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ABSTRACT Providing reliable connectivity to cellular-connected Unmanned Aerial Vehicles (UAVs) can
be very challenging; their performance highly depends on the nature of the surrounding environment, such
as density and heights of the ground Base Stations (BSs). On the other hand, tall buildings might block
undesired interference signals from ground BSs, thereby improving the connectivity between the UAVs
and their serving BSs. To address the connectivity of UAVs in such environments, this paper proposes a
Reinforcement Learning (RL) algorithm to dynamically optimise the height of a UAV as it moves through
the environment, with the goal of increasing the throughput or spectrum efficiency that it experiences. The
proposed solution is evaluated in two settings: using a series of generated environments where we vary the
number of BS and building densities, and in a scenario using real-world data obtained from an experiment
in Dublin, Ireland. Results show that our proposed RL-based solution improves UAV Quality of Service
(QoS) by 6% to 41%, depending on the scenario. We also conclude that, when flying at heights higher than
the buildings, building density variation has no impact on UAV QoS. On the other hand, BS density can
negatively impact UAV QoS, with higher numbers of BSs generating more interference and deteriorating
UAV performance.

INDEX TERMS Experimental measurements, massive MIMO, reinforcement learning, two-tier networks,
unmanned aerial vehicles (UAVs).

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) can leverage 5G con-
nectivity to perform different applications, such as secu-
rity surveillance, search and rescue operations, and building
inspections. However, providing reliable connectivity to such
UAVs is still an open problem, as they present a paradigm
shift when compared to their ground counterparts such as
smartphones. According to the specifications (release 14 of
3rd Generation Partnership Project (3GPP) [1]), a UAV needs
to maintain continuous connectivity with the mobile network
at speeds up to 300km/h.

The associate editor coordinating the review of this manuscript and

approving it for publication was Cesar Briso .

Previous work, such as [2] and [3], investigates the fea-
sibility of using existing network infrastructure to provide
reliable wireless connectivity for UAVs. These studies con-
clude that currently deployed networks would need to adapt
some of their design configurations, such as increasing BS
heights [4] or changing the tilt of the antennas [5] so as
to enable connectivity for UAVs. Redesigning the terrestrial
network infrastructure may be unfeasible, and an adaptable
solution on the UAV side may be necessary to accelerate the
UAV integration into the network.

Due to the height at which UAVs fly, there are often no
obstacles and therefore no blockage between the UAVs and
their serving BS. However, at high altitudes, the increased
probability of Line-of-Sight (LoS) to ground BSs results in
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high levels of interference at the UAVs. The work in [4]
states that the optimal height at which the UAV can fly to
maintain reliable communication depends on the BS density
and height. Similarly, the authors in [6] show that the vertical
movements of the UAV affect their coverage probability.

Motivated by the above, this paper proposes a Reinforce-
ment Learning (RL) approach for dynamic optimisation of
the height of a UAV connected to the cellular network
once it moves through a city. We propose optimising the
altitude of the UAV, separating it from the problem of a
horizontal trajectory decision. We separate it from the hor-
izontal optimisation trajectory as in some applications, such
as surveillance and organ delivery, the horizontal path will be
defined by the application, and only the altitude will have the
freedom to be adapted. We evaluate our proposed approach
with generated environment and a experimental measurement
dataset. We investigate the proposed solution in a generated
environment to evaluate which are the main characteristics
to influence the approach. In this environment, we vary the
BS and building densities to understand if these variables
interfere with the optimal UAV altitude.

Then to complement the investigation we adapt the pro-
posed approach to be used with data collected from real-
world scenario. To the best of our knowledge, this is the
first work to optimise connectivity of a cellular-connected
UAV by dynamically adapting the height at which it is flying,
as well as the first to evaluate a UAV connectivity optimi-
sation approach on experimentally-obtained real-world data.
The main contributions of this paper are described bellow:

• We define a problem of optimising Quality of Service
(QoS) of an UAV as an RL problem, defining states and
actions.

• We propose a solution to adapt the UAV’s height dynam-
ically, which uses Deep Q-Learning (DQN) and replay
memory to optimise QoS parameters as the spectrum
efficiency and throughput.

• We provide an evaluation of the influence of building
density on the UAV height adaptation.

• We provide an evaluation of the proposed solution in
a generated environment and using a real-world based
dataset.

• We analyse how the proposed solution and the baselines
affect the height.

The remainder of the paper is organised as follows.
In Section II we discuss the existing work done on the issue of
connectivity of UAVs to the wireless network. In Section III
we present the system model of our generated environment.
In Section IV we introduce the problem statement, where we
define the scenario and how the UAV moves. In Section V
the design and implementation of our proposed RL solution is
explained. We detail the parameters of our RL model, as well
as the algorithm. In Section VI, we evaluate our solution for
the scenario where we use generated data. In Section VII-A
we introduce the real-world dataset and detail small changes
on the proposed solution to use this data, then in Section VII,

we present the results using the real-world dataset. Finally,
in Section VIII, we conclude the paper and discuss the issues
that remain open for future work.

II. UAV MOVEMENT OPTIMISATION: RELATED WORK
The works on trajectory optimisation focus on 2D optimisa-
tion and rarely mention the height or the UAV. In this section,
we introduce works that optimise the trajectory considering
the UAV-BS access link.

In [8], the authors propose optimising the horizontal path
of a cellular connected UAV that flies from an initial to
a final location, while maintaining reliable communication
with the underlying mobile network. This approach proposes
that the UAVflies at the fixedminimum height allowed by the
regulatory entities. In this study, the authors do not consider
the interference from BSs to which the UAV is not connected
and blockage from the buildings blocking the link from UAV
toBS. To accomplish the study objectives, a graph representa-
tion of the network is proposed, with 3 solutions: first, a graph
where each node is a BS; second, a graph where the nodes are
the handover points between the BSs; and third, where the
handover points are the optimal point in an intersection area.
Dijkstra algorithm is used to find the route of the UAV and
show it is close to the optimal solution. Height optimisation
was not considered, and the authors conclude that introducing
a height variable to the problem is not a trivial task and
that their proposed horizontal trajectory solution is not the
most appropriate one for 3D movement. They conclude that
it would be unfeasible to represent all the possible heights a
UAV could have at all the nodes, as each of them should be a
new node increasing the system’s complexity.

