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ABSTRACT Cancer Research has advanced during the past few years. Using high throughput technology
and advances in artificial intelligence, it is now possible to improve cancer diagnosis and targeted therapy,
by integrating the investigation and analysis of clinical and omics profiles. The high dimensionality and
class imbalance of the majority of available data sets represent a serious challenge to the development
of computational methods and tools for cancer diagnosis and biomarker discovery. Taking into account
multi-omics data further complicates the undertaking. In this paper, we describe a five-step integrative
architecture for dealing with the three aforementioned problems by incorporating proteomics data, protein-
protein interaction networks, and signaling pathways in order to identify protein biomarkers with a direct
association to cancerous patients’ overall survival (OS) and progression free interval (PFI). The core parts of
this architecture are a cluster based grey wolf optimization algorithm (CB-GWO) for feature selection and
a deep stacked canonical correlation autoencoder (DSCC-AE) for clinical endpoint prediction. A thorough
experimental study was carried out to evaluate the performance of the proposed optimization algorithm for
feature selection, as well as the performance of the deep learning model in terms of Mathew coefficient
correlation (MCC) and Area under the curve (AUC) on breast, lung, colon, and rectum cancers. The results
were compared to other methods in the literature. The results are very promising and show the effectiveness
of the proposed framework and its ability to outperform the other algorithms and models in terms of AUC
(0.91) andMCC (0.64). In addition, hubmarker genes with the potential occurence of alterations in colorectal
cancer, breast cancer, and lung cancer have been identified.

INDEX TERMS Biomarker discovery, Integrative omics, cancer classification, deep canonical correlation
analysis, enrichment analysis, feature selection, grey wolf optimization, machine learning.

I. INTRODUCTION
Over the past few years, the precision of cancer diagnosis
has increased. High throughput sequencing and screening
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technologies and artificial intelligence have been of great
assistance in enhancing and improving the protocols used
for diagnosis, prognosis, and treatment; consequently, the
medical community is gradually migrating towards precision
medicine by means of integrative exploration and analysis
of clinical and omics profiles [1], [2]. Despite the success
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of precision oncology, the variation of cancer symptoms and
the unplanned and unpredictable events recorded along the
constant evolution of the tumor make cancer patient diagno-
sis and monitoring more difficult [3]. In addition, the data
scalability of genomics profiles requires consistent in-silico
methods to define an accurate set of biomarkers that can
be used as diagnostic and prognostic biomarkers and aid in
the medical decision making [4], in addition to mining the
selected genes biomarkers for variants that can be effective
therapeutic targets for each individual.

In the past few years, biomarker-discovery has gained a
lot of attention as an emerging research field due to the
advances of next generation sequencing technologies and
novel high throughput technologies [5], [6], with the aim to
provide cost-effective, time-effective, and better performance
at different omics data levels (genomics, transcriptomics,
proteomics, metabolomics, etc.). In the early years of the
previous decade, precision medicine and bioinformatics data
mining researches were primarily based on the genomics and
transcriptomics profile single level omics data analysis [7],
and the first in-silico biomarker tools were developed primar-
ily for mining gene expression to identify the most relevant
genes responsible for cancer-driving mutation [8], [9]. The
biggest obstacle computational tools face when analyzing
mRNA expression data is the curse of dimensionality in
gene expression data sets, which are characterized by a large
number of irrelevant features and small patient samples [10].

In recent years, the scientific community has begun to
integrate proteomics data into oncology-related in-silico
biomarker discovery and cancer classification in order to
overcome the curse of mRNA expression data [11], [12],
[13] since it is known that multicellular organisms share the
same set of genes, even if the set of generated proteins varies
between organisms, the set of produced proteins studied
under specific conditions implies knowledge of the specifi-
cally synthesized proteins in the disease state. This has led to
the development of proteomics next-generation sequencing,
specifically Reverse Phase ProteinArrays (RPPA). TheRPPA
technology is thought to address the two major challenges in
mRNAseq data by profiling the output (functional protein)
of cancer-coding genes, which can reflect and capture the
tumor state, as well as how to follow a pathologically effective
therapy [14]. Furthermore, the RPPA technology operates
with greater precision on a smaller set of proteins, limiting
the protein expression matrix’s scalability, while, we usually
need to process hundreds to thousands of profiles per patient.
Thereupon, we propose in this paper to start the process
of identifying biomarkers at the proteome level, where we
select the most relevant proteins and determine their coding
genes. These initiatives will ensure that we only concentrate
on mRNA instances that have been fully transcribed into
mature proteins with potential biological processes. However,
as stated in [15], one disadvantage of RPPA technologies is
that some of the profiled proteins may be novel and unref-
erenced in databases, implying that they have no clinically
meaningful application.

Therefore, signaling pathways and interaction networks
are two types of data that can be used to identify highly
clinically relevant cancer biomarkers in order to address
this issue. The former describes the set of functional pro-
teins and, by extension, the driver coding genes that have
a potential approved biological positive or negative impact
on essential biological processes, such as apoptosis, cell
cycle, or cell death [16]. The latter is the omics-omics
interaction network, which captures the correlation between
the studied omics instances (protein-protein) based on their
co-expression, physical interaction, or inference of biological
process. When integrated with omics data expression, these
two types of biological knowledge data bases can improve
the biomarker discovery process by assisting in the identi-
fication of instances with a hub biological interaction and
potential clinical impact, as well as by enhancing the fea-
tures learning and clinical endpoints prediction in predictive
tools. [17], [18].

In this paper, we describe a five-step integrative frame-
work based on machine learning and grey wolf optimization
algorithm, that incorporates proteomics data, protein-protein
interaction networks, and signaling pathways in order to iden-
tify protein biomarkers with a direct association to cancerous
patients’ overall survival (OS) and progression free interval
(PFI). The key contributions introduced in this paper are
summarized as follows:
• Handling the high dimensionality of gene expression
data using a a bioinspired optimization algorithm for
feature selection to identify proteomic biomarkers (the
gene’ product) based on RPPA data sets instead of
mRNA data, protein-protein interaction (PPI) network
and signalling pathways.

• Identifying genes, and miRNA biomarkers based on
the selected proteomic biomarkers and the analysis of
mRNA-gene target network.

• Proposing a deep learning based integrative model that
integrates the selected biomarkers in predicting cancer
clinical endpoints.

• Conducting an intensive in-silico study to identify the
most relevant omic biomarkers associated with OS and
PFI, as well as a list of relevant variants that may be a
potential research target for clinical application.

The remainder of the paper is structured in the following
manner: Section II, presents a review of the recent related
works. Section III, describes the used methods and tools and
explains the proposed integrative architecture. Section IV,
presents the experimental study and a detailed results’ dis-
cussion. A functional and enrichment analysis of the selected
genetic biomarkers is detailed in section V. A brief discussion
on the association of the selected miRNAs with colorectal
cancer is presented in section VI. Section VII concludes with
a summary of the key findings and plans for future research.

II. RELATED WORKS
In recent decades, many artificially assisted systems for
cancer diagnosis have been thoroughly investigated, either

VOLUME 11, 2023 2675



I. Zenbout et al.: Omic Bioinspired Features Selection in Cancer Classification

through medical imaging analysis [19] or omic data anal-
ysis [5], [9], [20]. Although the incredible advancements
brought about by AI in clinical applications cannot be
understated, another need that must be met to improve
genetic diagnosis, prognosis, and drug development is to
provide models that assist biologists, clinicians, and the
pharmaceutical industry in selecting molecular biomarkers
with potential diagnosis, prognosis, and therapeutic targets.
Therefore, besides integrative omics, one of the most hotly
debated topics in the bioinformatics community is the
in-silico molecular biomarker discovery which represents the
process of feature selection. Many studies have been con-
ducted in order to identify biomarkers with potential clinical
applications [13]. Several studies have also been established
to integrate omics data in order to train intelligent models
to predict clinical outcomes and aid in the improvement of
cancer-related medical decisions [21]. Among feature selec-
tion models, bioinspired-based models, population based
models, and iterative models have gained a lot of attention
because their output can be easily biologically interpreted,
whereas, for omics integration, machine learning and deep
learning are thought to be the best tool for dealing with the
particularity and the complexity of omics data by learning a
set of features representations from multiple views with dif-
ferent information and to use these learned features to train an
intelligent tool for data driven medical decision making [20].

Discussing here some of the recent works, we notice that
a wide range of the introduced feature selection models
in cancer classification and clinical outcomes prediction,
have been used on the mRNA gene expression data. Hybrid
bioinspired models based algorithm have been introduced
to select a subset of relevant genes with cancer prediction
performance relevancy, like the work of Coleto-Alcudia and
Vegas-Rodrigues [22], that presents a hybridization between
teaching models and artificial bee colony (ABC), by first
shrinking the space scalability using the ranking method and
then ABC selects the most relevant gene subset. Similarly,
M.Sobhanzadet et al. [23] proposed a genetic and world com-
petitive contest (WCC) algorithm, where genetic algorithm
is used to limit the number of genes while WCC is then
used to select the best genes. Another hybrid metaheuris-
tics for feature selection has been introduced in the work
of Shukla et al. [24] based on teaching-learning algorithm
(TLA) and gravitational search algorithm (GSA), where the
authors used minimum redundancy maximum relevance to
keep only genes with high relevance, then a GSA has been
incorporated in the teaching phase to select the most rele-
vant genes. Because of the aforementioned gene expression
problem and the large number of noisy and irrelevant data in
negative and neutral features, the authors used a two-step fea-
tures selection model to select the top relevant genes. Another
interesting graph theory based feature selection method has
been recently introduced by Azadifar et al. [25], where the
authors construct a gene-gene similarity based network, then
the graph undergo a set of iterations where at each iteration a
maximum clique is used to identify the optimal genes subset.

