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ABSTRACT The negative influence of developmental dyslexia on academic performance is a
well-documented and researched topic. Although the research focused on developmental dyslexia detection
and evaluation is plentiful, the study designs vary to a great degree, making the exchange of obtained
knowledge often difficult. This paper focuses on bridging the gap between different study designs by
developing a machine learning based pipeline that was evaluated on two completely different eye-tracking
datasets (training on one, testing on the other, and vice versa). One dataset included 30 subjects who read
text written in Serbian on different color configurations and were tracked with a remote eye-tracker. The
second dataset included 185 subjects who read text written in Swedish and recorded eye-tracking data using
a goggle-based system. The data from both datasets were converted to grayscale images, using various time
window configurations to parse the signals, and to plot the data in a 2D plane. The train images were used to
train an Autoencoder neural network, and the images’ reconstruction error was used to create features that
describe each instance of both the training and test sets. The train feature set was used to train variousmachine
learning algorithms, which were then evaluated on the testing feature dataset. A classification accuracy of
85.6% was obtained when testing on Serbian readers’ data and 82.9% when testing on Swedish readers.
The proposed pipeline was shown to be transferable between the datasets, despite many differences in the
experiment design, showing potential in combining various eye-tracking dyslexia studies.

INDEX TERMS Autoencoder, classification, dyslexia, eye-tracking, machine learning, neural network.

I. INTRODUCTION
The influence that dyslexia can have on a child’s academic
performance was shown to be significant, often leading to
low self-esteem [1], [2], [3]. Early treatment of dyslexia can
greatly improve future academic performance and quality of
life, making early diagnosis an important aspect in the field
of dyslexia research [4], [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

Dyslexia diagnosis is conventionally performed using stan-
dardized tests, but considering that there are no firm agree-
ments on the diagnosis procedure, introducing quantifiable
and objective measures is of utmost importance [6]. A num-
ber of studies have used various experimental setups and
biomedical features to objectify and quantify dyslexic ten-
dencies. Some studies focus on measuring brain activities
during reading, relying on functional magnetic resonance
imaging [7], [8], [9], diffusion tensor imaging [8], [10] or
electroencephalography (EEG) [11], [12], [13] to quantify
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the differences between the dyslexic and non-dyslexic ten-
dencies.

Aside from the cognitive load analysis, tracking of the
visual sampling strategy, i.e. eye movements, is also often
performed in dyslexia studies. Prado et al. reported one of
the earliest eye-tracking dyslexia studies [14], but Rello et al.
have reported being the first paper to perform dyslexia clas-
sification based on eye-tracking features [15]. They included
98 subjects in the study and used a support vector machine
(SVM) to differentiate dyslexic and control subjects based
on eye event features and participant characteristics. Multiple
studies have taken a similar route, observing eye-tracking fea-
tures and implementing machine learning (ML) algorithms
to detect dyslexic tendencies [16], [17], [18], [19], [20],
[21], [22]. The reading languages observed in these papers
included Swedish, Spanish, Greek, Finnish, and French, all
including eye-tracking measures and achieving various clas-
sification accuracies ranging from 80% to 96.6%. Some
dyslexia studies use remote eye-tracking devices [20], [21],
while others use wearable eye-trackers [16], [22]. Although
quite different in experimental setups, these papers all prove
that eye-tracking during reading can be successfully used
for dyslexia detection. The research found in the literature
also combines eye-tracking with other measurements, such
as EEG, heart rate, and galvanic skin response (GSR) [23],
[24] only EEG [25], and features acquired from behavioral
measures [26].

Although features derived from biometric signals do
show promising results, research involving a more holis-
tic approach, utilizing biometric signals rather than fea-
tures, is also present in dyslexia detection research. In [27],
the authors analyze the dataset given in [16] and use
one-dimensional convolutional neural networks (CNN) to
detect dyslexics’ eye movements. The authors observe the
sequences of x and y gaze coordinates through time, imple-
ment several augmentation strategies and train a CNN to
classify the signals. They obtain an accuracy of 96.6% and
show that neural networks can indeed recognize dyslexic
tendencies when presented with the entire eye-tracking
signal.