The work in [9] creates an optimised path with the objec-
tive of maintaining a uninterrupted connection to the BSs.
This work only considers the uplink from the UAV to the
BS network. This work also highlights the importance of
the altitude of the UAV and calculates the upper and lower
bounds for the height at which the UAV should fly to satisfy
the minimum rate requirements of the uplink, considering the
known BSs locations. Authors calculate a range of heights at
which the UAV should fly to provide a minimum achievable
rate. In addition, building blockage on the link UAV - BS is
not considered.With this approach, eachUAVdecides its next
horizontal location. The authors conclude that the altitude is
vital tominimise the transmission delay of the UAV and that it
should be a function of the ground network density, network
parameters as the transmission power, ground network data
requirements and the UAV’s action. The exact height of the
UAV is not calculated as it would increase the complexity of
the algorithm exponentially.

The height planning of a connected UAV is a new field,
however several works have studied the height placement of
UAVs acting as BSs. The techniques used to optimise the
heights at which a UAV acting as a BS should fly can also
overlap with our problem of interest as it also consider the
radio link between a UAV and a element that is located at
lower heights.
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TABLE 1. UAV movement optimisation works.

In many examples of the prior art, works on UAV wireless
connectivity, either for UAV as network end-user or UAV as
BS, did not consider the effect of interference conditions. The
quality of the link between UAV and a BS can suffer from
interference coming from other BSs, from objects or build-
ings intercepting the directional connection between them
(shadow zone), or even the natural fading on the propagation.
The work in [13] assumes UAV as BS and provides coverage
to Ground User Equipments (GUEs). The authors propose a
sigmoid model to investigate the probability of LoS channel
in the UAV - GUE link as a function of the vertical angle
between them. In the paper, a UAV with an omnidirectional
antenna flies over an urban area. The authors do not consider
any source of interference, leaving the link limited with only
the path loss. They conclude that a bigger angle decreases
the probability of a building block the link. They also add
that there exists an optimal height for the UAV BS, which
increases the coverage area.

In [14] and [15], authors applied stochastic geometry to
model the coverage probability of a UAV-BS network in a
fading-free and Nakagami-m fading channel. The authors fix
the number of UAVs operating in an area at a certain height
above the ground and demonstrate that with an increase
in height, the coverage probability decreases. Also, in [15]
authors demonstrate that bigger values of fading parameter
reduce the variance of the Signal-to-Interference-and-Noise
Ratio (SINR) for the GUE.

In [10] authors propose the approach to calculate the 3D
position of UAV as a BS, by applying the interior point opti-
miser of bisection search. Their main objective is to maximise
the coverage area by a UAV cell without providing to a GUE a
QoS below a threshold. They consider building blockage and
non-Line-of-Sight (NLoS) between the UAV as BS and its
users. The covered area changes depending on UAV’s height,
and for the lower density of GUEs the coverage is larger when
compared to higher density, showing the worst coverage for
urban scenarios.

In [11], the authors find the optimal positions for a network
of UAV as BS in order to minimise the number of BSs
required to provide the needed QoS for their users. The study
considers the blockage generated by buildings in an urban
area and NLoS occurrences between the UAV and its users.
The proposed solution used an heuristic algorithm based on
the number of BS that can serve the GUE, coverage and
capacity requirements. The number of users on the network

was essential to define the height and number of UAVs as
BSs. The authors concluded that with their solution it is
possible to decrease the amount of UAV as BS and provide
the same quality on data rate.

Similarly, the work in [12] proposes a 3-step solution for
horizontal and vertical optimisation for UAV-BSs with differ-
ent machine learning algorithms for each step. The bounds of
the UAV height are the UAV maximum transmission power
for its greatest height, and the minimum required distance
between the UAV and the users, defined by the regulatory
entities, for the minimum height. In the first instance, it con-
siders a static problem, where the users of the network do
not move. As a first step, it partitions the area into cells for
the UAV-BSs to cover, by applying K-means (GAK-means)
algorithm. Next, it uses a Q-learning algorithm, where each
UAV is an agent and has to decide its position by learning
from its mistakes. As the final step, they consider a scenario
where users move between BSs and the network have to
adapt to these movements. The authors apply Deep Neural
Network (DNN), as it enables each UAV to gradually learn
the dynamic movements of the users. They conclude that the
proposed solution outperforms the K-means algorithm and
IGK algorithm with low complexity.

The UAV-BS scenario defers from the connected UAV
problem because the connect UAV moves through the city
and do not divide it into cells, so the use of K-mean for
clustering, for example, is not applicable. However, the use of
RL to adapt its height depending on the cellular network radio
technology and the regulatory entities definitions is a valuable
insight. To apply DNN into the connected UAV scenario,
one needs to investigate what is relevant to a UAV as User
Equipment (UE), which are the information a UE has from its
connection, how the UAV can interact with the environment,
and design a model that can learn all these characteristics and
be effective through different topologies.

Table 1 provides a summary of the state of the art in
connected UAV movement optimisation.

While some existing work has looked into optimising the
height of UAVBSs, there is a significant lack of work looking
at UAVswhen they are the end users. In this paper, we propose
dynamically optimising the altitude of the UAV. The pro-
posed solution applies RL to decide, based on environmen-
tal measurements, if the UAV needs to move above, below,
or stay at the same height in order to experience the best QoS
possible from the cellular network in the long run.

5968 VOLUME 11, 2023



E. Fonseca et al.: Adaptive Height Optimization for Cellular-Connected UAVs: A Deep Reinforcement Learning Approach

III. SYSTEM MODEL
We consider an urban scenario where a UAV flies while
connected to the cellular network. The UAV’s initial and final
positions are denoted as (x1, y1, z1) and (xf , yf , zf ), with f
representing the total number of discrete steps in the exper-
iment. x and y denote coordinates on the horizontal plane,
while z denotes height above ground. At each step, the UAV
moves in the x coordinate in direction to its final destination.

A. BUILDING AND BS DISTRIBUTION
The buildings distributed in the area might affect the UAV
LoS, as they can block the channel between the UAV and the
BSs. In order to check if a signal is in LoS or not, we verify if
there is a tall enough building between the UAV and BS. If the
signal is blocked by a building, NLoS, it causes the signal
to be attenuated, which is reflected in the SINR expression
in Equation 1. We use a commonly-adopted model for the
urban environment which models the buildings as a square
grid with the locations of building centerpoints (xbl, ybl), that
was presented in [16] and used in works as [10], [11], and
[17]. The area occupied by each building, Bla, is constant,
and the density of buildings, Builddens, is denominated by
the number of building per square kilometre. The individual
building height, hbl is randomly distributed according to a
Poisson distribution, with scale parameter a.

To define the position of the building centerpoints and
BSs we run a Poisson distribution with the building and BS
densities as input.

B. UAV AND BS ANTENNAS
The UAV is equipped with one omnidirectional antenna to
connect to a serving BS and receive data. The antenna has an
omnidirectional radiation pattern, and it has an antenna gain
equal to 1. We express the coordinates of the BS which the
UAV is associated as bs = {xs, ys} ∈ 8 and its horizontal
distance to the UAV as rs. The BSs that the UAV is not
connected will be called as neighbours BSs.

