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ABSTRACT Due to the importance of bearings in modern machinery, the prediction of the remaining
useful life (RUL) of rolling bearings has been widely studied. When predicting the RUL of rolling bearings
in engineering practice, the RUL is usually predicted based on historical data, and as the historical data
increases, the prediction results should be more accurate. However, the existing methods usually have the
shortcomings of low prediction accuracy, large cumulative error and failure to dynamically give prediction
results with the increase of historical data, which are not suitable for engineering practice.To address the
above problems, a novel RUL prediction method is proposed. The proposed method consists of 3 parts:
First, the multi-scale entropy-based feature — namely “‘average multi-scale morphological gradient power
spectral information entropy (AMMGPSIE)”— from the rolling bearings as the Health indicator (HI) is
extracted to ensure all the fault-related information is well-included; Then, the HI is processed with the
enhanced Hodrick Prescott trend-filtering with boundary lines (HPTF-BL) to ensure good performance and
small fluctuation on the HI; Finally, the deterioration curve is predicted using an LSTM neural network
and the improved Particle Filter algorithm that we proposed. The proposed method is validated using the
experimental bearing degradation dataset and the casing data of a centrifugal pump bearing from an actual
industrial site. Comparing the results with other recent RUL prediction methods, the proposed method
achieved state-of-the-art feasibility and effectiveness, conform to the needs of practical application of the
project.

INDEX TERMS Entropy-based features, particle filter algorithm, rolling bearing, RUL prediction.

I. INTRODUCTION

Rolling bearing is widely used in rotating machinery and is
one of the key wearing parts. With the arrival of Industry
4.0 and the thriving development of Prognostics and Health
Management (PHM) research, rolling bearing monitoring can
be achieved by analyzing the real-time vibration data col-
lected by the intelligent sensors installed on the machines,
such that the service life of rolling bearings is prolonged,
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and production efficiency greatly increased. One major part
of PHM is the prediction of remaining useful life (RUL),
accurate RUL predictions can provide crucial information for
maintenance decisions and has been a popular research topic
in recent years [1], [2].

At present, there are mainly three methods for predicting
the RUL: the model-based method, the data-driven method,
and the method combining both [3]. For the model-based
method, some mathematical models are usually established
to describe the deterioration process of the system, with the
parameters of these models being updated in real-time based
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on the observed data, the future states of the system can be
determined, thereby predicting the remaining useful life.

Common model-based methods include Kalman Filter,
Particle Filter, etc. The prediction method of Particle Fil-
ter is proposed based on the Bayesian filtering algorithm,
which has been widely used in the field of RUL prediction
due to its improvements in the certainty of long-term pre-
dictions. Li et al. [4] proposed a prediction method based
on the particle filter and used correlation matrix cluster-
ing and weighting algorithms to calculate the health indi-
cators. Zhu et al. [5] applied the particle filter algorithm to
fatigue crack growth parameter estimation and RUL pre-
diction, acquiring the median value and confidence interval
of residual life. Lei et al. [6] proposed a model-based RUL
prediction method for rolling bearings with a health indicator
construction module and an RUL prediction module: the
former constructs a new health indicator named weighted
minimum quantization error, and the latter predicts the RUL
using particle filtering.

The above research has proven the advantages of Particle
filtering in solving long-term uncertainty prediction prob-
lems, however, the algorithm remains flawed that after mul-
tiple iterations, the particle weights would degrade. This is
normally solved by optimizing the resampling steps: Yu et al.
[7] and Liu et al. [8] separately used unscented particle filter
to predict the exhaust temperature of space engines and the
state of lithium battery and achieved better results than the
original particle filter algorithm; Xu et al. [9] proposed a par-
ticle filter prediction algorithm improved by particle swarm
optimization algorithm and accurately predict the remaining
useful life of rolling bearings; He et al. [10] proposed to
optimize the resampling process of particle filter by using
the beetle antennae search algorithm to solve the problem
of particle diversity loss, and applied this method to predict
the remaining useful life of batteries also obtained good
prediction results; Xu et al. [11] proposed an indicator based
on the mean square harmonic noise ratio, and then used
the regularized particle filter algorithm which improved the
resampling process by using the kernel function based on the
Euclidean distance, and achieved good results in predicting
the RUL of the rolling bearing.

When building the state-space model of rolling bearings
in the deterioration process, the most commonly used mod-
els are the double exponential model and the Paris model
[12]. These two models can describe the fatigue deterioration
process of bearings well, but cannot deal with other types
of deterioration — which is yet another flaw for the parti-
cle filtering algorithm applied in RUL prediction. The data-
driven method, however, is to predict the remaining useful
life by using statistical analysis or machine learning methods
based on obtained data. This type of method can be calibrated
and describe the deterioration process of bearings through
the obtained data, countering the defects of the particle filter
algorithm. Therefore, the data-driven improved particle filter
prediction method has become a hot research direction in
recent years.
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Cui et al. [13] proposed a comprehensive prediction model
based on time-varying particle filter, this method can adap-
tively select the optimal state-space model according to the
characteristics of the data, which improves the prediction
accuracy for bearing life; Ge et al. [14] proposed a data-driven
improved particle filter prediction method, applying a quan-
tum genetic algorithm to solve the particle deterioration prob-
lem, and used LSTM neural network to predict the trend
of model coefficients achieving good results in predicting
the remaining useful life of aero-engines; Wu et al. [15]
put forward a prediction method combining bat algorithm
optimized particle filter and neural network, which is used
to predict the state of lithium ion battery, and concluded that
the neural network prediction model with two hidden neurons
is better than that with three hidden neurons; Zhang et al. [16]
proposed a prediction method using levy flight optimization
particle filter, and used LSTM to learn the deterioration state
curve of lithium ions, serving as the state-space model of
particle filter algorithm, achieving good prediction results;
Chen et al. [17] proposed a prediction method combining a
new particle filter algorithm with GNN to predict the state
of lithium batteries. These scholars have conducted a lot of
research on the prediction method combining neural network
and improved particle filter, and made some contributions,
but these contributions are basically applied to the prediction
of lithium-ion battery life or the RUL of aero-engines. Only
a few studies have used the method of combining neural
network with an improved particle filter to predict the RUL
of rolling bearings.

