification, since the use of the preliminary convolutional
block can help the BiLSTM network by aggregating features
at each frame. At the same time, regression networks
always perform worse than their classification counterparts.
In principle, this result can be unexpected, as treating the
mobility assessment to produce continuous scores rather
than discrete ones should prevent heavy misclassifications,
e.g. from class 3 to 0, and give results of higher quality.
All these considerations would be verified if the training
set was actually designed with examples from a regression
scenario. However, the initial labeling of the dataset, made
by physiotherapists in discrete classes, reduces the ability of
regressive networks to create successful models.

D. CONV-BiLSTM CLASSIFIER: IN-DEPTH ANALYSIS
This subsection presents a detailed analysis of the perfor-
mance of the Conv-BiLSTM network architecture for each
class of SPPB tests. These experiments help understand
the practical ability of the proposed deep architecture to
recognize the classes of people that need particular attention.

Tables 6, 7 and 8 list the Accuracy, Precision, Recall and
the resulting weighted averages for each SPPB test and for
each class. These results demonstrate that the proposed Conv-
BiLSTM, in most cases, can predict the correct class of
mobility level for each SPPB test (BT, WT, and STST). With
more detail, the weighted mean accuracy is 90% in the case
of BT, while it is 88.51% and 88.12% for WT and STST,
respectively.
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FIGURE 17. Graphs representing the RMSEs values from the Regression Models (orange) vs the Classification
Models (blue). Each plot is relative to the exercises within the SPPB test, i.e. BT, WT, and STST.

TABLE 6. Accuracy, Precision, and Recall of the Conv-BiLSTM classifier for
each output class in the case of Balance Test.

TABLE 7. Accuracy, Precision, and Recall of the Conv-BiLSTM classifier for
each output class in the case of Walking Test.

TABLE 8. Accuracy, Precision, and Recall of the Conv-BiLSTM classifier for
each output class in the case of Sit To Stand Test.

Precision, also called positive predictive value, measures
how many predictions of a class are true. In our context,
it proves the ability of the system to assign the correct
mobility level to the person. The weighted averages of
Precision are 84.75%, 83.22%, and 80.57%, for the BT, WT,
and STST, respectively.

Recall, also known as sensitivity, measures the ability
to recognize samples of a specific class. This aspect is
fundamental in our experimental context, as it is necessary
to be confident of which people need more attention than
others. The Recall values in Tables 6, 7 and 8 outline the
good performance of the proposed classificationmodel.More

precisely, the weighted averages of Recall reach 83.33%,
80.88%, and 78.64% for BT, WT, and STST, respectively.

It is essential to highlight that the obtained results are
satisfactory in the particular healthcare context addressed in
this work. We have developed a system that makes decisions
emulating the decision-making ability of human experts for
assessing people’s mobility. It is crucial to notice that only
specialized physiotherapists with specific competencies can
make these evaluations. So developing such an automatic
system is of great help for supporting clinicians to identify
people with mobility limitations objectively.

Finally, concerning the computational costs, it is straight-
forward to acknowledge that a longer mobility test leads
to longer videos, which require more time for training the
corresponding network. In this case, the training time of the
architectures for modeling the WT and the STST is higher
than that for modeling the BT, although the numbers of
training epochs are comparable (26, 28, and 30 for BT, WT,
and STST, respectively). The same consideration is still valid
for the test phase. The average times for a single video
classification are 28ms for the BT, 37ms for the WT, and
49ms for the STST. These last durations are computed on the
setup described previously, exploiting the huge capabilities
of a GPU implementing Nvidia CUDA drivers. However,
the same classifications have been repeated on the single
CPU of the same processing unit, leading to average times
of 290ms for the BT, 344ms for the WT, and 416ms for the
STST. Although CPU processing takes more time than GPU
processing, classification times are always much shorter than
required for performing every mobility test. This paves the
way for future implementations of the trained model on low-
resource platforms, such as apps for mobile phones or tablets,
towards a fully-integrated telehealthcare system.