The BS has a directional antenna with a horizontal and
vertical beam-width ω along with a rectangular radiation
pattern; The antenna gain is defined as η(ω) = 0 outside of
the main lobe; and 16π/(ω2) inside of the main lobe.
Spectrum efficiency SE is the maximum bit rate that

can be transmitted per unit of bandwidth. It is a measure
of the QoS in the network. The Shannon–Hartley theorem
bounds the maximum achievable rate a user can reach once
it establishes a wireless link. As we want to improve user’s
experience providing reliable connectivity to UAVs, our pur-
pose is to increase spectrum efficiency. We calculate the
spectrum efficiency value for the calculated SINR based on
Shannon–Hartley theorem. The SINR is a function of the
antenna gain and channel model and given as:

SINR =
pη(ω)c(1x2 +1y2)−αts/2

IL + IN + σ 2 (1)

where p is the BS transmit power, αts is the pathloss exponent,
ts ∈ {L,N} indicates whether the UAV has LoS or NLoS to its

serving BS,1x2 and1y2 is the distance between the BS and
the UAV, c is the near-field pathloss, σ 2 is the noise power,
and IL and IN are the aggregate interference from LoS and
NLoS, respectively.

C. HORIZONTAL ROUTE ADAPTATION
The UAV horizontal route is defined by an independent
approach that focuses on bringing the UAV closer to the BS
it is connected. We introduce this adaptation to the horizontal
path so we can investigate the independence of the proposed
height adaptation method to the horizontal route. The UAV
flies in direction to its final destination but approximates its
Y trajectory to get closer to the BS that it is connected by
d . At every time step, the UAV connects to the BS with
stronger SINR and get closer in the Y coordinates to this BS
by d , being maximum of d distant to the straight line between
(x1, y1) and (xf , yf ) as illustrated in Figure 1b. The focus of
our approach is to investigate if the approach is able to adapt
the height of the UAV and can adapt to any underlying routes
decision that a UAV might take during its path, showing its
independence from the horizontal path decisions.

D. UAV-BS LINK
The UAV connects to the BS with the best SINR at all times.
Therefore, as the UAV moves through the environment some
BSs become stronger and others weaker. When it reaches the
point where its serving BS is no longer the BS with strongest
signal, it will reconnect to the new LoS with the strongest
signal. We assume that this handover occurs seamlessly, and
there is no disconnect or loss of signal quality when it hap-
pens.

We assume that the UAV will have access to the SINR
measurements from the BS it is connected to and from the
5 neighbours BS with strongest signals, the spectrum effi-
ciency it is achievingwith the serving BSs, and its height at all
steps. SINR and spectrum efficiency data is easily obtained
by the UAV from its cellular connection, while the height
information is obtained via other UAV sensors located on the
UAV.

IV. PROBLEM STATEMENT
In this work, as the focus is on UAV height optimisation and
many approaches for optimising 2D trajectories already exist,
we assume a simple horizontal path. Note that simplification
of the path does not affect the applicability of our proposed
approach, as due to its design, it can be integrated with more
complex horizontal path algorithms (which are out of the
scope of this paper). In other words, the only coordinate that
can be optimised is z. We assume that the maximum height
change at each time step is d , so |zt − zt−1| ≤ d , where |.|
denotes absolute value.

Usually, UAVs are allowed to fly in a height range defined
by safety regulation, with the minimum allowed height
denoted as Zmin, and the maximum allowed height as Zmax .
We assume that the UAV starts at Zmin. Figure 1 shows UAVs
horizontal movement and vertical movement in the generated
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FIGURE 1. UAV vertical and horizontal movement assumed in this paper.

environment analyses. Figure 1a illustrates the possible path
of the UAV, where d is the maximum distance the UAV can
move up or down in each step. It is an representation of a
limitation of how much a UAV can move realistic up or down
and horizontally in a time-step.

Our main objective is to optimise z coordinate at each step,
in order to improve the QoS experienced by the UAV. The
metric used to represent the QoS is the spectrum efficiency
SE .
We formulate the optimisation problem as follows:

max
(z1,...,zf−1,zf )

f∑
t=1

SE(t); (2a)

s.t. zt > Zmin ∀t (2b)

zt < Zmax ∀t (2c)

|zt − zt−1| ≤ d ∀t (2d)

where the objective is to maximise the SE over the path,
considering the constraints of the UAV be inside the allowed
altitudes.

We assume that the UAV will have access to the SINR
measurements from its connection, the spectrum efficiency
SE of its actual location, and its height at all steps. SINR
and spectrum efficiency data is easily obtained by the UAV
from its cellular connection, while the height information is
obtained via other UAV sensors located on the UAV.

V. PROPOSED SOLUTION
To solve the height optimisation problem for a specific posi-
tion of the UAV given a particular topology of the BSs and
buildings, one could apply stochastic geometry as in [18].
The main issue with this approach is that to represent this

FIGURE 2. Graphical representation of the designed DNN.

problem via stochastic geometry, one has to know the sta-
tistical distribution of the features of the environment for
each position that the UAV assumes during flight. This can
be computationally expensive to run and the environmental
statistics may not be accurate to what the UAV would find
once it is flying in the real world.

A. RL AGENT DEFINITION
To tackle this issue our solution is based on RL. In particular,
we apply DQN as it does not require a predefined model
of the environment, since it learns by interacting with the
environment in an online manner. The agent of our model is
the UAV, as it is the one taking the action of changing the
height. Bellow we define the other main components of our
model.

1) STATE SPACE S
S is all the possible values of the state, and s is the individual
single value of the state. We just considered in the state
space values a normal UE would have from the network and
measurements of sensors that a UAV should have to have a
safe fly. Follow the components of S:

• Height z: which is obtained by UAV sensors and it is
relevant for UAV’s decision-making process, as in order
to know whether to move next and stay within the hard
limits.

• Received SINR and the strongest 5 SINR of neighbours
BSs-SINRn: which is obtained by UE sensors to perform
the measurement reports. This value impacts the UE
QoS that is what we intent to maximise. We choose 5 as
these would be the most important interferes to the link
UAV-BS and we need to fix a value for the model.

• 4 last z, SINR, SINRn, a, r : which will be stored from the
previous steps. In order to achieve better optimisation,
we extended the state with the four previous z, SINR,
action a and reward r , following the lines of the original
DQN implementation [19], as well its implementation in
UAV connectivity [20].
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The agent has as input at each time step st , where t repre-
sents the time step the follow state.

s = {SINRt , zt , SINRt−1, zt−1, at−1, rt−1, SINRnt−1,

SINRt−2, zt−2, at−2, rt−2, SINRnt−2, SINRt−3, zt−3,

at−3, rt−3, SINRnt−3, SINRt−4, zt−4, at−4, rt−4,

SINRnt−4}.