In the prediction process, good health indicators (HIs)
with comprehensive performance will improve the accuracy
of prediction [18]. In many recent works, there exists a
problem that HI fluctuates greatly, and it is impossible to
determine an appropriate confidence interval, leading to low
prediction accuracy [19]; At present, a 95% or 99% con-
fidence interval is usually used, but it is too subjective to
apply to all HI, resulting in poor generalization ability [6].
To solve these problems, Chen et al. [20] proposed a quadratic
function-based deep convolutional auto-encoder (QFDCAE)
constructed HI, which can automatically extract bearing HI
from the original vibration signal without expert knowledge;
Zhou et al. proposed a [21] distribution contact ratio metric
health indicator (DCRHI) that can well represent the degrada-
tion process and obtain a unified failure threshold, combined
with the improved gated current unit (GRU), it can more
accurately predict the remaining service life of the bearing;
Qin et al. [22] also proposed an HI construction method based
on degradation trend constrained variable autoencoder (DTC-
VAE), which can adaptively generate HIs with obvious degra-
dation trend. These articles have made great contributions to
the HI construction part of RUL prediction research, while in
this paper, a different and more effective solution is proposed
for HI construction and HI processing.

In order to help enterprises and factories to determine the
best predictive maintenance time, and to solve the existing
problems of HI construction and data-driven RUL prediction,
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a new method for predicting the RUL of rolling bearings
is proposed in this paper. The new method includes three
parts: HI construction, HI processing, and RUL prediction.
First, a new HI based on multi-scale entropy is constructed,
which has good comprehensive performance; Secondly, a HI
processing technology is proposed, processed by this technol-
ogy, the HI can have appropriate confidence intervals, and
the influence of the difference between the real value and
the filtered value of the signal on the RUL prediction results
can be eliminated, thus improving the prediction accuracys;
Finally, LSTM neural network and our improved particle
filter algorithm are used, according to the dynamic prediction
deterioration curve of real-time data, the improved particle
filter algorithm solves the problem of particle weight degra-
dation, LSTM neural network is used to update the state
space model before each prediction, this state space model
describes the degradation process of the current rolling bear-
ing well, and can effectively reduce the cumulative error of
prediction.

The main contributions of this paper are summarized as
follows.

1) The “average multiscale morphological gradient power
spectral information entropy”” (AMMGPSIE) is proposed as
the health indicator extracted from rolling bearing vibration
data, this HI has good monotonicity and can describe the
deterioration process of rolling bearings well;

2) A new health indicator processing technique called
“Hodrick Prescott trend filter-boundary line” (HPTF-BL)
that calculates the upper and lower deterioration boundary
lines and the main deterioration trend of the features is used,
it helps select the appropriate confidence intervals and reduce
prediction errors;

3) A hunter-prey optimization algorithm improved particle
filter with a long-short-term-memory network as the state-
space model (HPO-PF-LSTM) was applied for predicting the
remaining useful life of rolling bearings, it solves the prob-
lems of particle depletion and achieved what the traditional
state-space model cannot do well: representing the forms of
bearing deterioration.

The rest of this paper is organized as follows: Section II
introduces the basic theoretical background of the proposed
method; In Section III, the RUL prediction model of rolling
bearing is presented; Section IV uses laboratory data and
engineering data to verify the effectiveness of the proposed
method; Section V compare the proposed method with some
of the latest RUL prediction methods to further present its
superiority; Section VI concludes this paper.

Il. THEORETICAL BACKGROUND

A. POWER SPECTRUM INFORMATION ENTROPY

The operational reliability and performance deterioration of
rotating machinery can be effectively represented with fea-
tures extracted from the continuously collected vibration sig-
nal sequence. For the same rotating machine, the information
entropy method can be used to evaluate the health status of
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the machine with the comparison of healthy state operation
measurements. ‘“‘Information entropy”’, which quantifies the
certainty of a certain event, was first proposed by Shannon
[23]. In the case of rotating machinery, as the number of oper-
ating states increases, the uncertainty increases, so the infor-
mation entropy value also increases. Therefore, the lower the
information entropy for a certain operation, the higher the
chance the machine is operating in a healthy state [24].

Assume a certain random signal x;. It can be expressed by
the following equation:

X = {x1,x2, X3, .. .Xp} (D

where x1, x2, x3, ... x;; denotes the variable that constitutes
the signal, with p; representing the chances of occurrence of
x;. Then, a distribution vector representing the probability of
occurrence of a random variable in the signal can be con-
structed as P = {p1, p2, ..., pm}. The information entropy
of the signal x; can be then expressed as:

m
IE (x) = = Y _piln (pi) )
i=1
where Y7 | p; = 1 and p; satisfies 0 < p; < 1.

The power spectral density (PSD) of the signal is
usually used to represent the power of the signal in
the frequency domain [25]. Assuming a discrete signal
{s(n),n=1,2,3,..., N} where N is the length of the signal
in the time domain. {S (w),w=1,2,3,..., W} is the fre-
quency domain representation of the signal, with W as the
number of sampling points in the frequency domain of the
signal. The power spectrum of the signal can be expressed
as:

1
PSD(w):WxS(w)2 w=1,23....,W (3

Substituting PSD (w) from Eq. (3) into Eq. (2), the infor-
mation entropy of the power spectrum of the discrete signal
s (n) can be obtained:

w
PSIE (s) = — Y _ PSD (w) InPSD (w) 4)
w=1
With the maximum value of the power spectrum informa-
tion entropy being In (1/W), the normalized power spectrum
information entropy (NPSIE) can be obtained:

PSIE (s)

(&)

B. TRADITIONAL PARTICLE FILTER ALGORITHM

Particle filtering is developed based on traditional nonlinear
filtering methods such as the Kalman filter and the extended
Kalman filter. Similar to them, particle filter adopts Bayesian
theory and estimates the probability density function of the
system state based on system observations. At the same time,
the particle filter also applied a sequential importance sam-
pling algorithm. With Bayesian theory and sequential impor-
tance sampling algorithm, particle filter has shown obvious
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advantages in model parameter estimation of non-linear and
non-Gaussian systems and has been applied in the field of
RUL prediction [26].

Assume that the system is in discrete time series f;, = k-Af,
the state can then be described by the following state transfer
function:

Xk = fo k-1, Ok, wi) (6)

where x;, is the system state in #, fi is the system state transfer
function, 6; is the model parameter vector, and wy is the
system noise.

While the state of the system cannot directly be measured,
it is necessary to use the observation of the system to estimate
the state of the system according to Bayesian theory. The rela-
tionship between the system state and the system observation
is as follows:

2% = hk (X, vi) @)

where z; is the system observation at time f;, hj is the
observation function of the system, and vy is the measurement
noise.