Multiple different aspects of dyslexia research can be
found in the literature, and the authors of this paper partic-
ipated in several studies of dyslexia, following the trends in
modern research. An initial study regarding the analysis of
multimodal signals, including EEG, GSR, and eye-tracking
measurements, was performed [24]. The study was done on
native Serbian-speaking children and included an analysis of
the influence of different background and overlay color con-
figurations on dyslexic and non-dyslexic school-age children.
The EEG, GSR, heart rate and eye-tracking measurements
were used to extract features describing the cognitive load,
emotional response, and visual sampling of the readers from
both groups.

An in-depth analysis of the gathered eye-tracking data was
performed in a later study and included an introduction of
new eye-tracking features [28]. The novel features, focusing

on the spatial characteristics of fixations, were compared
to the conventional eye-tracking features and have shown
superior results in dyslexia classification. The evaluation was
performed by using the features as inputs to various ML
algorithms and using leave-one-out subject cross-validation.
The best accuracy that could be obtained using conventional
features was 85%, while a single newly introduced feature
could provide an accuracy of 91%. The motivation behind
these novel features was that the dyslexic group had more
chaotic eye movements when fixating on a word in compar-
ison to the control group. This could be observed in the x-y
coordinate plane (the plane of the text display) as a scribble-
like pattern, and the novel features quantified this using the
number of self-intersections of gaze lines, as well as the
estimation of the fractal dimension.

Adopting a more holistic approach, the spatial characteris-
tics of the gaze have also inspired an image representation
of eye-tracking data in another study [29]. By observing
the same dataset, but using almost no signal processing, the
gathered eye-tracking data was plotted in the x-y coordinate
plane, color-coded, and converted to images. These images
were then used to train and evaluate a deep two-dimensional
CNN. The goal of the study was to use the same aspect of
dyslexic tendencies as in [28] but to rely on the powerful
pattern recognition capabilities of the CNN and an image
representation of eye-tracking data.

Image processing represents a field with a wide range
of applications and challenges, and exceptional results can
be obtained using convolutional deep learning algorithms.
From improving medical image quality, medical image seg-
mentation, detecting surface defects, and providing super-
resolution of photo-realistic images, these algorithms have
been shown to have the immense potential [30]. One par-
ticular CNN architecture type that has stood out as partic-
ularly interesting to the authors of this paper was the CNN
autoencoder (AE). This architecture consists of the encoder
and decoder parts, which aim to transform the input to a com-
pressed feature space and then reconstruct the original input
from that compressed format. AEs have multiple applica-
tions, including classification [31], image fusion [32], image
enhancement [33], noise reduction [34], and many more. One
particular application of AEs that is of interest in this paper is
anomaly detection [35]. AEs detect anomalies in data because
they tend to reconstruct ‘‘typical’’ or more common data from
the dataset better than the data that has a more complex or
different pattern. This was used as a tool to create a pipeline
introduced in this paper that could bridge the gap between
different experimental scenarios for dyslexia eye-tracking
studies. The focal point of the implemented pipeline is the
fact that the spatial characteristics of gaze are more complex
and specific for dyslexic readers, which could enable them
to be distinguished from the reading patterns of controls
by an AE.

Based on the spatial complexity principle in the
method published in the author’s previous study [28],
this paper focuses on making the quantification of spatial
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FIGURE 1. Examples of eye-movements displayed in the x-y (screen or paper) coordinate plane, for both DS1 (left column) and DS2 (right column).
The top row displays the eye movements of dyslexic subjects, and the bottom row displays the eye movements of control subjects.

complexity more universal. The eye movements do not have
to be segmented into fixations and saccades in order to
apply the algorithm presented in this paper. The detection
of fixations and saccades could be done in a multitude of
ways which could be inconsistent across various experiments,
which is why this paper proposes a method that relies only
on the raw eye-tracking data. The pipeline for dyslexia
detection suggested in this paper consists of standard pro-
cessing and ML algorithms for the classification of dyslexic
vs. control subjects, trained on data from one eye-tracking
experiment, and successfully used on data from a completely
different eye-tracking experiment (different regarding lan-
guage and language orthography, type of used eye-tracker
device, screen vs. paper text presentation, and amount of
text displayed in the experiment). The suggested pipeline
used an image representation of data and a CNN AE to
quantify the spatial complexity of gaze and was shown to
be universally applicable to two completely different sets
of data.