2) ACTION SPACE A
The action is the adjustment of the UAV height. An action
a ∈ {−d, 0,+d} will be taken at the end of each time-step,
where:

a = −d ⇒ zt+1 = zt − d

a = 0⇒ zt+1 = zt
a = d ⇒ zt+1 = zt + d .

3) REWARD R
As the primary goal of our approach is to improve the UAV
QoS during flight, our reward at each time step rt is defined
as the spectrum efficiency achieved after the action at point
xt+1 at height zt+1 in the experiment.
Ourmodel has two hidden layers, with 200 neurons in each.

During our investigations we tried different designs, and the
model with 2 layers showed a better performance. Figure 2
illustrates the graphical representation of the proposed DNN.

In our solution, we use epsilon greedy approach, this is
an strategy to balance exploration and exploitation in RL
algorithms. We selected the initial ε = 1, where we select
an action at random, and we decrease it at every step of the
training process until it reaches 0.05, which in our experiment
took 30 steps to reach.

B. HYPER-PARAMETERS
We needed to perform a deep investigation to choose the
hyper-parameters and design the model. We changed several
of the hyper-parameters and inputs of the model until finding
the proposed one. These parameters were experimentally
selected among a number of model variations in which the
number of layers, number of neurons per layer, activation
function, number of epochs, regularisation, and the inputs
were varied. As we apply experience replay, the epochs are
how many times the model is trained with the mini-batch at
each time-step. Depending on the complexity of the DQN
network (for example number of input features, number and
size of layers), the training can be performed in a few steps,
or require thousands or larger number of steps. However,
for the UAV height adaptation scenario it is imperative to
have as few training steps as possible, so that the model can
learn to optimise height quickly in any new city environment
is applied in. In order to have a fast adaptation in a new
environment, the model needs to adapt its weights quickly
to not interfere with the UAV performance at the end of the
path. For this evaluation, the value of ε and ε-decay are 1 and
0.9 respectively, effectively meaning that the proposed model

trains in 30 steps. We apply replay memory as an strategy to
accelerate the learning process, where at each step the model
trains with the mini batch for the number of epochs.

C. RL ALGORITHM FOR UAV HEIGHT OPTIMISATION
The pseudo-code of the RL algorithm to optimise zt is shown
in Algorithm 1. Some parameters must be chosen and passed
as input to the code to run the algorithm. They are the Zmin
and Zmax , the minimum andmaximum allowed height that the
UAV could fly. X and Y are the vectors with the horizontal
coordinates the UAV should acquire during its movement.
Where X = x1, x2, .., xf and Y = y1, y2, .., yf , as the
horizontal path is predefined. ε, εDecay and εmin are needed to
apply the ε-greedy approach. The input ε is the starting value
for ε, and εDecay is a value that will multiply ε and reduce its
value at each interaction until εmin.
β and βmin are, respectively, the batch array and the mini-

mum size of the batch needed to apply memory replay. While
usingmemory replay, the number of epochs to train the model
and the Discount factor to calculate the new Q value (newQ)
is required. Finally, var is an integer that indicates how often
the target model should be updated. The expected output of
this algorithm is the UAV next height in the next step.
The first step of the proposed RL-based algorithm for

UAV height optimisation is to initiate the DQN model and
the target DQN model, lines 1 and 2, respectively. Then we
initialise the UAV coordinates in line 3 and initialise variable
t , which refers to the timestep the UAV is during the each
step. The while statement in line 5 is the overall while loop
that represents the full flight path of the UAV, and has as many
steps as that set of X and Y .
Inside the step loop, it is needed to update t and collect

the current value of SINR and SINRns. Then, we update the
state value in st . After that, we randomly select a number,
randomNum, and compare its value to ε in line 10. This
step is necessary to evaluate the comparison of the ε-greedy
approach. In line 10, we also check t value to be at least 4,
as we need the state information values from the last 4 states
for the input of the model. If the condition is satisfied, which
means randomNum > ε and t > 4, we use the DQN
model to predict the best action at . If the condition is not
satisfied, we randomly choose the action at . Once the action
at is defined, we execute it in line 16, ie modify the UAV
height, moving the UAV up or down if it does not go above
the permitted flight boundaries (Zmin and Zmax). Then, the
UAV also moves based on the sets X and Y its horizontal
coordinates to the next position in line 17. We obtain the
reward which represents the quality of our selected action,
and is later used to update the learning process. The reward rt
is equal to the measure throughout after executing the action,
as shown in line 18. The ε decrease value is then performed
in lines 19 to 21. The ε decrease is needed to decrease the
amount of of random actions we perform once the model is
being trained.

After decreasing the value of ε, we then save the new state
st+1 with the action at , reward rt and the state st , in order to
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Algorithm 1 RL-Based Algorithm for UAV Height Optimi-
sation
Input: β; βmin; {//Batch parameters}
ε; εDecay;εmin; {//ε-greedy parameters}
d ; Zmin; Zmax ;x;y;{//Coordinates parameters}
epochs;var ;Discount;{//Replay memory parameters}

1: DQNModel ← InitialiseDQLModel()
2: targetDQNModel ← InitialiseDQLModel()
3: (xt , yt , zt )← (x1, y1,Zmin)
4: t ← 0
5: while (xt , yt ) 6= (xf , yf ) do
6: t ← t + 1
7: SINRt ← uav.GetCurrentSINR(xt , yt , zt )
8: SINRnst ← Get.SINR.Neighbours(xt , yt , zt )
9: st ← SINRt , SINRnst , zt , st

10: randomNum← RandomNumber(0− 1)
11: if randomNum > ε and t > 4 then
12: at ← DQNModel.predictMaxValue(st )
13: else
14: at ← Random(+d, 0,−d)
15: end if
16: uav.takeSelectedHeightAction(d,a, Zmin, Zmax)
17: (xt , yt )← (xt+1, yt+1)
18: rt ← uav.GetQoS(xt , yt , zt )
19: if ε > εmin then
20: ε ← ε ∗ εDecay
21: end if
22: st+1← at , rt , st .removeState(s−4t )
23: β ← StoreTransition(β, st , at , rt , st+1)

{//Applying replay memory}
24: if length(β) > βmin then
25: tempBatch← BatchSample(β)
26: for i in 1 : length(βmin) do
27: CurrentQValue ←

DQNModel.predict(tempBatch.state)
28: FutureQValue ←

targetDQNModel.predict(tempBatch.nextState)
29: maxFutureQ← FutureQValue.maxValue(i)
30: newQ(i) ← tempBatch.reward + Discount ∗

maxFutureQ
31: newQTable ← CurrentQValue(tempBatch.a(i))
32: newQTable ←

DQNModel.update(tempBatch.state)
33: end for
34: DQNModel.train(tempBatch.state, newQtable,

epochs)
35: end if
36: if t%var then {//Updating target model}
37: targetDQNModel ←

setWeights(DQNModel.getWeights())
38: end if
39: end while

apply the replay memory later. Therefore, we need to discard
the most old values from the previous 4, that refer to the 4t

timestep, so st+1 has only its last 4 timesteps. Once we have
the values of at , rt , st and st+1, we can save them in the batch
β, which will record the last values in order to train the model
later using them.