VI. DISCUSSION AND CONCLUSION
In recent years, the increase in the elderly population
and the need to support diagnostic issues in retirement
residences have brought considerable interest in developing
telehealthcare systems. This work deals with the complex
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problem of the motion ability evaluation of older people.
In literature, several automatic systems, both invasive (based
on wearable sensors) and noninvasive, have been proposed
to measure specific parameters related to gait or posture.
On the contrary, few works explore only partially the analysis
of people’s movement. Currently, the evaluation of motion
abilities is carried out by experienced medical personnel who
observe people performing some mobility tests through a
defined protocol and evaluate their mobility level according
to defined rank. Despite the high professionalism of physio-
therapists, this evaluation can be affected by their subjectivity,
confidence, and experience. Therefore, the development of
automatic systems can significantly help medical personnel
improve diagnostic accuracy and the elderly themselves by
limiting the number of visits to health clinics.

The main contributions of this paper are:

• The feasibility of developing an automated system to
assess themotion skills of older peoplewhile performing
a specific mobility test protocol has been demonstrated.
The proposed system is noninvasive for people. It con-
sists of low-cost visual cameras that record videos of
people performing the tests and a complete processing
framework that extracts significant features and builds
models that classify the test executions emulating the
complex decision process of physiotherapists.

• The proposed system has been validated using real video
data acquired in two nursing institutes hosting elderly
people, both healthy and affected by neurodegenerative
diseases. Significant features have been extracted from
the skeletal representations of the subjects observed.
To increase the dataset dimensionality, a data augmen-
tation technique has been applied to the extracted skele-
tons. Finally, the proposed deep neural network, based
on BiLSTM, has been used to classify the observed peo-
ple’s mobility levels. Numerical experiments have been
analyzed quantitatively in terms of Accuracy, Precision,
and Recall metrics, demonstrating the improvement
of results due to preliminary processing made by a
convolutional block.

• Several machine learning methods for automatically
classifying the motion functionalities of older adults
have been compared. Once again, the deep neural
network classifier with convolutional filters and a
BiLSTM model provides the best performance among
all the implemented techniques.

• The proposed deep neural network architectures have
also been tuned to perform regression. The results show
an improvement in RMSE due to convolutional blocks.
However, the input labels (discrete classes) do not
constitute a significant dataset for training regression
models, which perform worse than the Conv-BiLSTM
designed for the classification of patients performing the
SPPB test.

From the analysis of the results, we can assert that the
proposed approach reaches good performance despite the

limited number of video acquisitions. Some research issues
will be investigated in deep in future research:

• The acquisition of more consistent datasets regarding
the number of observed subjects and the number of
assessments will allow a more deep validation of the
automatic system. Through the consensus of several
expert therapists, class evaluations could overcome the
bias of individual assessments.

• One of the main points of this work is the use of real
data. The scientific community often complains about
the poor availability of data that limits the application
and experimentation of machine learningmethodologies
that need a large amount of data to build significant
models and robust systems. Making datasets publicly
available can allow the scientific community to compare
different approaches, to improve and share statistical
analyses.

• The system can be considerably improved with the
recently available low-cost and high-performance depth
cameras. Currently, the system uses two low-cost RGB
cameras. Future developments will involve the use of
an appropriately placed RGB-D camera in front of the
person performing the mobility tests. The proposed
approach remains valid, as the defined features are
invariant from the point of view and can be evaluated
using depth information. In addition, using a single
camera makes the system more flexible, allowing its
applicability not only in retirement or nursing homes but
also in private homes.

The proposed system reveals the mobility levels of people,
supporting clinicians to timely detect mobility anomalies, and
preventing dangerous conditions such as falls or worsening
health conditions. Furthermore, the development of mobile
apps that collect video of people performing mobility tests,
extract data, and transmit them to medical staff, could
provide good support to increase telehealthcare function-
alities. Telehealthcare systems will be a valid instrument
for remote monitoring of older adults often unwilling to
visit health clinics periodically, reducing time, costs, and
efforts.
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