As previously stated, RPPA and proteomic data are increas-
ingly becoming a target for molecular biomarker discovery
due to their consistency of being a transcription proof of a
specific gene expression and by extension the expression of
a potential mutation, which allows for robust and effective
multiomic integration. Takahashi et al. [26] introduced a
parallel omic prediction of survival subtypes in lung cancer
based on RPPA data, the results presented in this research
exhibit and confirm the consistency of protemics in cancer
classification. Another work presented by Isik et al. [27] that
inspired our RPPA based omic biomarker discovery, uses the
protein-protein interaction network to select the most corre-
lated proteins, the gene expression of the selected proteins’
coding genes have been used to predict the clinical outcome
of patients. Kim [28], used RPPA with multiomic data for
breast cancer survival prediction based on pathway activity
inference to address the biological process and implication
of learnt features. Despite the efforts made to reduce the
dimensionality of omics data sets, the issue remains chal-
lenging, especially when multi-omics data must be processed
using integrative approaches for improved prediction and
interpretable findings. This prompted the work outlined in
this paper.

III. MATERIALS AND MODELS
This paper describes an omics integrative study (Fig. 1) that is
mainly based on biological data filtration and development of
computational models. The proposed integrative framework
yields an in-silico biomarker discovery model based on a
bioinspired feature selection approach, as well as trained
machine learning models that can be used as predictive
tools in cancer. The protein expression data serve as the
starting point for the proposed in-silico biomarker discov-
ery model. The integrative study in phase two (Fig. 1.(B))
uses the expression of the filtered RPPA data from phase
one (Fig. 1.(A)) and applies a bioinspired approach based
on clustering, grey wolf optimization algorithm, signaling
pathways, and protein interaction networks to select the most
relevant expressed proteins that play the role of cancer pro-
teomics biomarkers. In phase three (Fig. 1.(C)), we highlight
the proteins’ coding genes and miRNA targets based on the
proteomics biomarker. The set of three omics biomarkers is
used to train machine learning models to predict the clinical
endpoints PFI, and OS in the fourth phase (Fig. 1.(D)) to
test the predictive relevance of the selected biomarkers. Phase
five (Fig. 1.(E)), like phase four, aims to reveal the biological
and clinical interpretation and significance of the selected
biomarkers.

A. PROTEIN EXPRESSION DATA COLLECTION AND
PATHWAYS FILTRATION
The first step, shown in Fig. 1.(A), involves filtering the list
of proteins based on their function in signaling pathways in
order to retain only those instances that have a biological
background reference based on their existence in the sig-
naling pathways repositories. With the help of this filtering,
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FIGURE 1. Integrative analysis workflow.

we are able to get around the issue with the RPPA tech-
nologies discussed in the introduction. Additionally, for the
filtered proteins, we create a protein-protein interaction net-
work to represent the biological, physical, and coexpression
data pertaining to the interaction of the proteins. This network
is then stored as a protein-protein correlation matrix, which
is then used in accordance with the RPPA expression matrix
to choose pertinent proteomic features.

For this purpose, RPPA profiles have been retrieved from
the TCGA and TCPA portals [29], [30]. The protein list is
mapped to a protein-protein network using the String data

base multiple protein search query (https://string-db.org/).
The Protein-Protein interaction matrix and a list of path-
ways from the three repositories wikipathway, KEGG, and
reactome, associated to the list of proteins, were obtained.
We filter the protein list in this step to keep only proteins
that appear in the collected signaling pathways.We construct
a protein-protein correlation matrix PPCM(N × N ) from the
protein-protein interaction network for the list of filtered pro-
teins; this PPCM captures the correlation score between two
proteins. We also collect the expression of a selected protein
from available cancer samples from the TCGA data portal to
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generate a patient-protein expression matrix PPEM(M ×N ),
where each element xij in PPEM represents the abundance
of protein (j) in the patient (i) sample. PPEM captures the
patient-protein relationship in the same way that PPCM cap-
tures the biological correlation between the selected pro-
teins. Following that, the two datasets are used to select
cancer biomarkers with biological and signaling pathway
backgrounds.

B. FEATURE SELECTION BASED ON GREY WOLF
OPTIMIZATION AND BIOLOGICAL KNOWLEDGE
DATA CLUSTERING
Advances in the integration of genomics and biological net-
works sparked our idea for this proposal. An integrative
feature selection algorithm based on grey wolf optimisation
(Fig. 1.(B) ) is designed and implementedwhile incorporating
the information from the biological interaction networks to
select the best K expressed proteins with available clinical
and literature evidence from patient-protein expression data.
These incorporation aims to augment the correlation between
the selected features by the grey wolf optimization algorithm
and to enhance the convergence towards the best solution
rapidly and precisely. And also to select proteins with avail-
able clinical and literature evidence.

1) GREY WOLF OPTIMIZATION
GWO is a bio-inspired metaheuristic proposed by Mirjalili
et al. [31] that has gained a great deal of interest for solving
optimization problems. It mimics the hierarchical social sys-
tem depicted in Fig. 2.(A), which is related to the cooperative
hunting behavior of grey wolves in the wild. The strategy of
the GWO algorithm is inspired by the predatory nature of
wolves and their cooperative intelligence when hunting large
prey. Grey wolves tend to live in packs of 5 to 12 individuals
and hunt in an authoritarian fashion. Each member of the
pack is designated as alpha (α), beta (β), delta (δ), or omega
(ω). Alpha refers to the strongest and most dominant pack
member, who serves as pack leader. The alpha member will
always make the final decision during a hunt, and the rest
of the pack will defer to his authority. A beta member is
second in rank and serves as an advisor to the alpha member,
assisting him in decision-making. If the alpha dies, the beta
will become the new pack leader. The deltas and omegas are
the weakest wolves in the pack and must submit to the alphas
and betas while deltas dominate the omegas. The interesting
hunting behaviour of grey wolves can be summarized by the
following main operations:

• Step 1: Locate the prey, then monitor pack members to
chase and approach the chosen prey.

• Step 2: Pursue, encircle, and start harassing the prey until
it stops moving.

• Step 3: Proceed with the attack.

When the superior wolf locates the prey, the pack members
must obey their alpha and begin pursuing, encircling, and
harassing the prey until it is isolated from the herd, at which

point the attacking process begins. The formal modelling of
this behaviour is described in the next section.

2) MATHEMATICAL MODELLING
GWO is a population basedmetatheuristic and nature inspired
optimization algorithm. Like any other optimization algo-
rithm, achieving a good balance between exploration and
exploitation of the solution space is a crucial consideration
for ensuring convergence to near-optimal, if not optimal,
solutions. The two mechanisms used to achieve these search
capabilities are the prey search and the attack. Formally,
GWO is an iterative process (Fig. 2.(B)) that seeks to identify
the optimal vector of decision variables for optimizing a
specified objective function. In order to achieve this goal,
a population of potential solutions is used. During search
iteration t , the alpha wolf (wα), represents the best solution,
the second and third best solutions are beta (wβ ) and delta
(wδ). The rest solution represent the omega wolves (wω) who
are guided by (wα,wβ , and wδ). Omega wolves play the role
of scapegoat and are guided by their superior counterparts.

a: ENCIRCLE PREY
When hunting a prey the alpha gives the order to the rest
of the pack to encircle it, which is mathematically modelled
by (1,2) [31].

ED = |EC · EXp(t)− EX(t)| (1)
EX(t + 1) = EXp(t)+ EA · ED (2)

where the two vectors EX, and EXp represent the grey wolves’s
and the prey’s current positions respectively. The coefficient
vectors EA, EC, ED represent the learning parameters, which are
random values that govern the hunting process and determine
whether (wω) approaches or run away the superior wolves
(wα,wβ , and,wδ). The vectors EA, and EC are updated during
the iterations using (3, 4), where Er1, Er2 are random vectors
in [0,1]. Ea represents the exploration-exploitation tradeoff
parameters, which are updated linearly from 2 to 0 using (5):

EA = 2Ea · Er1 − Ea (3)
EC = 2 Er2 (4)

Ea = 2− t ·
2

Maxiter
(5)

b: HUNTING
After encircling the prey, the most crucial phase of the GWO
algorithm is to initiate the hunting process (exploitation).
The alpha (wα) leads the hunt while the other members of
the pack comply with his command. The exact position of the
prey is unknown to the other wolves but the (wα) is deemed
the optimal solution, and its two subordinates (wβ , and wδ)
have a better knowledge of its location. The behaviour of the
three highly ranked wolves that leads the pack members is
modelled using (6,7) that show how to update the wolves’
location and the optimal location is determined using (8).