To apply replay memory, the batch β needs to have a
minimum size that is determined before the algorithm starts
by βmin. In line 24, we check if this condition is satisfied.
If it is not satisfied, we cannot yet apply replay memory.
If it is satisfied, a batch sample of size βmin is taken from
β and saved in the variable tempBatch, as illustrated in line
25. For each value in tempBatch in the loop that starts in
line 26, we keep in the variable CurrentQValue the update
of the Q value made by the actual DQN model in line 27.
Then, update the Q value for the tempBatch next state with
the target model and save in the variable FutureQValue in line
28. In line 29, for each value in tempBatch, we store the max-
imum Q value calculated by the target model inmaxFutureQ.
In order to update the new Q value in line 30, newQ, for
each value in tempBatch, we weight the formula by Discount
the actual reward of the saved values with the calculated
maxFutureQ. In possession of the newQ value and the states
from tempBatch, we calculate the new Q table in lines 31 and
32, newQTable, with the values of the chosen actions updated.
Thenwe train themodel with the tempBatch, the newQTable a
number of epochs defined in the input. We then update, or do
not update, the target model in line 36 to 38, and come back
to the beginning of the loop. The target DQNmodel increases
stability during the replay memory implementation, as the
target network only updates its weights at each var step.

The code where we apply Algorithm 1 is available to the
community in our public GitHub.1

VI. EVALUATION
We evaluate how our RL approach can adapt the UAV heights
with a purpose to optimise the UAV’s QoS. The main points
that we want to evaluate in this section are how the BS
density and building densities influence the optimal height
of a connected UAV.

We investigate the BS density influence to the UAV height
as it can influence the interference suffered on the UAV.
Furthermore, as the BSs can be of different heights, the
density of the building can also influence the LoS between
the UAV and the BSs, which can interfere with the QoS. As it
was never investigated if the building density influences the
connected UAV, we designed an evaluation on the building
density variety and if it affects the approaches.

In order to assess each of these factors separately, we divide
this section in three parts. First, we introduce the benchmarks
used to compare our proposed approach, then we analyse the
mean spectrum efficiency by BS density and building density.
Finally, we inspect height changes within each approach.
We investigate the mean spectrum efficiency as the QoS
metric that needs to be improved, and we show how the
approaches behave on the actual height changes. We run the

1https://github.com/Erikagpf/DQN-for-UAV-height-adaptation
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TABLE 2. Values of hyper-parameters for the proposed DQN model.

same algorithm in 100 different Monte Carlo (MC) trials,
simulating 100 different cities for each BS and building den-
sity. The evaluation always start the model from scratch, so it
does not use the trained weights from the last run emulating
a new Mc trial.

The hyper-parameters that provided the best results and
were used in the evaluation of the proposed approach are
illustrated in Table 2.

A. BASELINES
We choose five different height selection strategies to which
we compare performance of our proposed RL algorithm. For
the first one, we use the baseline proposed by Zhang [8],
which suggests that the UAV maintain the minimum allowed
height during its flight. One of the most common approaches
to UAV height selection is to maintain a constant height [2],
[4], [5], [21], but there is no consensus on which height value
to choose. To make a fair comparison, we also benchmark our
approach against two constant height values. These heights
will be the maximum possible height (120 m), and half of
the maximum (60 m). When following these fixed height
strategies, the UAV will begin at the minimum height at
timestep 1, before increasing its height in each timestep until
it reaches the required height, after which it will make no
further adjustments.

To confirm that our solution is actually learning based on
observed environment information and not acting randomly,
we also compare it to a bounded Random walk height selec-
tion strategy, in which the UAV in each timestep randomly
selects one of three actions: increase the height, decrease the
height, or keep the current height. It is bounded as all the
solutions and cannot fly outside the allowed flight range.

In order to compare our solution to a more complex base-
line, we implement an approach that we call One-step-ahead
solution. In the One-step-ahead approach, the UAV knows
whether the maximum SINR in the next time step will be
found above or below its current height, and will move up
or down (in a fixed increment of d = 10 m) depending
on this knowledge. To be able to apply the One-step-ahead
solution, the UAV needs previous information about the envi-
ronment; this is not feasible in a real-world application, but
we include this to assess whether and by how much such
information would improve performance when compared to
our RL approach.

We also compare our RL solution with one based on opti-
mal height at each time step as obtained from the real-world

FIGURE 3. Spectrum efficiency per unit of bandwidth (bits/s/Hz) for
3 different BS densities and medium building density.

dataset. In this approach, it is assumed that the UAV is able to
move to any height in the next timestep, without restrictions
of d . This represents the ideal-case performance which would
not be possible in a real-world UAV application.

Bellow are benchmark approaches:

• Zhang [8]: this benchmark proposes that the UAV
should maintain the minimal allowed height at all times.

• Constant at 60 m: this benchmark starts at the minimal
height, like all others, and then moves up at every step
until it achieves 60 m height. After achieving 60 m, the
UAV should not move up or down.
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• Constant at 120m: this benchmark starts at theminimal
height, like all others, and then moves up at every step
until it achieves 120 m height. After achieving 120 m,
the UAV should not move up or down.

• Random walk: this benchmark chooses its action ran-
domly at each step.

• Optimal height: this is a reference benchmark of the
maximum possible QoS values. In this approach, the
UAV does not have any limitations on the maximum
height change from step to step and also know which
height has the maximum QoS.

• One-step-ahead: this benchmark follows the optimal
height next position to decide its next action. If in the
next step the optimal height is above the actual height of
the UAV, the chosen action will be to move up. If in the
next step the optimal height is bellow the actual height
of the UAV, the chosen action will be to move down.
In case the optimal height in the next step is the same as
the actual height, the UAV should not move.

B. SPECTRUM EFFICIENCY
In this section we analyse themean of spectrum efficiency per
unit of bandwidth, that is a mean of the spectrum efficiency
over an entire episode, for varying BS densities and building
densities. We inspect the spectrum efficiency as this is the
parameter that we wish to optimise.