II. METHOD
A. DATASETS
The research performed in this paper uses two different eye-
tracking datasets gathered during reading. The first dataset
(DS1) was acquired in [24], and the second dataset (DS2) was
acquired in [16].

DS1 contains data gathered from 30 subjects (15 dyslexic
and 15 control) with ages ranging from 7 to 13; 19 female
and 11 male. The age distribution of subjects was the same

for the dyslexic and control group. The participants were
seated in front of a computer monitor and keyboard, with
their heads positioned on a chin rest. Each participant read
(quiet reading) 13 text segments during the experiment. The
segments (2-3 sentences) were extracted from the elementary
school story called ‘‘Saint Sava and the villager without
happiness.’’ Each segment was displayed on a different color
configuration (colored background or overlay), with the first
segment always being black text on a white background
and the other segments having a pseudorandom order of
background/overlay color configurations. In further text, the
reading of each text segment for one subject will be called
‘‘a trial.’’ Even though 30 subjects were included in the
initial study, each with 13 trials, the trials with insufficient
focus on the displayed text (reading time less than 5 s) were
excluded, resulting in a total of 378 trials included in this
study. The subjects were monitored with a multimodal sensor
hub [36], but for this study, only the eye-tracking data was
used. An SMI RED-m 120 Hz portable remote eye-tracker
(iMotions, Copenhagen, Denmark) was used to monitor eye
movements (spatial resolution of 6 minutes of arc), and the
data were acquired at 60 Hz.

DS2 contains data gathered from 185 (88 controls,
97 dyslexics) subjects, ages ranging from 9 to 10; 145 male
and 40 female subjects. A goggle-based infrared corneal
reflection system, Ober-2TM (Formerly Permobil Meditech,
Inc., Woburn, MA), was used to track eye movements (spatial
resolution of 5 minutes of arc), and the dataset that was
available online had a sample rate of 50 Hz. During each
trial, the subject was equipped with a pair of lightweight,
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individually adjustable, head-mounted goggles. A chin and
forehead rest was deployed to minimize head movements
and stabilize the viewing distance at 45 cm. Calibration was
performed manually prior to each recording by setting the
signal gain of each axis separately for each eye. All subjects
read the same text presented on a single page of white paper
with high contrast, with the text consisting of 10 sentences.

The eye-tracking data of each trial from both datasets were
clipped to remove the beginning and the end that contain
no true reading eye movements. An example of the gaze
displayed in the x-y (screen or paper) coordinate plane from
both subject groups and both datasets is given in Fig. 1(two
rows of text were extracted for illustration purposes).

The clipping of the trials was done by visual inspection
by two experts and excluded only the parts of the trials that
clearly did not involve any reading activity. In total, this
resulted in 378 clipped trials (193 controls, 185 dyslexics)
from DS1 and 181 (88 controls, 93 dyslexics) clipped trials
from DS2 (4 trials were excluded because neither the begin-
ning nor end of the reading process could be observed in the
data).

B. PROCESSING PIPELINE
The processing pipeline in this paper was designed to focus
on the spatial complexity of gaze and to be as robust as
possible. The initial step in the development of the pipeline
was observing the data from the two available datasets and
seeing if similar patterns emerged.

As shown in the examples given in Fig. 1, data from both
datasets indicate that eye movements do have a more chaotic
pattern in dyslexic subjects in comparison to the control ones.
It was necessary to observe the trials not as a whole but as a
series of smaller segments to ensure that the processing algo-
rithm could pick up on the same chaotic spatial tendencies in
both datasets.