EDα = | EC1 · EXα − EX|,
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FIGURE 2. Grey wolf optimization hierarchy and inspired algorithm; (A): Social pack hierarchy; (B): Hunting behaviour inspired algorithm.

EDβ = | EC2 · EXβ − EX|,
EDδ = | EC3 · EXδ − EX|. (6)
EX1 = | EXα − EA1 · EDα|,
EX2 = | EXβ − EA2 · EDβ |,
EX3 = | EXδ − EA3 · EDδ|. (7)

EX(t + 1) =
EX1 + EX2 + EX3

3
(8)

c: ATTACKING PREY
Once the prey has stopped moving, the grey wolves will
attack it to end the hunt (exploitation). The narrowing of
the gap between Ea and EA governs the search. Where |Ea|
falls from 2 to 0, bringing the prey closer than in previous
iterations, and when, | EA| < 1 all the wolves are forced to
attack the prey.

d: SEARCH FOR PREY (EXPLORATION)
In accordance with the positions of alpha, beta, and delta, the
pack members disperse from one another to forage the prey
and converge to attack it. From a mathematical modelling
side, the vector EA governs the behaviour of agents in this
phase; when | EA| > 1, all search agents are forced to diverge
from the current prey in order to forage a fitter one.. This also
reinforces exploration and allows for global GWO search.

3) GWO FOR FEATURE SELECTION
The problem of feature selection can be framed as a multi
objective optimization problem in which the optimizer seeks
to identify the smallest subset of features in the solution space
that achieves the highest prediction performance in classifica-
tion or regression. Performing feature selection using GWO
has been introduced in [32] as a wrapper model. The author
used a KNN classifier [33] to determine the classification
accuracy of each subset chosen by the GWO optimizer.
In each iteration, each subset of features represents a wolf
location, and the selected subset is the wolf’s location as

a result of the algorithm. The objective function that we
consider in our work, as shown in (9), is an aggregation of
the two aforementioned objectives, namely the number of
features and prediction performance.

Fn = σ · E(X )− θ ·
sizeSF
sizeAF

(9)

whereE(X ) represents the classification error rate, sizeSF rep-
resents the number of selected features in each solution sub-
set, and sizeAF represents the total number of input features
The parameters σ ∈ [0, 1] and θ = 1−σ are used to fine-tune
and balance the importance of the number of features chosen
and the classification error. A potential solution is encoded as
a binary vector with the same size as the number of features
in the dataset. If a feature is selected, it is assigned a value of
1; otherwise, it is assigned a value of 0. A threshold is used to
adapt the GWO to deal with binary encoded solutions, with
values of wolf location above the threshold set to 1 and values
below the threshold set to 0.

4) THE PROPOSED GWO ALGORITHM FOR
FEATURE SELECTION
The main idea behind the proposed GWO algorithm for
selecting features is that the initial population is gener-
ated using clustering. Therefore, we refer to our proposed
Clusterin Based GWO algorithm as CB-GWO. The primary
objective of the proposed optimization method is to reduce
the dimensionality of the PPEM as well as to identify the
subset of proteins with the highest relevance, which implies
removing features with negative impact on training machine
learning models that aims to either predict a clinical out-
come or to define a certain gene biomarkers. The proposed
CB-GWO algorithm1 takes the PPEM and PPCM as inputs
and functions in two phases. First, an initialization procedure
is designed to generate initial positions or potential solutions.
Then, this set of solutions will undergo an iterative process
governed by the previously described dynamics of the GWO
algorithm. The output of the optimizer is a subset of selected
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features (proteins or biomarkers) determined by the posi-
tion of the Alpha individual. Apart from its intriguing and
promising search ability, the GWO was chosen because of its
hierarchical social behavior, which allows us to update the
population initialization procedure by injecting a new graph
base data set (PPI network), which will be clustered into
feature subsets and ranked according to the GWO hierarchy.
Using a clustering algorithm and information provided by the

Algorithm 1Clustering Base GreyWolf Optimisation for
Feature Selection Algorithm
Data: PPEM, PPCM,Maxiter
Result: K best features

22 Population initialization(PPCM) ;
44 Evaluate the fitness of each solution X using (9);
66 Select Xα,Xβ ,Xδ ;
7 while t <= Maxiter do
99 Update Wolves’ position using (6, 7, 8);
1111 Update Ea using (5);
1313 Update learning parameters using (3, 4);
1515 Evaluate the fitness of each solution X using (9);
1717 Update Xα,Xβ ,Xδ ;
1919 t=t+1;

20 Procedure Population
initialization(PPCM)

Result: P: Population size, X: initial wolves position
2222 Define optimal P number of cluster using silhouette

average ;
2424 Cluster the PPCM input into P cluster using

K-means;
2626 Calculate the position Matrix X of each wolf based

on the distance between the centroid of Clusteri
and Proteinji.

PPCM, proteins are grouped into clusters during initializa-
tion. Therefore, we must determine the clustering algorithm
and the number of clusters denoted by P. Since a natural
wolf pack has five to twelve members, we used this range
to determine the value that gives the best silhouette index
value when using the Kmeans algorithm. After determining
the optimal number of clusters P, we consider the P clusters
produced by the K-means algorithm as the total number of
the pack. As illustrated in Fig. 3, and in order to determine
the initial positions of wolves, we proceed as follows. First,
we calculate the distance between each protein and each
centroid to construct the protein-to-centroid distance matrix
X (N × P), in which distance values are discretized using a
threshold in order to derive binary values. At the end of this
process, initial potential solutions are generated.

In the second phase of the optimization procedure, the
set of initial positions X is modified iteratively using GWO
equations. As in the original work [32], the evaluation of
solutions or calculation of fitness values is performed at each
iteration using the KNN classifier on the PPEM. KNN has

been considered for its simplicity as it is a lazy classifica-
tion model that does not require intensive model training.
Furthermore, to ensure fair comparison with the original
work. To achieve this, a hold-out sampling evaluation design
is implemented, with 70% of data used for training and 30%
for testing. The best alpha (wα), beta (wβ ), and delta (wδ)
are selected based on fitness values, and the pack position is
updated. The process continues in this manner till a termina-
tion criterion (Max iteration reached) is met. At the end of
the procedure, the fittest solution, in this case the selected
biomarkers, is the alpha wolf. Consequently, the output of
step 2 is a set of the K best-selected proteins, which we use
to reduce the dimensionality of the PPEM from (N ,M ) to
(N ,K ), where K < M .

The time complexity of the proposed CB-GWO depends
on the initialization and the iterative optimization phases of
the algorithm. Let’s adopt the notation shown below:
• N : the number of samples in the dataset,
• d: the dimension of the problem i.e. the number of
features.

• Max_iter: the maximum number of iterations of the
optimization process.

The K-means algorithm and the setting of initial positions for
all individuals have the largest impact on the time complexity
of the initialization phase. Consequently, the time complex-
ity (10) of this phase is :

O(N 2)+ O(P · d) (10)

The time complexity ( (11, 12)) of the optimization phase is
mostly determined by the update of individual positions and
the fitness function calculation. Therefore, the time of this
phase is as follows:

O(P · d ·Maxiter )+ O(P · N · d ·Maxiter ) (11)

As a result, the time complexity of the CB-GWO algorithm
is:

O(N 2)+ O(P · N · d ·Maxiter ) (12)

The space complexity is governed by the size of the data
set. Hence the complexity is O(N · d). It is worth noting
that even the time complexity is quadratic, the algorithm is
used once as a preprocessing step before training and using
the proposed trained classification model. The complexity of
this algorithm has no impact on the prediction phase of the
proposed classification model.

C. COLLECTION AND PREPARATION OF M-RNA AND
MI-RNA DATA SET
Following the construction of the final PPEM by leveraging
the K best features that were chosen, we proceed on to the
phase of collecting and filtering the instances of gene expres-
sion and miRNA (Fig. 1.(C)). For the purpose of construct-
ing the patient-mRNA expression matrix (PmREM) and the
patient-miRNA expression matrix (PmiREM), we made use
of the TCGAbiolinks to collect the mRNA and the miRNA
data set of patients that were contained within the PPEM
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FIGURE 3. Proposed population initial distribution in CB-GWO; bc is a binary conversion threshold, bc= 0.5, and di is the distance between wolf i and
protein j.

matrix. The number of patients in the collected data sets may
vary because some patient records may miss tests on their
mRNA or miRNA instances; therefore, from the three views
(PPEM, PmREM, and PmiRNA), we selected the patients
that appear across all the omics levels, so that the three
matrices have the shape PPEM(M×K ), PmREM(M×H ), and
PmiREM(M ×Z ). Then, the expression of genes responsible
of coding the selected proteins are extracted and the final
patient-gene expression matrix PmREM(M × L), where L <
H is constructed.

The subsequent step in the data integration proposal is to
incorporate the biological knowledge of the miRNA-mRNA
target network, where we download the miRNA poten-
tial gene targets of the collected miRNA from the miRNet
(mirnet.ca/) database. Then, we filtered the PmiREM by
retaining only the miRNAs that have targets among the
PmREM genes. We ultimately construct the patient-miRNA
matrix PmiREM(M × R), where R < Z . The three views are
then z-score normalized to have amean of zero and a standard
deviation of one.