1) VARYING BS DENSITIES
To demonstrate how the RL solution can have its performance
affected by different BS densities, we study in detail three dif-
ferent BS densities (1, 2.5, 5)/km2, denoted as low, medium
and high, as illustrated in Figure 3.

Figure 3a shows the mean spectrum efficiency per
approach. As expected, the optimal height provides much
better spectrum efficiency, achieving median of 23 bits/s/Hz.
This happens because it does not have any movement restric-
tion, being able to move any distance from step to step. For
low BS density, One-step-ahead, Zhang [8] and the proposed
RL approach perform similarly, with all archiving median of
20 bits/s/Hz. The constant height at 240 m is the approach
with the worse spectrum efficiency, with 15 bits/s/Hz, show-
ing that high heights for low BS density do not perform
as good as other approaches do. Constant at 120 m per-
formed slightly worse than the Random walk approach, with
median of 18.5 bits/s/Hz and Random walk approach with
19 bits/s/Hz. It is interesting to note that the approaches do
not vary much its mean spectrum efficiency, and all have a
relatively small first and third quartile of around 2 bits/s/Hz,
with exception of Constant at 240 m with 4 bits/s/Hz.

Figure 3b shows that our RL approach performs better,
4%, then Zhang [8] for medium BS density, and 26% bet-
ter than Constant at 120 m, Constant at 240 m and Ran-
dom walk. It indicates that maintaining higher heights at all
times provides worse spectrum efficiency for the medium
BS and building densities when compared to the proposed
RL approach that adapts the height dynamically to the

environment. One-step-ahead showed the best performance
compared to the approaches that could only move ‘‘d’’,
achieving 14.5 bits/s/Hz, showing that formediumBS density
having previous knowledge of the radio characteristics of the
environment can improve the UAV QoS.

When investigating the high BS density in Figure 3c, Con-
stant at 120 m and Random walk are the worst solutions
achieving 3.5 bits/s/Hz, with the Zhang [8] being slightly
better than them, showing that maintaining the lowest altitude
for all topologies is not the best approach. The proposed
RL approach shows performance comparable to Constant
at 240 m, with 4% better performance. Therefore, its third
quartile is higher, which means that the RL performed better
in more runs. The One-step-ahead approach showed the best
performance with its median achieving 9 bits/s/Hz, showing
the previous knowledge of the environment can improve
UAVs QoS. However, it is unrealistic to expect to have this
knowledge for each set of coordinates in the environment.

When analysing a macro view between the different densi-
ties, Figure 3 shows that the general mean spectrum efficiency
for low BS density is much better than for medium and high
BS density, with solutions archiving near 20 bits/s/Hz.We can
also analyse that One-step-ahead and the proposed RL solu-
tion are always the best approaches for all densities, showing
that an intelligent and adaptable decision can provide a good
QoS for all densities. Moreover, the proposed RL solution
can adapt its response to the environment on the fly without
previous knowledge.

2) VARYING BUILDING DENSITIES
Figure 4 illustrates the spectrum efficiency for low and
high building density. In Figure 4a, the One-step-ahead pro-
vides the best approach achieving median of 15 bits/s/Hz,
and the proposed RL approach is the second best with
12.5 bits/s/Hz. We can observe that Zhang [8] approach
achieves 11.7 bits/s/Hz, that is 6% worse than the proposed
RL solution. The Constant at 240 m performs as well as the
Constant at 120m, and both are worse than all other solutions,
which show a deterioration for those heights, implying that
the UAV would be most of the time in a poor coverage area.
Random walk approach performed slightly better then the
higher constant approaches, showing that the Random walk
movement of the UAV is comparable to maintaining high
constant values.

Figure 4b illustrates the mean spectrum efficiency for high
building density. It shows a similar pattern when compared
to the low building density, with One-step-ahead being the
best approach and the proposed RL solution being slightly
better, 2%, than Zhang [8]. We can conclude that since it
has no impact, it is providing an indication that building
density is not a factor that needs to be taken account when
determining UAV’s height. It shows that that same approach
should work in density urban areas and rural ones. As an
overall performance between the three different densities,
we discovered that the difference in the building density
when the UAV is flying above the buildings did not influence
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FIGURE 4. Spectrum efficiency per unit of bandwidth (bits/s/Hz) for
different building densities with medium BS density.

the mean spectrum efficiency as the approaches performed
similar in all the distributions.

C. HEIGHT VARIATION
While in the previous section we focus our analyses on
the spectrum efficiency of each approach, in this section
we inspect in more detail underlying height variations that
achieve the discussed performance.

To make a more detailed investigation over the 100 MC
trials, Figure 5 illustrates the mean of the heights for different
BS and building densities. The constant approaches have
no variance on the height after they achieve their constant
heights. In Figure 5a, the average height of the optimal height
approach varies with the BS density, being lower for low BS
density, and higher for high BS density. As we can notice,
the intelligent approaches, One-step-ahead and the proposed
RL solution, adapt their altitude to the one that better serves
the BS distribution, also increasing its heights when the BS
density increases. The Random walk approach, as it does not
consider any information of the environment, it also main-
tains, in average, the same height in all cases.

When we analyse in Figure 5b the height adaptation by
the building density, the optimal height is not related with

FIGURE 5. Height analyses for varying BS and building densities.

the density. The approaches does not change its mean height
considerably during the different building densities. The RL
approach varies from 68 m in medium building densities, to
83 m in high building densities.

Observing behaviours for both BS and building densities,
we conclude that RL is a competent approach to solve UAV
height optimisation. As we can see in Figure 5, the RL solu-
tion demonstrated to be learning the best height, resulting in
a spectral efficiency improvement. We can also conclude that
the RL approach does not make changes on its height at all
steps, making intelligent changes when needed and avoiding
spending extra energy to move its height at all steps.

VII. REAL-WORLD DATA EVALUATION
In this section, we evaluate how our RL approach can adapt
the UAV heights with the objective to optimise the total
throughput.We first introduce the experimental measurement
data-set and then provide a detailed evaluation of the pro-
posed solution using the real-world dataset.
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FIGURE 6. Testbed area from the top. Macrocells are labelled in purple,
and small cells are denoted with white icons—the measurement area
where the UAV flew is marked in green.

A. EXPERIMENTAL MEASUREMENT DATASET
To evaluate the proposed height adaptation solution, we also
use the real-world measurements obtained by a UAV con-
nected to a two-tier cellular network in two different areas of
Dublin city’s Smart Docklands, which includes massiveMul-
tiple Input Multiple Output (MIMO) macrocells and MIMO
small cells. Below, we recap the details of the experiment
relevant for our evaluation, while full details of measurements
are presented in [22].