First, the prior probability density function at time k is
predicted according to the system state probability density
function and state transfer function at time k — 1:

p Xk /21k—1) = /p(xk/xkfl)l?(xk/Zl:kfl)dxkfl (8

After the new observation value is acquired, the state prob-
ability density function is updated to obtain the posterior
probability density function at time k:

P @k /XK) p %k /21:6-1)

2) = 9
P (oe/2u:) P 2k /z1:6-1) ©

Sometimes, it is quite difficult to sample directly from the
state probability density function p (xx | z1:¢). Therefore, the
sequence importance sampling algorithm uses an importance
density function g (x| | z1:x) to approximate the state prob-
ability density function p (x; | z1:x), describing it using the
discrete sampling points of the importance density function
and the corresponding weights. Eq. (8) is then transformed
Into:

p (xk/Z1;k) ~ iﬁ/k (x("):k> -6 (xo;k - xézk) (10)
i=1

where the importance weight is updated with the following
equation:
P @k /Xi) P (2K /Xk—-1)

Wk = Wi—1 (1)
q (X /X0:k—1, 21:k)

Select the prior probability density that’s easier to realize
as the importance density function, Eq. (11) can be simplified
as:

Wk = wi—1 - p (2K /Xk) (12)
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To update the model parameters, the parameter term 6y, is
added to the conditional probability of Eq. (13):

Wi = Wg—1 - P (Zk /X, Ok) (13)

Therefore, as long as the conditional probability
p (2 | xx,6k) is obtained, the weight corresponding to the
system state x; and model parameter 6; can be updated
continuously using the new observation value z.

IIl. CONSTRUCTION METHOD OF ROLLING BEARING RUL
PREDICTION MODEL WITH A NOVEL ENTROPY-BASED
HEALTH INDICATOR AND IMPROVED PARTICLE FILTER
ALGORITHM

A. A NOVEL ENTROPY-BASED HEALTH INDICATOR
EXTRACTION

1) MORPHOLOGICAL GRADIENT OPERATOR EXTRACTION
The morphological gradient operator (MGO) is defined as the
difference between the results of signal f after expansion and
corrosion through structural element g:

Grad (f) =f ® g —fOg (14)

where @ represents the expansion operator and ® represents
the erosion operator. For more details about the operators
and the structural element g, please refer to [27]. While the
morphological gradient is often used as an edge detection
tool in image processing, in signal processing, it can detect
and extract the transient information on steady-state signals,
so that pulse information can be made apparent and the
position and shape of pulses effectively detected [28].

The raw vibration signals of rolling bearings usually con-
tain a huge amount of noise, which will inevitably affect
the power spectrum and reduce the accuracy of the power
spectrum information entropy analysis results. With the good
characteristics of the morphological gradient operator dis-
cussed above, the MGO is extended and applied it when
analyzing the power spectrum to deal with the noise problem.
And on this basis, the feature based on the average multiscale
morphological gradient power spectrum information entropy
(AMMGPSIE) is proposed.

2) AVERAGE MULTISCALE MORPHOMETRIC GRADIENT
POWER SPECTRUM INFORMATION ENTROPY (AMMGPSIE)
INDEX CONSTRUCTION

Multi-scale analysis can be applied to the measurement of the
complexity of a sequence and reflect the hidden information
[29]. Costa et al. [30], [31] proposed the idea of multi-scale
entropy (MSE) — obtaining the representation of the sequence
at different scales by coarse-graining the sequence. In this
paper, based on the power spectrum information entropy and
the morphological gradient operator, combined with mul-
tiscale analysis, an innovative calculation method for the
average multiscale morphological gradient power spectrum
information entropy is proposed and used for the feature
extraction of rolling bearing performance deterioration. The
steps for calculating the average multi-scale morphological
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gradient power spectral information entropy (AMMGPSIE)
are as follows:

Step 1: For a time series {s(n),n=1,2,3,...,N} of
length N, the coarse-grained signal is first obtained by cal-
culating the average value of each segment of the sequence:

Jt

=t ¥

i=(j—1)T+1

sn),1 <j<

:
- (15)
T

Step 2: Calculate the information entropy of the morpho-
logical gradient power spectrum of the coarse-grained signal
at each scale factor t;

a. The frequency domain expression of each coarse-
grained signal y;t) is Sw,w=1,2,3,..., W},
where W is the number of sampling points. Then,
morphological gradient transformation is applied on
the signal group S (w) to acquire X (w):

Xw)=Sw) ®&g—S(w)0Og¢ (16)

b. The morphological gradient power spectrum of the
signal is calculated, and its expression is as follows:

MGPSD (w) = % x X (w)? (17)

c. Combined with information entropy theory, the infor-
mation entropy of the morphological gradient power
spectrum of the signal is calculated, and its expression
is as follows:

w
MGPSIE (s) = — Z MGPSD (w) InMGPSD (w)

w=1

(13)

d. The information entropy of the normalized morpholog-
ical gradient power spectrum of the coarse-grained sig-
nal under each scale factor t is shown in the following
equation:

MGPSIE (s)

(i)

Step 3: Steps 1 and 2 are the calculation process of
multiscale morphological gradient power spectrum informa-
tion entropy. The average multiscale morphological gradient
power spectral information entropy (AMMGPSIE) used in
this paper is calculated by calculating the average of the nor-
malized morphological gradient power spectral information
entropy calculated with Eq. (19) at different scales.

NMGPSIE (s) = (19)

3) MULTI-SCALE PARAMETER SCREENING

The performance degradation of rolling bearings is
monotonous and irreversible, so monotonicity can be used to
judge the performance of the health indicators [32], in addi-
tion, robustness and correlation can also be used to evaluate
HI performance [18]. First, the smoothing method is used to
decompose the HI into average trend and random parts:

HI (1) = HI 7 (tn) + HIR (1p) (20)
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where HI (t,) is the value of HI at time #,, HI 7 (t,) is the
trend value and HIy (t,,) is the random term. The calculation
of monotonicity, robustness and correlation is Eq. (21)—(23),
as shown at the bottom of the next page.

where ¢ (x) is the unit step function. When x is greater than or
equal to 0, & (x) is 1; when x is less than 0, € (x) is 0. N is the
total number of samples. From the 3 indexes we can acquire
a compound index (CI):

CI = wyMon (HI) 4+ wyCorr (HI) + w3Rob (HI) (24)

where w; > 0and Z?:l w; = 1. According to [46], w1 = 0.2,
wy =0.5, w3 =0.3.

When applying the average multi-scale analysis, the
AMMGPSIE evaluation indicators obtained by different scale
factors are different. Here, PRONOTIA’s bearing 1-1 data
from IEEE PHM 2012 data challenge [33] is taken as an
example: Table 1 shows the best parameter t = 4. It cor-
responds to the AMMGPSIE health index with the highest
comprehensive performance.