D. PREDICTING CLINICAL ENDPOINTS USING MACHINE
LEARNING MODELS AND SELECTED BIOMARKERS
Various machine learning models were used to predict clin-
ical endpoints from the integration of transcriptomics and
proteomics views in order to test the consistency of the
selected features. In addition, we proposed a deep learn-
ing architecture based on auto-encoders using unsupervised
canonical correlation analysis(CCA) and supervised learn-
ing(Fig. 1.(D)). Themodels under consideration are classified
into three types: (1) traditional supervised machine learning
models, (2) deep learning models, and (3) deep features

learning models. k-nearest neighbors (KNN) [33], support
vector machines (SVM) [34], random forest (RF) [35], naive
bayes (NB) [36], decision trees (DT) [37], and AdaBoost [38]
are the models of the first class. We used convolutional neural
network (CNN) [39], shallow neural networks (SN) [40],
and deep neural networks (DNN) [41] for the second class.
The ultimate goal of deep features learning is to train unsu-
pervised deep autoencoders, such as the Maximum mean
discrepancy variational autoencoder (mmdVAE) [42] and
the deep canonical correlation autoencoder (DCCAE) [43],
to learn a latent features representation that holds information
from both perspectives. These models’ latent spaces were
used to train a supervised Adaboost classifier for endpoint
prediction. The final deep features learning model is the
deep supervised canonical correlation analysis autoencoder
(DSCC-AE). The model’s goal is to detect the occurrence of
events based on the level of expression of omic profiles in
patients. The proposed DSCC-AE model is described in the
following section.

1) PROPOSED DEEP SUPERVISED CANONICAL
CORRELATION ANALYSIS AUTO-ENCODER
Galen et al. [44] proposed the first application of deep CCA
(DCCA), in which each view represents an encoding phase
of a multi-view autoencoder. The DCCA takes each view
separately and progresses it through a series of hidden neural
layers until the final layer of each view represents the new
latent feature space. These features are fused in one layer
and a canonical correlation analysis is applied to transform
these views into more correlated representations. Wang et al.
wang2015 extended the DCCA architecture by adding two
decoding networks that are built symmetrically to the deep
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network of each view. These decoders attempt to reconstruct
the inputs (x, y) as (x′, y′) from features that passed through
a canonical correlation analysis, so that (x, y) ≈ (x′, y′). The
goal of combining autoencoder and CCA as deep canonical
correlation autoencoder (DCCAE) is to learn correlated trans-
formed features that can reproduce the same input with as
little loss as possible.

Inspired by the DCCAE, we changed the objective func-
tion to learn a feature representation that is oriented to pre-
dict PFI and OS endpoints. To this end, we incorporated a
deep neural network classifier to obtain a deep supervised
canonical correlation autoencoder (DSCC-AE) architecture
(Fig. 4). The proposed DSCC-AE uses the learned features
space generated by the DCCAE’ encoders to predict the
corresponding class of the input. The loss error, given by the
difference between the original class and the predicted one,
that governs the training of the deep classifier is added to the
objective function of the DCCAE, which will further tune the
learned features space to be more correlated based on their
corresponding classes distribution.

Therefore, as shown in Fig. 4, we took the outputs of
phase (C) (PmRmiREM(M × (L + R)) as a transcriptomics
view and PPEM (M ×K ) as a proteomics view; then we built
two encoders accordingly. The dataset of each encoder is then
propagated through its hidden layers towards the last layer of
the encoder. Then the two outputs are merged into a single
fusion layer that represents the latent space layer. This layer
serves as input to four distinct models. Two decoders φ1 and
φ2 that are symmetrically built to the encoders in order to
reconstruct the inputs from the learnt latent space, a CCA
layer to apply canonical correlation transformation, and an
additional supervised multi-layer perceptrone (C) to predict
a clinical endpoint based on the learned features and the target
class. These four output models will train the deep archi-
tecture deep supervised canonical correlation autoencoder
(DSCC-AE) cooperatively by adjusting its weight to learn a
more accurate representation of correlated features represen-
tation targeting a specific clinical endpoint. The architecture
is trained to minimize the set of functions depicted by (13).

min
wf ,wg,w81 ,w82 ,wC ,U ,V

[−
1
N
tr(UT f (x)g(y)TV ),

λ

N
·

N∑
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(|xi −81(f (x)|2),

λ

N
·

N∑
i=1

(|yi −82(g(yi)|2),
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where, (x, y ) respectively represent the input views,
−

1
N tr(U

T f (x)g(y)TV ), is the CCA layer loss that aims to
maximize the correlation between the outputs of the two
encoders g, f , [ λN ·

∑N
i=1(|xi − 81(f (x)|2), λN ·

∑N
i=1(|yi −

82(g(yi)|2)], are the mean square reconstruction errors of
the loss value between x, y and the outputs generated by
the decoder 81, and 82. 9(T ,C(f (x)g(y))) represents the

classification loss(e.g. crossentropy loss) and λ is a lasso
regularisation score, to avoid the overfitting of the model.
Similarly to DCCA [44] and DCCAE [43], we apply stochas-
tic optimization and tanh activation function of the DCCAE
parts to update the architecture weights and its objective.

IV. EXPERIMENTAL STUDY, RESULTS AND DISCUSSION
To evaluate the performance of the integrative framework,
we collected four distinct cancer data sets: breast cancer
(BRCA), colon cancer (COAD), rectum cancer (READ), and
squamous lung cancer (LUSC) with two clinical endpoints
from the TCGA data portal [29]. Python was used to imple-
ment the proposed CB-GWO, feature selection, and tradi-
tional machine learning models. The deep learning models
and DSCC-AE were implemented using the Python machine
learning keras package with tensorflow backend. Two com-
parative studies were conducted to demonstrate the efficiency
of the proposed CB-GWO for feature selection. On the
one hand, step B results were compared to state-of-the-art
bioinspired and evolutionary-based optimization algorithms,
such as grey wolf optimization (GWO) [32], whale opti-
mization algorithm (WOA) [45], cuckoo search (CS) [46],
bat algorithm (BA) [47], and differential evolution algorithm
(DE) [48]. CB-GWO performance as a feature selection algo-
rithm, on the other hand, has been compared to statistical and
machine learning based feature selection models, specifically
univariate feature selection models such as correlation based
feature selection [49], and chi-square [50]. Feature impor-
tance based models such as logistic regression (L2) [51],
and random forest (RF) [52], and recursive features elimi-
nation RFE [53]. Besides, we used MRMD3.0 to compare
the performance of CB-GWO with an ensemble features
selection method that combines features ranking methods
and link analysis algorithm to finally identify a reduced data
representation [54]. In phase D, the various machine learning
models used in this study were compared based on their MCC
and AUC score.

A. DATASET DESCRIPTION
Normalized RPPA data set and protein list, along with the
clinical follow-up patient data were downloaded from the
TCGA and TCPA data portals(https://portal.gdc.cancer.gov/,
https://www.tcpaportal.org/), for breast cancer(BRCA),
colon cancer (COAD), rectum cancer(READ), and squamous
cell lung cancer(LUSC). As for the transcriptomics data we
used the R package TCGABiolink to retrieve the mRNA and
miRNA expression data based on the patient bar-code in the
patient protein data set.

As cancer targets, we selected both overall survival (OS)
and progression-free interval (PFI) as clinical endpoints
(PFI). The former is the survival of a group of patients after
a cancer diagnosis or the initiation of a specific treatment.
The latter is the length of time a patient with cancer lives
without its progression or any recorded event. The binary
nature of the two endpoints results in a binary classifica-
tion. The description of the data sets will be presented in
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FIGURE 4. Architecture of the multiview supervised cannonical correlation analysis integrative model.

the remaining sections of the paper in the order of their
application.

B. CB-GWO VS OTHER FEATURE SELECTION METHODS
Table 1 shows the dimensionality of the RPPA data set for
each type of cancer and each clinical endpoint used to iden-
tify cancer biomarkers. It also shows the initial accuracy
of the KNN classifier when the entire data set (including
all features) is considered for each cancer type and target.
As can be seen, the classifier achieved the highest accuracy,
83 %, with BRCA dataset and PFI target while it achieved
lowest accuracy, 54%, with the LUSC dataset and OS target.
For comparison, the accuracy of the KNN classifier was
computed for the reduced dataset using only the features
identified by the proposed CB-GWO and other cutting-edge
bio-inspired algorithms. To ensure a fair comparison, all
algorithms used the same population size determined by the
initialization procedure, as well as the same number of itera-
tions which was set to 300. To monitor the convergence of the
bio-inspired algorithms, we recorded the objective function
values across iterations. Fig. 5 depicts the behaviour of the

algorithms during the minimization process. All plots clearly
show that the CB-GWO surpassed all other bioinspired and
evolutionary-based algorithms in terms of fitness. The perfor-
mance of the algorithms can be further analyzed over three
iteration ranges [0-100], [100-200], [200-300] as follows:
• In the first 100 iterations, CB-GWO achieved the best
fitness value in, BRCA-PFI, COAD-PFI, READ-OS,
and LUSC-OS, whereas, for READ-PFI, CB-GWO, and
DE were able to achieve approximately the same fitness
value with a superiority of ≈ 0.01 for CB-GWO. As for
the rest of datasets, CS converged first to the best solu-
tion in COAD-OS, while DE converged rapidly towards
the best fitness value in LUSC-PFI. As for BRCA-OS,
WOA, and DE achieved the best fitness value compared
to the rest of algorithms.