The experimental cellular network testbed, in which the
measurements were conducted, is shown in Figure 6. The
macrocells are a ZTEmodel ZXSDRB8300with a 64 element
antenna array Massive MIMO system, which is positioned
29 meters above ground. The lamp post small cells are Air-
Speed model1250 with 4 antenna elements that apply 2 × 2
MIMO. Both the macrocell and the small cells operate on the
B42 channel of the 3.6GHz frequency band. The small cells
operate on the frequency range 3410-3430 MHz, while the
macrocells operate at 3580-3600MHz. The macrocell anten-
nas have a 15 degree Half-Power Beamwidth (HPBW), and
the small cell antennas have 90 degree HPBW. Themaximum
transmit power of the macrocells and small cells is 49.9dBm
and 25dBm, respectively. The small cells wirelessly backhaul
into the macrocell tier using the macrocell B42 channel,
in effect acting as relays between the UE and the macrocell.
The two-tier network has a hierarchical cell structure [23],
where the small cell tier have a higher connection priority
than the macrocell tier. This means that a UE will prioritise
connecting to the small cells even if it detects a stronger signal
from a macrocell.

Connectivity data was collected in two environments:
Grand Canal Quay (GCQ) and North Wall Quay (NWQ),
as illustrated in Figure 6. The UAV flew at a fixed height
back-and-forth in the designated areas. This flight pattern
was repeated at 10 meter increments for all heights between
30 and 120 meters (the legal flight ceiling in Dublin).

Table 3 summarises the main characteristics of the experi-
mental environment for NWQ and GCQ. The Table shows:

TABLE 3. Collection environments.

the height of the BS antennas; the velocity the UAV was
flying; the total distance the UAV passed in each height; the
quantity of measurements reports in each area, denoted as
steps; the size of each step in meters; the variation of heights;
the building height variation; and the distance d in each
scenario. The measurements were reported every 2 seconds
most of the time. We also observe that the flight in NWQ
resulted in fewer measurements despite being the one where
the UAV flies for a longer distance. While a UE is perform-
ing handover, it does not sense the spectrum; consequently,
it does not report any measurement. In the small cell area,
the UAV was performing handovers, which resulted in fewer
measurement reports when compared to the macrocell area,
where the UAV did not perform measurement reports.

In order to use the proposed approach with the available
real-world data we had slightlymodify the definition of an RL
agent. In the real-world data the QoS information available
is the throughput, so we used this information instead of the
spectrum efficiency in the proposed solution. The real-world
dataset also had no information about the sensed neighbours,
so we do not include this as input of the model. The remainder
or the algorithm is exactly the same as in the generated
environment. The final state space of the adapted solution is:
s = {SINRt , zt , SINRt−1, zt−1, at−1, rt−1, SINRt−2, zt−2,
at−2, rt−2, SINRt−3, zt−3, at−3, rt−3, SINRt−4, zt−4, at−4,
rt−4}. A sample of the used data in illustrated in Table 4.

B. EVALUATION OF THE PROPOSED RL APPROACH
We evaluate performance of our approach in two different
sets of real-world data: data collected in NWQ, with small
cell connectivity, Section VII-B1, and data collected in GCQ,
with macrocell connectivity, Section VII-B2. We start the
evaluation with the throughput analysis, followed by the anal-
ysis of the height adaptation through the path. We evaluated
the model after the training phase in this section. The results
shown are related to the last 100 UAV steps.

1) NWQ ANALYSIS
Table 5 presents the average throughput of the investigated
approaches; for non-deterministic solutions, which means the
ones that might change at each run, we present a mean over
100 trials. We inspect the throughput as it is our parame-
ter that we wish to optimise. By construction, the Optimal
height at each step leads to the highest throughput. Therefore,
we consider the Optimal height at each timestep to be the one
with the highest throughout at that timestep. Our proposed
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TABLE 4. Sample of data from GCQ area used in the evaluation.

TABLE 5. Mean throughput (Mbps) over 100 trials. Based on flight data
obtained in the NWQ area.

approach achieves 37 Mbps with a variance of 1 Mbps,
which is the highest throughput on the feasible solutions.
One-step-ahead achieves 35 Mbps, that is the second highest.
The approach proposed by Zhang [8] performs similarly to
the One-step-ahead solution with 35 Mbps, with the added
benefit of not needing a priory knowledge of the environ-
ment. Nonetheless, our proposed RL approach provides the
best throughput and outperforms Zhang [8] and the One-
step-ahead benchmarks by 6%, also resulting in lower vari-
ation in UAV heights when compared to the One-step-ahead
approach. It is worth noting that the solutions that maintained
large heights, as Constant at 60 and 120 m, do not perform
well when compared to those that maintained lower heights.
One possible explanation for this is that at greater heights
a UAV might have been experiencing increased interference
from cells it was not connected. Another possibility is antenna
misalignment: as the small cells are designed for ground
users, their antennas are directed towards the ground, which
means that the aerial UAV receives signals primarily from
antenna side-lobes.

Figure 7 evaluates an example run, different than Table 5
that evaluates the approaches performance after 100 trials.
To generate Table 5 we needed to calculate the mean over
the throughput mean of each run, losing information of the
throughput variation through the path. With the analyses of
one single run, we can verify how the throughput and height
vary through the path. Figure 7a presents box plots for the
throughput inMbps for all approaches obtained across the last
100 steps of one example run. Our RL approach shows a sta-
ble value for the obtained throughput, with its first and third
quartile being 36 to 41Mbps (the box denotes that 50% of the
data is in this range), respectively, and with median 40 Mbps.
On the other hand, one can observe a considerable interquar-
tile range from 18 to 34 Mbps in the throughput for the
Random walk approach, as well as for the approaches that
maintain the height Constant at 60 m and 120 m. This more
significant variance is likely due to the randomness of the

FIGURE 7. Performance of the benchmarks and the proposed RL
approach in the NWQ area.

Random walk approach and to the fact that at greater heights
of the constant strategies, the coverage from several cells is
more unpredictable, as the UAVmay be connecting to the side
lobes of different antennas. Approaches as One-step-ahead
and Zhang [8] have a bigger interquartile when compared to
the proposed RL approach, with Zhang [8] being between
32 to 40 Mbps, One-step-ahead between 31 to 41 Mbps, and
the RL approach between 36.5 Mbps to 41 Mbps. Although
in the One-step-ahead, Zhang [8] and RL happens outliers (in
the figure represented as the dots outside the box) that means
that at some points of the path, the measured throughput was
much lower than most of the path. Interestingly, the Optimal
height median throughput is only 6% better than our RL-
based approach, despite it unrealistically assuming instant
jump from any height to any other height is possible, showing
that the proposed method is close to optimal.
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TABLE 6. Mean throughput (Mbps) over 100 trials. Based on flight data
obtained in the GCQ area.