In Table 2, four performances of the proposed AMMGP-
SIE are compared with four performances of other five com-
monly used health indicators designed for RUL prediction,
including time domain root mean square (RMS) and four
complexity measurements: wavelet information entropy [34],
CO complexity [35], power spectral entropy [36] and high-
order differential mathematical morphological gradient spec-
tral entropy [37].

As the comparing results show, the proposed HI: Average
multi-scale morphological gradient power spectrum informa-
tion entropy (AMMGPSIE) has better performance than the
other 5 HIs and is suitable for prediction.

B. SIGNAL PREPROCESSING OF HEALTH INDICATOR
BASED ON HPTF-BL

1) HP TREND FILTERING

The HP trend filtering method was proposed by Hodrick and
Prescott [38] in 1997. It is a commonly used data analysis
method in economics. It can decompose data into long-term
trend items and short-term fluctuation items. Because it can
reduce the impact of data noise, it is often used to extract the
trend of various time series. It is now widely used in data
prediction, reliability analysis of performance degradation,
and other related fields.

The HP trend filter is a high pass filter that uses the
least squares loss function and /2 norm to calculate the
quadratic difference matrix. It decomposes the time series x;
into long-term trend items and fluctuation items with random
fluctuation characteristics. The trend term is defined as the
solution of the following equation:

n—1 )
X = min Z (xl,. — xki)

=1

n

+4 [(xkiﬂ - xki) - (‘xki _xkil)]z} (25)

i=2
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TABLE 1. Evaluation indicators with different scale factor values.

Scale

factor 1 2 3 4 5 7 8 9 10 11 12
Mon 0.138 0.218 0.411 0.432 0.374 0.397 0.320 0.287 0.304 0.294 0.264 0.198
Corr 0.723 0.792 0.920 0.925 0.904 0.903 0.869 0.836 0.899 0.784 0.773 0.760
Rob 0.509 0.693 0.835 0.874 0.812 0.820 0.776 0.738 0.804 0.573 0.674 0.579
ClI 0.542 0.648 0.793 0.811 0.770 0.777 0.731 0.697 0.752 0.623 0.642 0.593

TABLE 2. Comparison of different features.

Higher order differential

F Root-Mean- . Wavele.:t CO complexity Power spectral mathematics Proposed
eatures information . .
Squared [35] entropy [36] morphological gradient (AMMGPSIE)
entropy [34]
spectral entropy [37]
Mon 0.169 0.276 0.248 0.132 0.429 0.432
Corr 0.683 0.732 0.789 0.763 0.863 0.925
Rob 0.951 0.664 0.621 0.554 0.750 0.874
CI 0.663 0.620 0.630 0.574 0.742 0.811

where i is the serial number of the time series data and
n is the sample number of the time series. The first item
represents the tracking degree of the trend item to the original
sequence, the second item represents the smoothness degree
of the trend item with A as the smoothness parameter that
controls the smoothness degree of the trend item. By finding
the first-order derivative of the xi, sequence from Eq. (25),
the trend sequence x; can be obtained:

x =T +16) " x (26)

where G is the coefficient matrix and / is the identity matrix.
When A — 0, the tracking degree of the trend item on
the sequence reaches the maximum. When A — o0, the
degree of smoothness of the trend term sequence reaches the
maximum. When A = 0, the HP filtering method degenerates
to the least squares method. Through the above HP filtering
method, the time series can be decomposed into periodic
terms and fluctuation terms. But at the same time, HP filtering
has some defects, that is, the random noise of the vibration
signal will gradually increase with time, and the difference

between the real value of the signal and HP filtering value
will bring errors in RUL prediction.

2) DESCRIBING HPTF-BL

In this paper, the Hodrick Prescott trend-filtering with bound-
ary lines (HPTF-BL) method is proposed, which can well
solve the difficulties to determine the appropriate confidence
interval for high volatility health indicators, and the influ-
ence of random noise on the RUL prediction results, thereby
improving the prediction accuracy.

After being processed by the HPTF-BL, the local fluc-
tuations of the health indicators are eliminated and a new
group of health indicators (also including the original health
indicators) is formed. The new indicator group has good
monotony and low fluctuation. At the same time, a confi-
dence interval based on the signal itself is formed, which
enhances the interpretability of the confidence interval setting
in the step of subsequent trend prediction, eliminating the
difference between the real value of the signal and the HP
filter value, and further improving the accuracy of the RUL
prediction results.

1
Mon (HI) = — |3 & (HIT (ty) = HI7 (1)

= 2 (HIT (t) = HIT (111) e

1 HI (1)
Rob (H[) = ﬁ Zn exp (— ‘T([n)

IN Y, HIT (t)ty =N 3, HI 7 (1) 3, 1]

Corr (HI) =

) (22)

(23)

JIVE H1 @) = (, i @) ] [V 5 - (2,0)°]
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The main steps of HPTF-BL are as follows:

Step 1: Window division: divide the obtained known time
series x; to obtain multiple windows containing m numbers
in each group;

Step 2: Sort the data in each window to obtain the maxi-
mum and minimum values in the window;

Step 3: Replace all data in the window with the maximum
value to get the upper boundary x,,; Replace all data in the
window with the minimum value to get the lower boundary
Xlows

Step 4: HP filtering is used to process the upper boundary
x and lower boundary x;,,, of the time series x; obtained from
Step 3, and get the main trend terms xg, the calculation of xg
which is shown in Eq. (26).

The above steps can then construct the health indicator
after the process:

Xup
HI (t) =1 xp 27)

Xlow

The data length of the processed health indicators is con-
sistent with that of the original health indicators, but the data
dimension becomes 3 dimensional, which is composed of the
upper boundary, the lower boundary, and the main trends.

3) OPTIMIZING FEATURE PARAMETERS OF HPTF-BL

When processing the health indicators with the HPTF-BL
method, it is necessary to select the parameters A and m. m
represents the amount of data in the window, its value can be
at least 3 and at most the same value as the amount of data in
the known sequence; The larger the value of m is, the more
representative the results are, but some information is ignored
— which we specifically don’t want; The smaller the value
of m, the more accurate the result can reflect the boundary
information of the characteristic index, therefore, 3 is selected
for m.