• In the following 100 terations CB-GWO was able to
outperform CS, WOA, and DE in BRCA-OS, and
COAD-OS. In LUSC-PFI, CB-GWO, and DE achieved
approximately the same best fitness value by the itera-
tion 160,180 respectively with a superiority of≈ 0.01 to
CB-GWO.
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FIGURE 5. Convergence Performance comparison on RPPA Data.

TABLE 1. Description of dataset size, population size, and initial accuracy.

• At the last set of iterations, CB-GWO was able to
achieve a better solution regarding LUSC-PFI by the
iteration 220, while DE stabilized at the same fittest
value scored in iteration ≈ 180.

The objective function values attained after 300 iterations
by all bio-inspired algorithms applied o each data set and
target are detailed in table (2). As we seek to minimize the
objective function, it is evident that the proposed CB-GWO
produced the best results in all cases except for the READ-OS
dataset, where GWO-like results were obtained. In addition,
the algorithm’s performance was evaluated based on its abil-
ity to select a relevant and concise minimum set of features
and compared to the other algorithms. Tables 3, and 4 show
that, across all test cases, the proposed CB-GWOachieved the
highest accuracy with a remarkably smaller set of features.
Both GWO and CB-GWO achieved the same classification
accuracy and fitness value on the READ-OS dataset, but the
CB-GWO identified a smaller set of features.

As for the statistical and machine learning-based feature
selection models, the selected models have been trained to
acquire the same number of features subset chosen by the
CB-GWO algorithm using the default parameters defined
by the standard representation of the models. The learned

features have been used to train a KNN model to predict
PFI and OS. Tables 5, and 6 compare the performance of
CB-GWO to other models; in all cases, CB-GWO achieved
the highest accuracy score.

When comparing the results of table1, and tables 3, 4, 5,
and 6, it is evident that selecting features is preferable
to taking the entire set of features. The classifier per-
formed many orders of magnitude better with the selected
features, particularly with the proposed CB-GWO where
an 18% improvement was achieved for the READ-OS
dataset. In comparison to black box dimensionality reduc-
tion with feature transformation, the use of feature selection
methods guarantees the interpretability of features, which
is crucial for biomarker discovery and biological inter-
pretation. Furthermore, tables 3, and 4 show that GWO
outperforms all bioinspired algorithms except CB-GWO.
This justifies our selection of GWO, which we enhanced
by incorporating a suitable initialization procedure based
on biological protein-protein correlation that captures the
proteins with potential signalling pathway implication to
produce CB-GWO. This incorporation of biological knowl-
edge improved the filtering and selection of features, as evi-
denced by the results of READ-PFI, where only 13 features
were selected using the CB-GWO and the KNN model was
trained to classify patients according to their PFI class using
these features. The same result can be drawn from examining
tables 5 and 6, even when using robust tools like MRMD3.0,
the integration of biological knowledge data significantly
improved GWO performance. As a result, the investigation
into combining this type of data with various features selec-
tion methods and tools has the potential to be revolutionary.

At the end of this phase (Step B in the proposed frame-
work shown in Fig. 1), we construct the final PPEM (M −
K ) for each data set and for each target. The initial sizes
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TABLE 2. Objective function value comparison between the proposed
CB-GWO against bio-inspired and evolutionary based algorithms.

TABLE 3. Performance of CB-GWO against bioinspired and evolutionary
based algorithms in OS; SF:Selected Features.

TABLE 4. Performance of CB-GWO against bioinspired and evolutionary
based algorithms in PFI; SF:Selected Features.

TABLE 5. Accuracy performance of CB-GWO against feature selection
models in OS.

of feature sets for mRNA-seq data and miRNA data are
19947 and 1881 respectively. We construct the final mRNA
and miRNA expression matrix and build the transcriptomics
view PmRmiREM (M × (R + L)) using the data collection
and filtration techniques described in phase 3 (section III-C).

TABLE 6. Accuracy performance of CB-GWO against feature selection
models in PFI.

In table 7, which provides a description of the data set,
we can see that the number of genes and miRNA has been
reduced from thousands and hundreds considerably. The
number of selected miRNA instances for colon and rectum
cancer is significantly higher than for other cancer types,
as these two cancer types are classified as colorectal can-
cer (CRC). The role of miRNAs in CRC is described in
section VI.

C. RESULTS OF MACHINE LEARNING MODELS AND DATA
INTEGRATION FOR CLINICAL ENDPOINT PREDICTION
1) DSCC-AE IMPLEMENTATION AND RANDOM
CROSS-VALIDATION EVALUATION
We used both hold-out validation and K-fold cross validation
to evaluate the proposed model’s performance. We were
inspired by the work of Chuang et al. [18] to create a variety
of training and test sets. The scenarios listed below have been
considered.
• 15 scenarios of K-fold cross validation were generated
to test the performance of the models, with BRCA,
COAD, and LUSC evaluated using 10-fold cross valida-
tion, implying 150 randomly generated training/testing
datasets, and READ evaluated using 4-fold cross valida-
tion due to its small size and to ensure the presence of
the minority class in the testing sets.

• 50 randomly generated data sets, 80% training and 20%
testing, to be used for hold-out validation across all
datasets and situations.

The following architecture has been adopted for the proposed
DSCC-AE after a series of experiments.
• Two encoders for transcriptomics and proteomics
data with two hidden layers and bottelneck layers
(100,100,10)

• A layer with 20 nodes (merging layer) that combines the
outputs of the two encoders.

• Symmetrically to the two encoders, two decoders are
employed to reconstruct the inputs using two hidden
layers and an output layer: (10,100,100).

• ACCA layer to adjust the correlation between the inputs
from the merging layer

• A deep forward classifier with a batch normalization
layer to normalize the learned features in the fused layer,
two hidden layers (100,50) and an output layer to predict
the patient class.
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TABLE 7. Integration data description.

The architecture was trained using mini-batch training,
with batch sizes ranging from 65 to 250 depending on the size
of the data set and a learning rate ranging from [10−9−10−7]
to 200 epochs. For the encoder, decoder, and classifier’s
hidden layers, the non linear ‘‘tanh′′ activation function was
used, while ‘‘softmax ′′ was used for the output layer. In addi-
tion to DSCC-AE, all machine learning, feature learning,
and deep learning models were trained and tested on various
randomly generated training/test datasets in order to assess
the relevance of the selected features in previous phases on
the one hand, and compare their performance to the designed
DSCC-AE on the other.

2) RESULTS AND DISCUSSION
To evaluate the performance of the proposed model and
other machine learning models, we used two performance
measures: AUC and Mathew Correlation Coefficient (MCC).
The results are presented in the form of mean values and
Box-and-Whiskers plots (boxplots) of the AUC and Mathew
correlation coefficient (MCC). The two metrics were chosen
based on recent research presented by Chicco et al. [55]
demonstrating that when dealing with imbalanced data, mea-
sures such as accuracy and F1-measure are misleading when
the minority class represents the true negative (TN), as in our
case. TheMCC can be seen as the natural extension of the phi
coefficient, which was first introduced by Udny Yule [56].
MCC is frequently used in the fields of bioinformatics and
Machine learning. The MCC value for a classification model
can be computed using the confusion matrix as follows:

MCC =
TP · (TN − FP) · FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(14)

MCChas been shown to be amore reliablemeasure because it
depends on all confusion matrix elements (true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN) (14)) and only performs well if the majority of TP and
TN are correctly predicted [57], [58]. Whardani et al. [59],
on the other hand, demonstrated AUC score as the most
recent robust metric to measure imbalanced data because it
asserts how accurately the majority and minority classes are
predicted. Tables 8, and 9 show the results obtained for all

models using K-fold cross validation and hold-out validation,
respectively. Comparing the tables, it is evident that the
results from k-fold cross-validation are significantly superior
to those from hold-out validation, except for the READ data
set, where hold-out validation results exceeded k-fold cross
validation results by +0.01 for AUC and MCC scores.

As depicted in table 8, DSCC-AE achieved the best pos-
sible AUC performance across all of the tested data sets,
with scores of 0.8 for the COAD, READ, and LUSC datasets
and 0.75 for the BRCA dataset. On the READ dataset,
shallow and convolutional networks, together withmmdVAE,
achieved a performance comparable to DSCC-AE. In terms
of MCC, DSCC-AE was able to achieve an MCC > 0.5 for
the COAD, READ, and LUSC datasets, but failed in the
case of BRCA datasets, where SN and DCCAE achieved
the best possible MCC value of 0.44 in BRCA-OS and
0.48 in BRCA-PFI, respectively. Similarly to the AUC score,
some models outperformed others, such as the LUSC-PFI by
DCCAE and SN.