Figure 7b shows how the different adaptive strategies
adjusting the UAV height at different steps in a single sample
run for the last 100 steps. We inspect the individual height
adaptation to understand how each of the approaches behave
in a real path and have an idea of how many adaptation were
needed to achieve their respective throughput. We do not
illustrate Zhang [8], Constant at 60 m and Constant at 120 m
because their values are constant. We can observe that our
proposed RL-based solution maintains the UAV height low
all the path, with only 3 changes in the UAV height on the
last 100 steps. On the other hand, we can see that the Optimal
height at each step changes substantially, indicating that even
if one knew in advance at which height the optimal connectiv-
ity was obtained, the UAV would not be capable of reaching
these heights in every timestep, as the height change from one
step to another could be in the order of 90 m. The One-step-
ahead approach follows the Optimal height, and also moves
constantly trying to achieve the Optimal height approach.
In this example, the Random walk approach started the last
100 steps at higher heights and it moved randomly through
the steps in a up and down movement, and sometimes, did
not move, as expected.

2) GCQ ANALYSIS
Table 6 shows the average throughput for the GCQ area
over 100 trials. Same as in NWQ, we aim to analyse the
throughput as it is the variable that we intent to optimise. The
Random walk approach provided a throughput of 50 Mbps,
better then the constant approach at 60 with and 120 m that
achieve. The constant approaches that lead to the UAV flying
at larger heights result in lower throughput compared to all
other approaches, obtaining 41 Mbps, which is only 59% of
the throughput achieved by our RL approach. In this scenario,
our RL solution also performed better than all benchmarks
achieving 70 Mbps in average, while the Zhang [8] approach
and One-step-ahead being in second, achieving 68 Mbps.
The results of the One-step-ahead approach show that having
a priori knowledge of the environment is sometimes not
enough to provide the best throughput. As a reference, the
Optimal height achieved around 19% better throughput than
the proposed RL approach, which showed to be considerate
more than in NWQ area. One explanation of the difference
in the distance between the Optimal height and the other
methods is due to the fact that the optimal approach changed
more drastically its height through the path, making it impos-
sible for any other approach to achieve closer to the same
throughput as they were limited by ‘‘d’’.

FIGURE 8. Performance of the benchmarks and the proposed RL
approach in the GCQ area.

As in the NWQ area, Figure 8 evaluates an example run,
different than Table 6 that evaluates the approaches perfor-
mance after 100 trials. In Figure 8a, we investigate the stabil-
ity of each of the approaches, with the box plot representing
throughput across last 100 steps. Both, RL and Zhang [8]
approaches, achieve median throughput of 74 Mbps, as well
as exhibiting low variance. Both achieve the lower quar-
tile at 65 Mbps, but at the third quartile, the RL proposed
approach provides 2Mbpsmore than Zhang [8], meaning that
it provided better throughput for some time in the path. This
behaviour is similar to the one in the NWQ area, although
the throughput results for the other baseline approaches are
significantly different. In particular, the approaches that keep
the UAV height Constant at 60 and 120 m show lower
variance than for the data set obtained in the NWQ area.
Possibly this difference is because the UAV connects to only
one macro BS in NWQ area, which leads to greater stability
in the throughput. On other hand, One-step-ahead provides
high variance through its path, with its median being close
the the proposed RL approach, in 70 Mbps, and its first
and third quartile been between 47 Mbps and 78 Mbps. The
Randomwalk approach shows a small variance on its quartile,
although it also shows many outliers. As the behaviour is
random, the outliers showed a significant variation of the
throughput. However, on average, it manages to maintain a
throughput near its median of 46 Mbps.
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Figure 8b illustrates how the different strategies adjusted
the UAV heights when flying in the GCQ area. As in the
NWQ area, we inspect the individual height adaptation to
understand how each of the approaches behave in a real path
and have an idea of how many adaptation were needed to
achieve their respective throughput for the GCQ area. Here,
we observe that our proposed solution maintains a low height
when flying near a macrocell deployment maintaining its
height at 20 m or 30 m at all times. Also, we note that the
Optimal height at each step requires significant changes in
the UAV height from step to step for example. The One-step-
ahead approach follows the Optimal height and moves up and
down 50 times for these 100 steps. In this example run, the
Random walk approach starts at a higher height and keeps
moving randomly until move to the lower heights.

VIII. CONCLUSION
In this paper, we presented a RL-based approach to optimise
the height at which a mobile cellular-connected UAV should
fly. Our primary objective was to increase the UAV’s average
QoS. We evaluated the proposed approach in a generated
environment and varied BS density and building density.
We also evaluated our approach using a experimental dataset
based on real data obtained from a UAV carrying a smart-
phone in two locations of Dublin city centre [22]. The perfor-
mance achieved in both scenarios was comparable, where the
proposed RL approach was shown to be successful in both
environments, providing an improvement of 6% compared to
other approaches, including the ones that had access to addi-
tional priori information about the environment. We conclude
that for low BS density the UAV usually maintain higher QoS
then when compared with higher BS densities. We concluded
that the variance of building density when the UAV is flying
over them does not change UAV’s QoS.

However, we believe that there is a threshold to be consid-
ered when using the proposed solution. For example, if the
UAV need to inform its exact location prior to the flight,
a good approach would be the one proposed by Zhang [8],
where it maintains the lowest possible height through the
flight. However, if the QoS of the connection is mission-
critical UAV priority and the UAV can adapt its location dur-
ing the flight, the UAV could use the proposed RL solution.

IX. DISCUSSION
During the development of the research, we tried several
different configurations of the RLmodel, and different inputs
until we arrive at the present approach. A big challenge was
to find a model that could learn with a small number of
interactions and could still improve the UAV’s QoS. Another
challenge faced was the lack of real-world data for validation
of the approach. We just had access to the dataset generated
by our team, and could not validate the work in other areas of
the world.

As a topic for future work, we are interested in evaluat-
ing how much energy is associated with the height changes
and how to incorporate this factor into the height adaptation

decision. An additional challenge that we plan to investigate
is how to jointly adapt the horizontal and vertical trajectory
of a cellular-connected UAV in order to improve its QoS.

Another aspect that can be investigated is the choice of
which BS the UAV connects to so that the network is not
negatively impacted by handover effects. The selection of
the connected BS can also be optimised in order to increase
QoS in the long term, considering the penalties introduced by
frequent BS handovers.

The code used in this study is publicly available on GitHub
for the research community.
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