The entire process of developing and training an algorithm
for the detection of dyslexia on one dataset is given in Fig. 2.
Step number ¬ is the extraction of the x and y coordinates
over time from the trial data. This step implies the removal
of blinks/missing data and the averaging of gaze coordinates
from both eyes. Step number represents the division of each
trial into many smaller segments and plotting them in the x-
y plane. This step ensures that the complexity of the gaze is
observed locally in the spatial domain. The data was parsed
into segments using time windows (TW), and four differ-
ent configurations were applied independently. The observed
TW sizes were 0.5 s and 1 s, and the TW strides were 0.2 s
and 0.5 s. All four combinations of these parameters were
utilized to investigate whether a longer or shorter TW with
more or less overlap would provide an adequate division of
the trial into smaller segments. Taking into consideration that
the reading duration varies, there will be a different number
of images for each trial, which will be accounted for in the
later processing steps.

Once the data is divided into time segments and plotted
in the x-y coordinate plane, it is converted into grayscale

FIGURE 2. Processing pipeline of the algorithm for dyslexia detection.

images. The lines were plotted in black, with an opacity of
0.2 so that overlapping of lines could be observed. The images
were resized into a 64 × 64 matrix, with the pixel values
ranging from 0 to 255. The images were inverted, and the
pixel values were normalized (divided by 255) so that the
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background is black and the lines are a lighter shade of gray
to facilitate easier numerical computation for the CNN AE.

The training of the CNN AE (step ®) was done on the
resized and inverted images using a batch size of 64, the
binary cross-entropy loss function, and the Adam optimizer.
The binary cross-entropy loss was selected in spite of having
a continuous range of pixel values to enable a way of label
smoothing and to enable highlighting of the points where the
lines intersect [37]. The same images were given to the input
and the output of CNN AE, and the network was trained
to reconstruct them. The training set was divided into 80%
for true training and 20% for validation (for early stopping).
The maximal number of epochs was set to 50.000 so that the
training was always stopped by early stopping based on the
loss on the validation set (with patience 20). The activation
function for all layers was ReLu, except for the output layer
which had the sigmoid activation function. The architecture
of the CNN AE is given in Fig. 3.

FIGURE 3. Convolutional Autoencoder (CNN AE) architecture.

Two scenarios for data selection were implemented for the
training, one where only the control subjects’ images were
used for AE training and the other where all available data
from one dataset was used to train the AE. The method that
would be more conventional for AE training would be to use
only the control images. However, considering the nature of
the data, the fact that dyslexic readers do not struggle with
reading at every single point in time but rather at certain
intervals motivated the authors to try both scenarios in order
to compare the results.

After the training of the AE, each trial can be represented
by the reconstructions of the images created by plotting
the x-y coordinates (step ¯). These reconstructions were
overall more similar to the original image for more sim-
ple patterns and less similar for more complex or specific
patterns. An error metric calculated as the binary cross-
entropy loss function between the original image and the
reconstruction was used, describing each reconstruction with
a single error value. Lower error values indicate a better
reconstruction corresponding to a simple (more frequently
occurred) gaze pattern, and the higher error values indi-
cate a reconstruction that was not as successful, corre-
sponding to more complex (less frequently occurred) gaze
patterns.

With each image reconstruction described by the value
of its error metric, the array of error metrics of a single
trial is sorted, and 5 features were extracted by observing
the differences between the 5 largest and 5 lowest values –
step ° of the pipeline, illustrated in Fig. 4. This results in
each trial being represented by 5 features, with the features
representing the ranges between the best and worst recon-
structions of the trial. Dyslexic readers tend to have a less con-
sistent gaze pattern and at times more complex gaze patterns,
so the 5 features describing the range of gaze complexity are
expected to have higher values for dyslexic subjects than the
controls.

Each trial, represented by 5 features, is labeled according
to its group (dyslexic or control), and the dataset of features
and labels is used to train various ML algorithms. The algo-
rithms considered were: logistic regression (LR), k-nearest
neighbors (KNN), SVM, random forest (RF), and ada boost
(AB). For each of the algorithms, a grid search for the best
hyperparameter configuration was performed, using 5-fold
cross-validation on the whole feature dataset. After the best
hyperparameter was selected for each of the algorithms, they
were trained on the entire feature dataset. This concludes step
± and results in 5 trained classifiers.