To assess deeply and better understand the performance of
the various models and also to ensure more credibility and
fairness of the evaluation process, we reported the results
across the 15 scenarios using K-fold cross validation in the
form of box-plots. There are a total of 150 tests conducted
on the BRCA, COAD, and LUSC datasets, and 60 tests con-
ducted on the READ dataset, and their respective boxplots are
shown in Figs.6, and 7. When comparing the boxplots from
other models, the DSCC-AEmodel consistently produces the
best resultsin terms of the five summary statistics that we
can get from the boxplots. The vast majority of observations
for distributions like BRCA-OS, COAD-OS, READ-OS, and
COAD-PFI cluster around the middle and first quartile.

In addition, we reported the mean values of AUC and
MCC across the 15 scenarios for the proposed DSCC-AE,
as well as the other machine learning models, via barplots
depicted in Figs.8, and 9 respectively. The obtained results
indicate that the performance of the DSCC-AE during the
randomly generated training/testing was the best for both
measures.

The random generation of different training/testing data
sets enables the selection of a combination containing the
most informative samples, thereby enabling the model to
achieve a very promising performance.
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TABLE 8. K-fold cross-validation best performance results, across 15 scenarios, of the proposed DSCC-AE and the other machine learning models using
the selected.

FIGURE 6. K-fold AUC boxplot performance of DSCC-AE, and deep learning models in predicting OS across 15 testing scenario.

V. FUNCTIONAL AND ENRICHMENT ANALYSIS
In order to evaluate and validate the discovered biomark-
ers we performed a functional analysis for the selected
genes (Fig. 1.(E)), we queried them in Gene Ontology [60],
ShinyGo [61] to list the biological process of the genes, and
to visualise the statistics of the genes distribution on differ-
ent biological processes through fold enrichement based on
False discovery rate (FDR) and to define the most expressed
signalling pathways, and their interaction network. We also
queried the list of biomarkers of each cancer-endpoint
in cytoscape [62], using String package to visualise the

protein-protein interaction network and to extract some of the
most cancer-affecting gene ontology biological process terms
and KEGG pathway. Every GO term and KEGG pathway
with an FDR< 0.05 was considered significant.

We used IDEP.93 [63] to visualize the correlation heatmap
of the expression of each selectedmRNA data set by querying
the genes expression matrices of the selected biomarkers for
each cancer type and clinical endpoint. To select hub genes,
or rather address them as the most altered genes, from the
set of discovered biomarkers, we queried the genes using
CBioportal [64], to analyze the performance of genes on
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FIGURE 7. K-fold AUC boxplot performance of DSCC-AE, and deep learning models in predicting PFI across 15 testing scenario.

FIGURE 8. Mean AUC value of DSCC-AE and traditional machine learning
performance across 15 testing scenarios through K-fold cross validation.

larger cancer data bases, where we queried the genes set
of each cancer type independently(BRCA/ CRC/ LUSC),
then we integrated the samples of the three cancer types and
queried the list of shared genes between the three types of
cancer to visualise the overall survival and progression free
interval prognosis as well as the statistics of genes distribution
on patient samples. We selected a set of hub genes and fre-
quent mutation variants from the CBioportal study, and then
used Varsome [65] and COSMIC [66] to interpret the clinical
significance of these variants. Finally, we examined the func-
tionality of the selected miRNA in COAD and READ cancers

FIGURE 9. Mean MCC value of DSCC-AE and machine/deep learning
models across 15 testing scenarios through K-fold cross validation.

using miRNET2.0 [67], miRSystem [68], and DIANATools-
miRPath [69]. Because colorectal cancer (CRC) is the most
used term in scientific reports, we refer to COAD and READ
cancers as colorectal cancer (CRC) in the rest of the paper.

A. THE 77 DISCOVERED BIOMARKER GENES SHOW
IMPORTANT IMPLICATION, IN NEGATIVE REGULATION
BIOLOGICAL PROCESS AND HIGH CO-AFFECT OF
KEGG LEADING CANCER PATHWAYS
We collected the set of functional analysis results illustrated
in Fig. 10 of the 77 selected genes (table 1 in appendix A)
from the experimentation on cancers and clinical endpoints in
the second step of the integrative framework using shinyGo
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TABLE 9. Hold-out (80%-20%) validation best performance results, across the 50 scenarios, of DSCC-AE and the other machine learning models using
selected biomarkers.

and gene ontology. Figs 10.(A), and (B) visualize the gene
ontology biological process of the selected genes, in which
the genes are primarily involved in cellular, and develop-
mental process, biological regulation, response to stimulus,
and signalling process as regulatory genes or suppressing and
communication genes. The fold enrichment demonstrates that
some of the selected genes have a negative regulation of apop-
totic process and cell death (table 3 in appendix A), which
has a direct impact on any update or sudden events on cancer
patients whichmay lead to recording a new event on the tumor
state that affects directly the progression free interval and the
overall survival of the patient. Figs. (10.C, 10.D, 10.E, 10.F)
exhibit the characteristics of the selected genes in comparison
to the whole genome,revealing that all of the selected genes
are protein coding genes that are randomly distributed on all
chromosomes with a 0.72 Chi-squared test P-value, though it
have higher transcript isoforms per coding genes (P=0.0079),
and higher GC density (P=0.2).

Fig.11 depicts the discovered pathway-pathway interaction
network, for each cancer type, with an edge connecting two
pathways if they share more than 20% of the queried genes.
The pathway-pathway interaction network, reveals that the
generated enrichment pathways are primarily the most rele-
vant signal transduction pathways responsible of regulating
gene activities, and signalling, besides these pathways are
primarily the most important signal transduction pathways
in charge of regulating gene activity. The experiment shows
that the PI3KAKT signaling pathway is linked to the three
cancer types (table 4 in appendix A), with 9 genes for CRC
and BRCA and 14 genes for LUSC having a direct impli-
cation in the mTOR signalling pathway. Inhibitors of the
PIK3/AKT/mTOR pathways have been shown to be effective
treatment targets for solid cancers [70], [71]. The implication
of microRNAs in solid cancer can be visualised through the
interaction between pathways and on the number of impli-
cated selected genes (>10 genes, table 4 in appendix A),
microRNA have a significant association with the nega-
tive regulation of oncogene, regulator and suppressor genes

that may affect the behaviour of tumour cells [72], [73].
The interaction between colorectal cancer pathway and the
AGE-RAGE signalling pathway diabetic complication comes
from the fact that RAGE have been implicated in the patho-
genesis of several diseases including colorectal cancer [74].
Furthermore, recent studies implies that type 2 diabetes
patient are subjected to develop colorectal cancer, as well
as the RAGEs circulating is a potential CRC risk factor with
relation to type 2 diabetes inflammation [75], [76].

The findings depicted in the pathway-pathway interac-
tion networks visualize the relevance of the selected gene
signatures based on proteomic, PPI networks, and pathway
analysis in the first and second phase of our integrative
model (Fig. 1.(A)/(B)), where, the selected genes are highly
connected to the most important signaling pathways regard-
ing cancer research. Also the interconnection between the
pathways through shared genes can be a targeting study for
metastasis cancer behaviours, and therapeutic targets, on an
in-silico and in-vitro level.

Using IDEP, we built the heatmap matrices of each cancer
type and its corresponding clinical endpoint, with a cut-off
z-score =3, and correlation based distance and average link-
age. The eight matrices are shown in Fig.12, where we can
see that the patients can be clustered into two major groups,
in our case PFI class 0 or 1, OS class 0 or 1. The impact of
an imbalanced data set can be seen on the heatmap matrices,
where we notice that the expression of mRNA abundance is
unequally distributed between the samples.

B. SELECTING HUB GENES WITH HIGHEST ALTERATION
FOR EACH CANCER TYPES
To determine the most altered genes for each cancer type,
we queried the set of genes for each cancer type indepen-
dently in CBioportal using all available related cancer studies,
where as listed in ( table 3 in appendix A), we queried
the BRCA genes on 17 related studies with a total of
10811 samples, the LUSC genes on 4 studies with a total of
1256 samples, and the CRC genes on 13 related studies with a
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FIGURE 10. Enrichment analysis of all selected genes; (A): Barplot illustrates the gene ontology biological process of the selected genes;(B): Fold
enrichment dotplot of the selected genes based on the -log10 FDR value;(C): Genes type distribution; (D): Distribution of genes on chromosomes barplot;
(E): Barplot visualize the distribution of transcript isoforms per coding genes; (F):GC density of the selected genes to genome comparison.

total 4535 samples. Fig.13, summarizes the queries results of
the most altered genes of each cancer type (Fig.13), where
TP53, SMAD4, PTEN, ATM, CTNNB1, ERBB2, MTOR,
and EGFR are the most altered genes with TP53 being altered
in 58% of samples. As for BRCA ERBB2, PTEN, RB1,
MTOR, SMAD4, MAP2K1 are the most altered genes across
samples,with ERBB2 being altered in 13% of samples. With
37 % CDKN2A altered samples and 45 % PIK3CA altered
samples, CDKN2A, PTEN, PICK3CA, EGFR, ERBB2, and
MTOR have higher alteration percentages across LUSC
samples.