A is an indicator that controls the smoothness of the time
series. When processing the characteristic indicators, it is
necessary to obtain the main degradation trend. The selec-
tion of smoothing indicator X is often subjective: Choudhary
et al. [39] used HP filtering to smooth the characteristics of
economic data to analyze economic changes that reflect the
real situation of economic development, they proposed that A
should be 100 when analyzing annual data, 1600 for quarterly
data and 14400 for monthly data; Ravn and Uhlig [40] put
forward a frequency criterion to calculate the corresponding
A value, and set A = 1600 as the benchmark value when
processing quarterly data in advance, referred to as A;. The
smoothing index X, in processing monthly and annual data
can be calculated by the following frequency criteria:

N 4

where N represents the amount of data processed, N, rep-
resents the preset benchmark data amount, and here, N
represents the amount of data processed quarterly. When
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processing annual data, the smoothing index is calculated as
(1600 x (l / 4)4 = 6.25). This method has been verified to
be feasible in determining the smoothness index A. In the
field of rolling bearing RUL prediction, the sampling interval
and sampling time of the data are different, and the amount
of data obtained is also different. While a group of full life
cycle data is often much larger than the quarterly data in the
economic analysis. The A benchmark in economics cannot
be directly used in the field of RUL prediction, Therefore,
this paper takes a group of signals simulating bearing per-
formance degradation as an example to set the HP filtering A
value reference applicable to mechanical equipment vibration
signals. If the HPTF-BL method is required in other chapters
of this paper, the A value can then be calculated according
to the A value determined in this section through frequency
criteria.

Set a group of analog signals: X (r)=0.00373 +
cos (20t) +0.1xrand (N) + 1, t is a uniformly distributed
sequence with 100 elements between 1 and 10, and the value
of N is 100. Separately calculated A = 1, A = 5, A = 10,
and A = 20, Fig. 1 shows the calculation results of the HP
filtering algorithm for analog signal X ().

It can be seen from the simulation results that the analog
signals passing through the HP filtering with different A all
become smoother compared with the original signal since the
smoothing degree tends to stay stable between A= 10 and
A= 20, 15 is selected as the benchmark value for A when
the amount of data is 100. When using the HPTF-BL method
to process characteristic indicators in Section IV, A can be
calculated by frequency criterion and the benchmark value.

C. HPO-PF-LSTM-BASED RUL PREDICTION

1) USING THE HUNTER-PREY OPTIMIZER ALGORITHM
Hunter prey optimizer (HPO) algorithm is a new intelligent
optimization algorithm proposed in 2022, it finds the opti-
mized parameter by simulating the hunting process of ani-
mals and have the advantages of fast convergence and good
optimizing ability [41].

First, the locations of the hunter and prey is initialized
and the initial population is formed, then the fitness of each
solution is calculated using the objective function. Eq. (29) is
used to update the location of the hunter:

Xij (1 + 1) = xij (1) + 0.5 [(2CZPpos(j) — xi,j (1))
+20A-0OZup-x;m)] 29

where x (¢) is the current hunter position, x (f + 1) is the next
iteration hunter position, Pp,; is the position of the prey, u is
the average value of all positions, C is the balance parameter
between the exploration and development strategies, its value
decreased from 1 to 0.02 during iteration:

0.98
Max
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FIGURE 1. Simulation results for the value selection of 1.

VOLUME 11, 2023

where it is the current iteration number and Max is the
maximum iteration number. Z is the adaptive parameter:

P=R <C;IDX = (P ==0):
Z = Ry ® IDX + R3 ® (~ IDX) (31)

where kl and k3 are random vectors within [0, 1], P repre-
sents the index values where i%l <C,Ryisa rarldom number
within [0, 1], IDX are index values of vector Ry qualifying
(P==0).

The position of prey P, is calculated, so as to calculate
the average value of all positions according to the following
formula, and then calculate the distance from the average
position:

1 <A
uzzﬁxi (32)
1=

The position with the largest average distance from the
position is considered the prey position Ppes. Assuming that
the best safe position is the best global position, giving the
prey a better chance of survival, the hunter may choose
another prey and update the prey’s position according to the
following formula:

Xij (@ + 1) = Tpos(j)
+ CZcos 2w Ry) x (Tpos(/') — Xij (I)) (33)

where x (¢) is the current position of the current prey, x (¢t + 1)
is the next iteration position of the same prey, Ty is the
global optimal position, Z is the adaptive parameter calcu-
lated by Eq. (30), R4 is a random number within [—1, 1],
C is the balance parameter between exploration and devel-
opment. The cosine function and its input parameters allow
the next prey position to be globally optimal at different radii
and angles and improve the performance at the development
stage.

In order to select the hunter and the prey, Eq. (29) and Eq.
(33) are combined. Rs is a random number between [0, 1],
and B is an adjustable parameter, according to [41], the value
of B is selected as 0.1. If the value of Rjs is less than 3, the
searched position is regarded as a hunter, and the next position
will be updated with Eq. (29); If the value of Rs is greater than
B, the searched position will be regarded as prey, and the next
position will be updated with Eq. (33).

2) PARTICLE FILTERING BASED ON HUNTER-PREY
OPTIMIZATION ALGORITHM

The resampling process of the particle filter (PF) is improved
using the hunter-prey optimization algorithm (HPO) to over-
come the degradation of particle weight after multiple itera-
tions of PF. The prior state of particles in the particle filter
is taken as the individual position of the initial population of
hunter and prey. The iterative optimization process is used to
improve the distribution of particles. The degraded particle
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TABLE 3. The implementation of the HPO-PF algorithm.

Algorithm: HPO-PF

Input:
Initialization: randomly select N particles from the
importance probability density function {xji}iv_l
while k<K do
Stepl. Propagation of particles: Xji1

N‘I(xllc+1|xllcf3’1:k+1)
Step2. Update weights: k1 = @kp(¥is1|xts1)
fori—= 1to N do
Calculate the fitness value of each particle: f =
(zr — 2zp)?, Update the optimal position of. The current
hunter or prey
ifRs < B
The next position of the hunter is updated by Eq. (29)
else
The next position of the prey is updated by Eq. (33)
end
end
Calculate the particle weight based on the fitness value

w!, and normalize the weights

Step 3. Resampling: N, = !

E:§\1=1(‘J"Iic+1)z
if N, < N,
Do resampling process
else
Not do resampling process
end
Calculate the current particle state Xy ; =

N .
Yi=1 W41 Xk41

end while
Output:

Estimate state at the next moment P, ¢

set is optimized to a high likelihood value so that most par-
ticles can be concentrated near the real state. This solves the
problem that the function used for resampling in conventional
particle filter algorithms is suboptimal. The implementation
of the HPO-PF algorithm is shown in Table 3.

3) PERFORMANCE DETERIORATION DESCRIBING BASED ON
LSTM
Once the shortcomings of PF with weight deterioration and
particle depletion is overcomed, the next task is to construct
a performance deterioration model for the rolling bearing.
Because rolling bearings often work in harsh working envi-
ronments, it is very difficult to establish an accurate dete-
rioration model. In this paper, we involve a powerful deep
learning tool: the LSTM neural network model to learn the
deterioration model [42].