The entire training process of the algorithms, consisting of
the 6 mentioned steps, is developed on a single dataset and
evaluated on the other one.When the evaluation is performed,
the standard processing steps (¬, , and °) are performed
the same way as they are during training. The AE is used to
reconstruct the obtained input images of the dataset used for
testing, but it is trained only on the training dataset. The same
stands for the classification, trained classifiers are used on
the testing dataset, but they are not trained on it. In this way,
the entire pipeline is effectively developed on one dataset and
evaluated on the other. Both DS1 and DS2 were used for
training and testing, showing that the algorithm is useful and
stable for both directions: training on DS1 and evaluation on
DS2 and training on DS2 and evaluating on DS1.

The finalmetrics used for the evaluation of the trial classifi-
cation were: Sensitivity (Se), Specificity (Sp), area under the
receiver operating characteristic curve (AUROC), F1 score,
and accuracy (ACC) [38].
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FIGURE 4. Feature extraction based on the image reconstruction errors, presented for a control and dyslexic subject.

FIGURE 5. Extracted features for one evaluation scenario, displayed for the control and dyslexic group subject
groups from DS1 and DS2.
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TABLE 1. Evaluation results on DS2 (training on DS1).

All processing, ML algorithm implementation, and visu-
alization of the data were done in the Python program-
ming language, using the sklearn, tensorflow and matplotlib
libraries [39], [40], [41], [42].

III. RESULTS AND DISCUSSION
The classification results are based heavily on the quality
of the features that are given as inputs. To illustrate the
features derived in the proposed algorithm, a single evalu-
ation scenario was chosen (training on DS2, evaluation on
DS1, TW size 0.5, TW stride 0.2, no dyslexic data in AE
training), and the extracted features were displayed for both
datasets for the two classes in Fig. 5. A clear separability
between the classes can be seen, indicating that each feature
individually does separate the classes effectively. A statistical
analysis using the Mann-Whitney statistical test between the
dyslexic and control groups was done, p < 0.001 (for each
feature and evaluation scenario). The analysis was done on
DS1 and DS2 separately. This, however, does not make the
features redundant, as more features do provide a more stable
prediction for each individual since the feature extraction
process is sensitive to outliers.

Considering a large number of combinations of ML
algorithms, TW configurations, AE training scenarios, and
metrics, a simplified version of the results will be ini-
tially presented, giving only the ACC and F1-score of the
best-performing ML algorithm for a given evaluation sce-
nario. In Table 1, the results of the evaluation on the
DS2 (training on DS1) are presented, and in Table 2 the
results of the evaluation on DS1 (training on DS2) are
presented.

The results achieved on the DS2 evaluation show an overall
consistent ACC and F1 score achieved in all observed cases,
and in most of them, LR was shown to be the superior
algorithm. The best-obtained ACC and F1-score are 82.9%
and 81.7%, respectively. As for the results achieved on the
DS1 evaluation, they seem to be influenced by the evaluation
scenario more than the DS2 evaluation. The best-achieved
ACC is, however, slightly higher, equaling 85.6%. The F1
score for the best ACC is 84.9%, but the best overall F1 score
is 85.2% and is obtained for a slightly lower ACC of 85.3%.

All the observed metrics are displayed for all ML algo-
rithms for the best DS2 results and best DS1 results in
Fig. 6 and Fig. 7, respectively.

TABLE 2. Evaluation results on DS1 (training on DS2).

FIGURE 6. Overview of classification metrics for the best obtained results
on DS2 in terms of TW and AE training scenarios, for all observed ML
algorithms.

The results shown in Fig. 6 and Fig. 7. show different
aspects of the DS2 and DS1 evaluations. Although the best-
performingML results were quite consistent for theDS2 eval-
uation in terms of different scenarios regarding the TW con-
figuration and inclusivity of dyslexic subjects in AE training,
there is quite a bit of variability in the performance between
different ML algorithms. The best-performing algorithms are
clearly LR and SVC, showing no difference in the ACC on the
second decimal and having the best results in other metrics,
with the SVC even having a higher specificity.