Fig.13.B depicts the kelpen-meier plots of overall sur-
vival and progression free interval through time(months),
where we selected two subsets from the selected hub genes
set of each cancer: Those that appear in the OS experi-
ment and those that appear in the PFI experiment. SMAD4,
PTEN, CTNNB1,MTOR, and EGFR are the progression free

selected hub genes in CRC, where, the plots shows a very
poor PFI prognosis, in which population with CTNNB1 alter-
ation dropping rapidly bellow 25% in a range of 15 months
(2 years). In terms of overall survival, the selected hub genes
are TP53, ATM, CTNNB1, ERBB2, andMTOR, as with PFI,
the studied population shows a poor prognosis with the worst
results for patients with CTNNB1, and ERBB2 alterations.
BRCApatients with altered, RB1, SMAD4,MAP2K1, and/or
ERBB2, have a good progression free prognosis that is
stable over 50% across the time progression of the study.
PTEN, RB1, MTOR, and MAP2K1 are the OS hub genes
in breast cancer, where the population with altered MTOR
genes have a better overall survival than those with alter-
ations in the other genes. The studies on LUSC data sets
define MTOR, PICK3CA, and PTEN as the PFI hub genes,
where patients with altered PICK3CAhave the poorest scored
prognosis, the size sample of the MTOR alteration affects
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FIGURE 11. Selected biomarkers involvement in KEGG pathway in cancer, the selected biomarkers in these study are highlighted in yellow.

FIGURE 12. Heatmap illustrates the expression of genes to their corresponding clinical endpoint cancer type.

the observation of the overall PFI performance of patients
with altered MTOR, yet as a shallow observation, we can
assume that patients with altered MTOR may have a good
progression free interval. CDNK2A, EGFR, ERBB2, and
MTOR represent the hub genes in OS prognosis, where
patients with ERBB2 and EGFR have a poor overall sur-
vival, followed by those with CDNK2A alteration, the results
obtained from the patients with MTOR alteration may assess
the prior hypothesis observed on PFI that squamous cell
lung cancer with MTOR alteration may have a good PFI/OS
prognosis.

Fig.13.C is the protein-protein interaction network of the
selected hub genes for each cancer type and clinical endpoint,
the networks show that in each case the selected genes are
fully connected which implies the presence of interaction and
a biological communication between them( a PPI network
of all selected genes in each cancer is available in (fig 2 in
appendix A).

C. MTOR/CTNNB/ERBB2/MAPK14/PTEN AS CANCER
BIOMARKERS IN BRCA,LUSC, AND CRC
To visualise the shared genes between the cancer studied,
we construct a venn diagram as shown in Fig.14, where
the first venn diagram(a), extracts the shared genes between
LUSC, BRCA, READ and COAD cancer, yielding three
biomarker genes, ERBB2,MTOR, andCTNNB1. The second
venn diagram merged the results of COAD and READ as
CRC, resulting in two additional genes, PTEN andMAPK14.
To better understand the impact of the selected biomarkers,
we conducted an integrative study using Cbioportal, that
merge the available studies on breast cancer, squamous cell
lung cancer and colorectal cancer. The integration of the
selected studies yielded a 15797 patient in which 22% of the
population have an alteration in at least one of the shared
genes (ERBB2, MTOR, CTNNB1, PTEN, and MAPK14).
Fig.15 depicts the findings of the integrative study. The
shared genes oncoprint represents the genomics alterations
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FIGURE 13. Define the cancer hub genes from the selected biomarkers, (A): Oncoprint of the most altered genes in CRC, BRCA, and LUSC; (B): progression
free, and overall survival progress illustrating recoded events through months of samples with altered hub genes; (C): Protein-Protein interaction network
of hub genes.

of the selected studies, with OS, and PFI track. ERBB2, and
PTEN represents the most altered genes with a population
frequency of 10%, 8% respectively. Fig.15.B shows the type
of genomics alteration of the queried genes across all the
cancer type, where mutations are the most present alteration
types. The upset plot in Fig.15.C demonstrates the number
of patients with altered genes in one or a set of the shared
genes, where 74 patients having an alteration in PTEN, and
ERBB, 57 in MTOR, and PTEN, 38 in CTNBB1, and PTEN,
and 31 in ERBB2, and MTOR, while the other set have
fewer than 30 patients. Figs.(15.(F), and 15.(G)), visualise
the distribution of the altered genes across the queried cancer
types and the TCGA cancer types used in the experiments.
ERBB2, PTEN, and MTOR are the most observed altered
genes in all cancer types, where 87% of the altered genes have
a positive somatic status. The kaplan-mieir plots illustrated
in Figs. 15.(D), and 15.(E), where we notice that patients
with CTNNB1 alteration have a considerably poor prognosis
in both PFI, and OS, whereas, MTOR patients have a poor
progression free, but a better overall survival. Patients with
MAPK14 alteration have a good overall survival and progres-
sion free prognosis.

D. UNCOMMON CANCER VARIANTS WITH IMPORTANT
CLINICAL IMPACT ARE SELECTED FROM THE HUB GENES
From the queried genes and cancer studies we collected the
mutations profile statistics of the selected hub genes and the

extracted shared genes, for each sample, where the set of
mutations are classified as putative driver or variants with
uncertain significance(VUS). Table 10, displays the number
of mutations of each cancer collected only from the hub
genes. Figs. (3,4,5,6,7 in appendix A) depict the lollipop
chart of the distribution of the mutation of the shared genes
on CRC, BRCA, and LUSC patients, from each lollipop
chart we collected the variants with higher frequency on
the study population. The analysis of the lollipop charts
resulted in unveiling a set of variants that can be addressed
as uncommon variants in CRC, BRCA, and LUSC cancer.
We used Varsome and COSMIC to collect the interpretation
of the selected variants focusing on their pathogenicity score
and the ACMG classification (pathogenic, benign, uncertain
significance), Table. 10 summarizes the analysis of the vari-
ants of each hub genes and the classification of the selected
variants.

As shown in Table. 10, the genes with the highest fre-
quency of pathogenic variants are TP53, ATM, and PTEN.
Pathogenic variants can be targeted for cancer monitoring and
a potential therapy. In our study, 15 of the 20 extracted vari-
ants were classified as pathogenic, two as likely pathogenic,
and four as variants with uncertain significance that require
careful monitoring. We conducted a selective literature
review on published reviews, case reports, clinical and exper-
imental publications to investigate the selected genes and the
revealed mutation.
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FIGURE 14. Venn diagram of shared hub genes in BRCA/COAD+READ(CRC)/LUSC.

TABLE 10. Selected variants.

Among the set of extracted genes in this study, TP53 is
the most altered gene in colorectal cancer. TP53 is referred
to as the guardian of the genome, where its coded pro-
teins function as tumour suppressor responsible of regulating
cell division. TP53 interacts heavily with other genes by
activating their role in fixing DNA damages, or by forcing
cells with abnormal activities to undergo apoptosis [77].
According to Kim et al. [78], TP53 is the emost frequently
expressed altered gene in patients with early onset coloroctal
cancer (age <50 years), where the early functional loss of
TP53, resulted to whole genome doubling and focal oncogene
amplification. The most expressed along the TP53 altered
samples The R175 H/C/G, and R273 H/C. According to
Huang et al. [79] a co-mutation in patient with colorectal
cancer was noticed between the IDH1/2 and TP53. Where
a case was observe with (IDH1, TP53) mutations, on vari-
ants(p.R132C, p.R273C) with allele frequency (63%, 43% ).

the others reported another case with co-mutation of (IDH2,
TP53), on variants (p.R140Q, p.R175H)with allele frequency
(4.2%, 32%). In the study of Fassan et al. [80] on stage III,
and IV CRC patients, shows that TP53 is the most mutated
gene, with 8 out of 15 cases harboring the p.R273H variant.

Along with TP53, SMAD4, was also defined as a hub
gene in CRC cancer,as well as a driver gene in breast cancer,
SMAD4 is responsible of the chemical signals transmitting
from cell surface to the nucleus, besides, it is associated
with cell growth and proliferation. According to the sug-
gestions of Fang et al. [81] intensive research, SMAD 4 is
associated with over-all survival, progression-free survival/
recurrence-free survival, and clinico-pathological parameters
(tumour site, disease stage, RAS status, lymph node metasta-
sis, and mucinous status) in a study that enrolled more than
4394 patients with colorectal cancer. Lanauze et al. [82], con-
ducted a recent study to investigate the role of Smad4 R361
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FIGURE 15. Evaluation of shared genes on cancer type Cbioportal resuts; (A): Oncoprint of the shared altered genes in BRCA, LUSC, and CRC;
(B): Distribution of the type of the alterations across cancer studies;(C): Upset graph of the distribution of the shared genes mutations on patients;
(D): Progression free survival of the hub genes on the cancer population;(E): Overall survival of the hub genes on the cancer population;(F): Distribution
of shared genes alterations on cancer studies ;(G): Distribution of shared genes alterations on TCGAPan Cancer Atlas; (H): Somatic alteration ratio in
selected patients.

variants in colorectal cancer by implanting two R361 variants
in various Smad4 free CRC cell lines. The experimentation
results unveiled that R361 missense mutation in CRC disturb
the binding to endogenous p-smad2/smad-3, also the study
suggest that SMAD4 variants are loss-of-function which may
led to a poor prognosis in CRC patients (see Table. 13.(B);
PFI). Though Frey et al. [83], adress SMAD4 mutation as a
non preventer of epithelial-mesenchymal transition in CRC.
Woo et al. [84], analyzed 250 patients with invasive ductal
carcinoma using tissue microarray-based immunohistochem-
ical assay, the experiments led to a significant observation
of the low level of SMAD4 expression in early stage breast
cancer and the promosing prospect for using SMAD4 as a
targeted prognostic marker.