As shown in Fig. 2, a single LSTM block is composed
of a forget gate, an input gate, and an output gate, along
with the cell state. The circle represents operations, the arrow

3070

hl
A
7 N\ ™N
G &) @ .c
_ Feaswe ¥ )| G@w
e e R
LG £ || Oc e
Gate C;
Q:] o]
hey > h,
L ){_Input Gate )| Onput Gate )

FIGURE 2. LSTM unit structure.

represents the transmission of the vector, and the ellipse is the
non-linear activation function.

In the forget gate, the output from the previous layer 4;_
and the data at the current moment X; is selected through the
Sigmoid activation function, discarding part of the input data:

fi=0 (W [hi—1, X:]1+ by) (34)

where Wy, by are the weight matrix and bias term of the forget
gate and o is the sigmoid activation function.

In the input gate, the units’ state is updated, part of the
memory is discarded, and the information is updated accord-
ing to Eq. (35), with the candidate updated content calculated
according to Eq. (36).

i =0 (W;-[h—1, X1+ b)) (3%
C; = tanh (Wc - [h—1, X;1+ bc) (36)

where W;, b; are the weight matrix and bias term of the
input gate and W, b¢ the weight matrix and bias term when
updating the information.

The information from the previous moment C’,,] is trans-
mitted in the cell state and finally output to the next moment,
the state is updated according to Eq. (37) so that the long-term
memory and the current memory are combined to form a new
one:

Co=fi-C1+ir-Croy (37)

In the output gate, Eq. (38) is used to determine which states
are used as cell outputs and then calculate the outputs through
the tanh function #;, as shown in Eq. (39):

0y =0 Wo - [hi-1, X1+ bo) (38)
h[ = Ot X tanh (C[) (39)

4) HEALTH INDICATOR PREDICTING USING HPO-PF-LSTM

LSTM neural network is selected to build the state-space
mapping model to avoid the difficulties caused by the dete-
rioration process of rolling bearing and the complex external
environment. Since the health indicator used for RUL pre-
diction (AMMGPSIE) itself is already in the [0, 1] interval,
when building the LSTM model, no normalization layer is
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used. The Adam optimizer is applied for optimization [43].
The selection of the hidden layer numbers will be discussed
in detail later.

Select the weight and deviation of the LSTM neural net-
work as the system state: [Wy, Wi, We, Wo, by, bi, be, bo).
Suppose that these eight state variables follow the random
walk mode [15], The state space model is constructed as
follows:

_ Wy, - M Wei1 7]
Wi, Wit
WC’[ WC,Z‘—I
6, = Wo.: _ | Wo,-1
by 1 b1
:i’t bi,t—l
bC’t bC,tfl
L PO L bos-1
i ~ (0.07)
[ wy ] Wy ~ (O, 022)
w2 | e (0.0)
w3 5
R wa ~ (0, 07) 40)
ws Tows ~ (O, 0'52)
e | (0.0)
7
2
| w8 | w1~ (O’ 67)
s ~ (0.59)
X)) =f@.0+4,4~(0,0}) (41

where X (¢) is the estimated value for the particles, f (-) is
the degradation function trained with historical data by the
LSTM model. All the noise terms, including w; to wg and A
are all assumed to obey the gaussian distribution.

According to the HPO-PF-LSTM prediction method, the
prediction value at the next time can be expressed as:

N
R =) olX () (42)
i=1

After extrapolating the prediction result to the fault thresh-
old line using Eq.(41), the RUL prediction result can be calcu-
lated. Each prediction is to use all the known data to establish
the state space model, which can eliminate the cumulative
error of prediction. The flow chart of the prediction process
is shown in Fig. 3.

In order to verify the HPO-PF-LSTM prediction method,
root means square error (RMSE) and fitting effectiveness R?
are used as indicators to evaluate the prediction performance.

The root means square error (RMSE) is defined as follows:

RMSE = (i — 1) (43)

The fitting degree between the predicted results of each
model and the residual life curve of the bearing is evaluated
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FIGURE 3. HPO-PF-LSTM flowchart.

by the correlation coefficient R. The value of R? is between
0 and 1, the larger the value is, the better the model fits the
data. R? is defined as follows:

Zszl (yi - 5}[)2
K i —w)?

where y; is the i-th ground truth, y; is the i-th prediction, y
is the average of the time sequence, and K represents the
number of samples.

In the HPO-PF-LSTM method, the number of hidden lay-
ers in the LSTM network and the particle number of the
particle filter algorithm can both impact the prediction results.
Taking the Bearing 1-1 data from PRONOSTIA in the IEEE
PHM 2012 Data Challenge [33] as an example, since the
selection of hidden layers and particle numbers are indepen-
dent, the impact of different LSTM hidden layers and particle
numbers on the prediction results will be discussed respec-
tively. The data with 850 known samples are selected for
training. First, the impact of different LSTM hidden layers on
the prediction results is explored. Each hidden layer contains
80 hidden units [44], and the number of particles is selected
as 300. The prediction results are evaluated using the above
two prediction results evaluation indicators. The results are
shown in Table 4.

It can be seen from Table 1 that when the number of
LSTM hidden layers is gradually increased to 5, the results
(combining the 2 evaluation indicators) achieved optimal and
won’t get any better even if the number increases. Then, the

RP=1- (44)
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TABLE 4. Effects of different particle numbers on the prediction results.

The number of hidden layers 3 4 5 6 7
RMSE 0.0469 0.0408 0.0203 0.0216 0.0208
R 0.9602 0.9700 0.9817 0.9805 0.9803
TABLE 5. Effects of different LSTM hidden layers on the prediction results.
The number of 100 200 300 400 500 600 700
particles

RMSE 0.0269 0.0218 0.0203 0.0216 0.0208 0.0271 0.0249
R 0.9602 0.9600 0.9712 0.9783 0.9786 0.9786 0.9782

effect of different particle numbers on the prediction results
is explored. The number of LSTM hidden layers is set to
the optimal number 5 as obtained. With a similar process,
R? should be considered first then RMSE to determine the
final selection of particle numbers [45]. 500 is selected as the
optimal number of particles, according to Table 5.

5) BUILDING THE RUL PREDICTION MODEL
The flow chart of the proposed method for predicting the
remaining useful life of the rolling bearing is shown in Fig. 4.