The other algorithms, although still providing better-than-
random predictions, do not seem to perform quite as well.
On the other hand, the results between variousML algorithms
seem to be much more consistent on the DS1 evaluation. The
variations between the algorithm results are much smaller
than in the DS1 evaluation, despite the DS1 evaluation being
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FIGURE 7. Overview of classification metrics for the best obtained results
on DS1 in terms of TW and AE training scenarios, for all observed ML
algorithms.

more sensitive to the TW configuration and dyslexic sub-
ject data inclusivity in AE training. This shows that various
datasets might be influenced by different aspects of process-
ing andML algorithm selection, which could be dependent on
a number of factors, such as the experiment protocol, number
of participants, sensitivity of measuring instrument, etc.

The classification ACC found in the literature varies, rang-
ing from 80% to 96.6% [15], [16], [17], [18], [19], [20],
[21], [22], [28], [29], with the highest being 94% on DS1
[28] and 96.6% on DS2 [27], making the classification results
obtained in this paper comparable to the ones in the literature,
but not the highest. Having this in mind, all of the men-
tioned studies that focus on the detection of dyslexia using
eye-tracking use only a single dataset, with all participants
having the same native language, the same experimental pro-
tocol, instruments, and data structure. This study, however,
aims to combine data from multiple studies that differ in
many aspects. Focusing on the spatial characteristics of gaze,
the goal of this study was not to present a state-of-the-art
accuracy in dyslexia detection but to present an algorithm that
could universally be applied to data from different studies.
An algorithm that can be trained on one dataset and used
on another has not yet been done in dyslexia eye-tracking
research. In the presented research, one dataset [24] contains
Serbian native readers, a remote eye-tracker, and a screen
presentation of text on different color configurations, while

the other [16] contains Swedish native readers, a wearable eye
tracker, and a presentation of text on a white piece of paper.
Furthermore, the number of subjects (30 in DS1 vs. 181 in
DS2) and the number of trials (378 in DS1 vs. 181 in DS2) in
the two observed datasets are different as well. The amount
of text displayed in the experiments is also different, with
the Serbian dataset having two or three sentences while the
Swedish dataset has 10 sentences. By observing the spatial
characteristics, experiments with different amounts of text
could be combined, as the temporal aspect of the data is
not used in the proposed algorithm. Despite the differences,
the processing pipeline trained on one dataset and evaluated
on the other (and vice-versa) gives accuracies comparable
to the ones in the literature. Different native languages of
the readers can influence eye-tracking characteristics, as not
all languages have the same depth of orthography. Still, the
events that show the readers struggling with reading certain
words were shown to be similar in nature for both Serbian
and Swedish dyslexic readers. This indicates that dyslexic
tendencies do have similar manifestations across different
languages, at least in terms of the spatial characteristics of
gaze. This shows that with an adequate combination of ML
and traditional processing, it is possible to cross the lan-
guage barrier and enable dyslexia detection across multiple
languages and study designs.

IV. CONCLUSION
A novel method for dyslexia detection was presented in the
paper. The method focuses on quantifying the spatial com-
plexity of gaze segments by plotting them in the plane of the
text and representing them as grayscale images. The images
were used to train an AE, and the complexity of the gaze
displayed in each image is quantified as the reconstruction
error of the image. The ranges of reconstruction errors were
extracted from each reading trial and used as input features for
various ML algorithms. The method was evaluated using two
datasets, training the models on one dataset and evaluating
them on the other. The best-achieved accuracies were 85.6%
when evaluated on DS1 and 82.9% when evaluated on DS2.

The developed method does not depend on the parsing of
gaze data (into fixations and saccades) and does not rely on
any temporal aspects. It was also evaluated on two datasets
with completely different experimental protocols, subject
pools, and gaze-tracking instruments. The obtained results,
comparable to ones found in the literature, show that the
method is robust and can successfully be used to cross many
boundaries between different dyslexia studies. Future work
would include an analysis with more datasets, implemen-
tation of various types of AE, and the investigation of the
methods’ sensitivity to a lower spatial resolution of the used
eye-tracking data.
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