PTEN, is a suppressor gene, with a direct role in apop-
tosis, adhesion, migration, and angiogenesis, its alterations
can lead to trigger, maintain, and mange different cancer
types in various organisms [85], in this study PTEN have
been selected as relevant cancer driver gene in the three
cancer types. Salvatore et al. [85], reviewed research stud-
ies that investigate the potential role of PTEN as a pre-
dictive biomarker and/ or therapeutic target in colorectal
cancer, citing that the loss of PTEN expression triggers the
PI3K/AKt intracellular signalling, involved in CRC onco-
genic mechanisms. Furthermore, the study addresses PTEN
as the future clinical therapeutic target for CRC patients.
According to Fusco et al. [86], PTEN:p.R130Q/G/* is the
frequent expressed mutation in colorectal cancer, and PTEN
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FIGURE 16. Analysis of the selected CRC miRNA; (A): Association of selected miRNA with CRC and gastrointestinal cancers; (B): miRNA-gene target
network; (C): Frequency of the targeted genes in signalling pathways by the selected miRNA-hits; (D): Pie-chart visualisation of the targeted genes of CRC
pathway.

may be of great help in clinical observation and monitoring
in CRC patients. Carbognin et al. [87], comments on the
clinical use of PTEN as an unfulfilled promise, yet it remains
an interesting perspective, since PTEN alterations are clini-
cally associated with breast cancer prognosis and treatment
response. Kingston et al. [88], reported tow clinical case, one
of a 50 years old women, with a history of cowden syndrome,
diagnosed with a T3N3 breast cancer(ER+,PR-, and HER2-,
gradeIII), the patient sequencing resulted to a p.R130Q PTEN
heterozygous germline mutation.Whereas, the second case
is a 37 years old women with clinically confirmed cowden
syndrome, diagnosed with T3 breast cancer (ER+, PR+,
HER2-, gradeII), the second case harbor a germline PTEN
mutation p.T68G on chromosome 23X, and another somatic
point mutation p.Y88X. The two cases where subjected to
a AKT target therapy mainly based on capivasertib, the two
patients with altered PTEN showed a dramatic response to the
medicine and according to the authors’ results and discussion.
According to Gkountakos et al. [89], in lung cancer, the
cases with PTEN protein loss showed the worst associated
prognostic in terms of progression free and overall survival,
also the genetic silencing of PTEN in in-vitro and in-vivo
experimentation showed an upregulation of the EMT marker,
while the induction of PTEN4 in an hypoxia-cultured cells in
the experiment of Kohnoh et al. [90], induced the reversing
of the EMT upregulation. Another shared gene is the ERBB2,
the receptor tyrosine kinase 2 protein’ coding gene, a mem-
ber of the human epidermal growth factor family, for many
years ERBB2 have been an active target in breast cancer
and gastric cancer monitoring and therapy. However,recent
emerging studies have addressed ERBB2 as an actionable

target in solid tumours [91], including colorectal cancer [92],
and lung cancer [93], [94]. A three-year study of a 469
Asian cancer cohort, reported in the manuscript of Lee et
al. [95] demonstrates that ERBB2 alterations were found in
52 patients in which five samples are colorectal cancer patient
and six are lung cancer.

CTNNB1 is the β-catenin coding gene responsible of
cell addition, communication and co-activator in the onco-
genic signaling Wnt pathway therefore CTNNB1 mutations
posses an oncogenic role [96]. The hotspot mutation profile
of CTNNB1 are expressed on Exon3, classified as tumori-
genesis drivers [97]. In the recent studies CTNNB1 muta-
tions have been associated with different cancer types like
the p.SF45P/F in colorectal cancer, the p.S37C in lung
cancer [98], [99] and the p.S37A in breast cancer [100].
Barggio et al. [101], demonstrated the apoptotic resistance of
desmoid cells that harbor the p.SF45F β-catenin mutation
with a downregulation of the RUNX3 protein expression.
CTNNB1 mutations may result to rare cases, such as the
case report of a never- smoked adolescent with a healthy
family history diagnosed as the first reported pediatric case
with lung aedenocarcinomas, where themolecular testing and
sequencing panels found that CTNNB1 mutation is the only
alteration in the 17 years old patient [102].

VI. ASSOCIATION OF SELECTED MI-RNAs WITH
COLORECTAL CANCER (CRC)
In this section, we discuss the role of miRNAs as biomarkers
in COAD and READ in light of the results obtained in step
3 and summarized in Table. 7. To that end, we performed an
enrichment analysis and compiled a list of the most affected
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pathways by the selected miRNA instances, as well as their
associations with colorectal cancer.The graphics in Fig.16,
are collected from miRNet data base, and mirPATH. where
Fig.16.(A), was extracted from the miRNet networkviewer
of the queried miRNAs that have a direct association with
colorectal cancer or gastrointestinal cancer. The result of
the extracted subnetwork mapped 33 out of 56 queried
miRNAs, thus, themiRNAswith the highest interaction edges
are hsa-mir-21, hsa-mir-129, hsa-mir,34a,hsa-mir-200a/b/c,
hsa-mir17, and hsa-mir-221. Fig.16.(B), shows the targeted
genes by the queried miRNAs, as post-transcriptional regula-
tors, hsa-mir-21, hsa-mir-17, hsa-mir-155, hsa-mir-34a, and
hsa-mir-221 are the the miRNAs instances with the highest
gene interaction, with PTEN, CCND1, JAG1, and CDK5.

Fig.16.(C), shows the list of the affected pathways by the
set of queried genes, where >30 miRNAs hits have a potential
gene target implicated in colorectal cancer with more than
60% genes. The selected miRNAs targets the most cancer
related pathways with a coverage of more than 50% coverage
for the WNT _ signalling pathway, p53/mTOR/JAK-STAT
signalling pahways. Fig.16.(D), depicts the distribution of
the queried miRNAs and their potential targeted genes of
the KEGG colorectal pathway, BCL2, CCND1, KRAS, and
PIK3R1 are targeted by more than 10 miRNAs hits. fig
8 in appendix A, visualise the targeted genes in the KEGG
colorectal cancer pathway, where we notice that mainly all
the pathways that have critical biological process such as
apoptosis are mainly affected by the selected miRNAs(The
scheme was retrieved from the DIANA-mirPath results).

VII. CONCLUSION
The sciences of omics and system biology have revolution-
ized health and disease research; by incorporating artificial
intelligence and bioinformatics tools, clinical applications
of personalized medicine are becoming more and more
prevalent. This study illustrates the significance of vari-
ous artificial intelligence and computational methods and
tools in omics-based cancer research. Incorporating biolog-
ical knowledge databases, the paper proposes an upward
integrative omics study using a new variant of the grey-wolf
optimization algorithm and machine learning techniques,
beginning with proteomics profiles and progressing to tran-
scriptomics and micro-RNA profiles. The performance of
the proposed CB-GWO is highly significant, and the use
of a network of protein-protein interactions among the set
of functional proteins significantly improved the selection of
proteomics biomarkers, thereby increasing the classification
rates using machine learning and deep learning models. This
study identified MTOR, CTNNB1, ERBB2, MAPK14, and
PTEN as hub genes with the potential occurence of alter-
ations in colorectal cancer, breast cancer, and lung cancer.
Hub genes along each cancer types and miRNAs in CRC,
were defined and a set of variants with pathogenic classifi-
cation were selected and defined as potential diagnostic and
prognostic cancer biomarkers. As future work, we intend to
investigate the potential therapeutic targets of the selected
genes and hub genes, as well as extend the CB-GWO to

be used on different biologically related feature selection
problems and additional feature selection problems, as the
item-item similarity matrix may replace the PPI network and
the signalling pathway filtration. In the context of multi-
disciplinary collaborative research, we intend to conduct an
in-vitro evaluation of the selected shared gene and miRNA
biomarkers and a potential in-vivo study.

APPENDIX A SUPPLEMENTARY MATERIALS
Table 1 lists the set of the selected genes using phase two
and three of the proposal. fig 1, is the gene-gene interaction
using GENEMANIA. fig 2 is the protein-protein interac-
tion network of the selected proteins for each cancer types.
Table 2 lists the statistics of the used cancer studies in
the functional analysis section. Figs 3, 4, 5, 6, 7 are the
lolipop charts of distribution and frequency of mutations of
the selected shared hub genes. fig 8 highlights the targeted
CRC colorectal cancer related genes by the selectedmiRNAs.
Tables 3, and 4, depict the slected gene biomarkers role in
gene ontology biological process and KEGG signalling path-
ways. All the supplementary figures and tables are available
in the supplementary file.
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