The detailed steps for predicting the RUL of rolling bear-
ings are as follow:

Step 1: Deterioration feature extraction: Obtain the real-
time original vibration signal of the rolling bearing and
calculate the AMMGPSIE of the input original data. The
calculation process of AMMGPSIE is discussed in detail in
Section IIL.A.

Step 2: Deterioration start time determination: Use the
intelligent learning method of early warning threshold based
on beta distribution [46] to judge whether the degradation
starts. If it starts, go to Step 3. Otherwise, continue to
Step 1.

Step 3: Health indicator processing: The HPTF-BL feature
processing method proposed in Section III.B is used to pro-
cess the calculated AMMGPSIE health indicators.

Step 4: Predicting the remaining useful life: The LSTM
neural network is used to train the state space model, the
HPO-PF algorithm updates and iterates the parameters, and
the bearing deterioration curve is predicted recursively by
the algorithm; The obtained curve is compared with the
preset failure threshold to obtain the optimistic estimation
results, reference estimation results and conservative estima-
tion results of the RUL.

IV. CASE VERIFICATION

A. LABORATORY CASE VERIFICATION

1) DATA INTRODUCTION

Bearing 1-1 and bearing 1-3 from PRONOSTIA in the IEEE
PHM 2012 Data Challenge is selected for laboratory data
validation [33]. The PRONOSTIA platform can perform the
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FIGURE 4. Flowchart of the RUL prediction model.

full life cycle operation experiment on the rolling bearing as
shown in Fig. 5. The vibration signal of the rolling bearing
is recorded by the acceleration sensor, which samples once
every 10 seconds, with a sampling frequency of 25600 Hz.
Therefore, each sample contains 2560 data points, i.e., 0.1 s.

2) DATA VALIDATION
First, the original vibration signals in the x-axis direc-
tion of bearing 1-1 and bearing 1-3 are extracted, and the
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TABLE 6. Deterioration information and failure thresholds of bearing 1-1 and bearing 1-3.

The number of the sample that

AMMGPSIE at the beginning

Validation data started to degenerate of deterioration Failure threshold
Bearing 1-1 1140 0.20 0.30
Bearing 1-3 869 0.1876 0.2876
TABLE 7. Deterioration information and failure thresholds of 204-P-203A.
Number of Optimistic Reference Conservative True remainin
Test data known predicted predicted predicted ming RMSE R?
useful life
samples value value value
550 13650 11990 10330 10910 0.0760 0.8944
850 8660 7270 5880 7910 0.0807 0.7747
Baeringl-1
1150 5100 3800 2500 4910 0.0817 0.6183
1450 8960 6330 3770 1910 0.0553 0.8950
300 6990 6440 5880 3620 0.0883 0.8928
400 2420 2180 1940 2620 0.0747 0.9038
Baering1-3
500 1310 1080 840 1620 0.0680 0.9189
600 970 660 350 620 0.0524 0.9204
NIDAQ card Pressure regalator Cylinder Pressuse I Force sensor || Bearing tested | | Accelerometers 0.32
0.30
0.28  [—— AMMGPSIE
Alarm threshold
E 02601 . Failure threshold
£ 024
S 0.22
0.20
0.18
0.16
0.14 1 1 1 1
0 500 1000 1500 2000 2500 2800
Sample No.
(a) Bearing 1-1
FIGURE 5. The schematic of the PRONOSTIA platform. 032 F
030 F
028 " TTTTTTTTTTTIOTTTTITTITTTTT
& 026 L[——AMMGPSIE
AMMGPSIE index is calculated. Because the AMMGPSIE g 0.24 [ __Alam threstold.
index has only a small range of change, with the actual value S 022
being within 0.3, the failure threshold is set as AMMGPSIE 5 g?g
value when increased by 0.1 [24], [34]. The early warning 016
threshold intelligent learning method [46] based on beta dis- 0.14
trlbllthIl. is used to detemn; the det.enoratlon start tlme. of 012} o - T
the bearing, as shown in Fig. 6, with the red dotted line Sample No.

indicating the determined deterioration start time. The deteri-
oration information of bearing 1-1 and bearing 1-3 is shown
in Table 6.

Secondly, the HPTF-BL characteristic index processing
method proposed in Section III.B of this paper is used to
process the sample data after reaching the degradation time
to obtain the upper and lower degradation boundaries and
main degradation trends; Then, when the number of known
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(b) Bearing 1-3

FIGURE 6. Determining the starting time of deterioration.

data samples of bearing 1-1 reaches 550, 850, 1150, and
1450 respectively, and the number of known data samples
of bearing 1-3 reaches 300, 400, 500, and 600 respectively,
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FIGURE 7. Prediction results of bearing 1-1. FIGURE 8. Prediction results of bearings 1-3.
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FIGURE 9. Schematic diagram of refined diesel pump 204-P-203A.
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FIGURE 10. Determining the start time of deterioration.

HPO-PF-LSTM algorithm is used to train the known data to
show the results of iterative prediction of the failure degra-
dation curve. The prediction results are shown in Fig. 7 and
Fig. 8 respectively.

It can be seen from the prediction results that as the number
of known data increases, the trend predicted by the HPO-PF-
LSTM algorithm will become closer to the actual AMMGP-
SIE value, and the RUL (T;) of the rolling bearing in time 7},
can be calculated:

RUL (T,) = (N, — Ny,) x 1 (45)

where N, is the sample number corresponding to the pre-
dicted bearing failure time; Ny, is the sample number cor-
responding to the moment when the prediction started; and
tg is the sampling time, which is 10 s in this case. Finally,
the remaining useful life of the bearing when the known data
reach different sample numbers can be calculated according
to Eq. (45). The results of RMSE and R? between the real
health indicators are shown in Table 7 (unit: seconds):

It can be seen from Fig. 7 and Table 7 that when the
number of known samples of bearing 1-1 reaches 550 and
850, the predicted results delay the actual value by about
1000-2000 seconds. However, with the increasing number
of known samples, as shown in Fig. 7, when the number of
samples reaches 1150 and 1450, as the overall trend of the cal-
culated health indicators fluctuates downward, the prediction
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FIGURE 11. Prediction results of 204-P203A.

results of the HPO-PF-LSTM algorithm will be dynamically
adjusted according to the changes in the health indicator.
Although it gradually deviates from the actual value, it is
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FIGURE 12. Comparison of RUL prediction methods.

quite common in engineering scenarios. With the increase
in the number of known samples, the prediction results will
gradually tend to the actual value.

It can be seen from Fig. 8 and Table 7 that when the number
of known samples of bearing 1-3 reaches 300, the predicted
results delay the actual value by about 2000 seconds. When
the number of known samples reaches 400 and 500, the pre-
diction result gradually approaches the actual value, which is
only 500 seconds away from the real prediction result. When
the number of known samples reaches 600, the difference
between the prediction results and the real results is only
tens of seconds, and the real RUL value is within the range
of optimistic prediction results and conservative prediction
results. The optimistic forecast results, reference forecast
results, and conservative forecast results can jointly provide
decision-making suggestions for predictive maintenance.

B. ENGINEERING CASE VERIFICATION

1) DATA INTRODUCTION

In order to verify the application value of the proposed RUL
prediction model in engineering, a group of bearing vibration
data collected in the actual production process from the fac-
tory is used to verify the practicability of the method. Over
the last 20 years, the author’s research team has remotely
monitored about 3000 pumps from factories, and accumu-
lated about 1500 pump failure cases. In this paper, the refined
diesel pump 204-P-203A is used as the research object, and
the structure of the pump is shown in Fig. 9. The speed of the
diesel pump is 3000r/min, the drive end bearing model is type
6217 deep groove ball bearing, the sampling frequency of the
accelerometer is 25600 Hz, and the sampling interval is one
hour. A total of 311 data files were obtained from the original
acceleration data from 19:00 on May 26, 2021, to 24:00 on
June 3, 2021. Each data file consists of 16384 points.

2) DATA VALIDATION

First, the features of the original vibration signal in the x-axis
are extracted, and the AMMGPSIE indicator is calculated.
The deterioration information is shown in Fig. 10 and Table 8.
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TABLE 8. Remaining useful life conclusions of Bearing1-1 and Bearing1-3.

The number

Validation the sample that th AbMMG.PSIEf Failure
data started to € beginming ot ;o shold
deterioration
degenerate
204-P203A 150 0.3640 0.4640

When the sample number is 150, the deterioration starts,
and the prediction starts from the known sample 96. The
HPTF-BL feature indicator processing method is used to
obtain the upper and lower deterioration boundaries and the
main deterioration trend of the known sample data. When
the values reach 50, 70, 90, and 110, the HPO-PF-LSTM
algorithm is used to train the known data, and the results of the
iterative prediction of the deterioration curve are displayed.
The prediction results are shown in Fig. 11.

According to Eq. (45), the remaining useful life of the bear-
ing when the known data reach different sample numbers is
calculated, and the RMSE and R? between the predicted main
trend curve and the actual health indicator are calculated. The
specific results are shown in Table 9. (Unit: hour):

The real site conditions are complex and changeable, and
most of the data obtained may be the same as the case
data shown in this paper. It can be seen from Fig. 11 and
Table 9 that when the sample size of known data reaches
50, 70, 90, and 110 respectively, the optimistic prediction
results, reference prediction results, and conservation predic-
tion results can be predicted. These prediction results can
jointly provide decision-making suggestions for predictive
maintenance.

V. COMPARATIVE ANALYSIS

To further verify the superiority of the remaining life pre-
diction method proposed in this paper, three life prediction
methods proposed in recent years are selected for comparison
and analysis on the bearingl-1 dataset. These three methods
are respectively the bearing RUL prediction method proposed
by Ahmad et al. [47]; Wang et al. [48] proposed prediction
method combining RVM and index model; Wang et al. [49]
proposed prediction method of the improved exponential
model. The Bearingl-1 data used for verification above is
used for comparison. To ensure fairness, all of the HI uses
the AMMGPSIE index proposed in this paper. By calculating
the predicted remaining service life, the results can be seen in
Fig. 12.

The cumulative Relative Accuracy (CRA) and Conver-
gence [50] are used to measure the prediction accuracy of
the model. CRA summarizes the relative accuracy of the
prediction results at all times, comprehensively evaluates the
accuracy of the prediction methods, quantifies the size of
the cumulative error, and intuitively reflects the comparison
results of various methods. The closer the CRA is to 1, the
smaller the cumulative error and the better the prediction
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TABLE 9. Remaining useful life conclusions of engineering case data.

Number of Optimistic Reference Conservative True remainin
Test data known predicted predicted predicted ming RMSE R?
useful life
samples value value value
30 156 150 144 310 0.1771 0.7586
50 352 308 264 270 0.0841 0.9094
P203A
70 482 414 352 230 0.0721 0.9128
90 106 76 48 190 0.0589 0.9189

TABLE 10. Performance evaluation for all 4 prediction methods using the
2 metrics.

Method Test data CRA C
Ahmad et al.[47] Bearing1-1 0.8723 18.6952
Wang et al.[48] Bearingl-1 0.9047 15.6174
Wang et al.[49] Bearingl-1 0.8820 16.1184
Proposed method Bearingl-1 0.9274 14.9496

result. The expression is as follows:

N
CRA = anRA (T,) (46)
n=1
|ActRUL (T,)) — RUL (T},)|

RA(Tw) = 1= ActRUL (T,) “47)

where w, is the weight calculated through w, = n/ ZQ’ZI n.
ActRUL (T,) is the actual RUL of the rolling bearing in 7,.
The predicted RUL (T},) is calculated from Eq. (45).

The convergence degree can calculate the speed at which
the predicted RUL converges to the true RUL. The expression

is as follows:
C=(C: =T+ C} (48)

where (Cy,Cy) represents the center of mass of the area under
the prediction error curve, 77 is the time to start forecasting.
The comparison results are shown in Table 10:

The comparison results show that the HPO-PF-LSTM pre-
diction method proposed in this paper is superior to all other
methods in terms of CRA and convergence, with higher
prediction accuracy and smaller cumulative error, therefore
having practical engineering application value.

VI. CONCLUSION
Considering the demand for rolling bearing RUL prediction
for rolling bearings, this paper proposes a prediction model
with a novel entropy-based health indicator and improved
particle filter algorithm. The experimental results and com-
parative analysis show that:

(1) A new method for predicting the remaining useful life
of rolling bearings is proposed. It consists of three steps:
extracting a new type of health indicator, depicting the upper

VOLUME 11, 2023

and lower boundaries of health indicators, and predicting the
RUL. This method can predict the current remaining useful
life of rolling bearings based on historical time-series data
to meet the requirements for health management in practical
engineering applications.

(2) By using the prediction model proposed in this paper,
the optimistic, reference and conservative estimation results
of RUL with very high precision can be obtained, the results
can help with selecting the best maintenance time in enter-
prises and factories.

(3) Compared with the three latest prediction methods,
the proposed method has higher prediction accuracy. The
validation results also show that the method is more robust
with more known data and is more suitable for complex
engineering scenarios.

In the next step, after obtaining more actual industrial case
data, the author will continue to use, improve and verify the
proposed method.
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