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ABSTRACT The primary objective of this paper is to develop a new method for root-finding by combining
forward and finite-difference techniques in order to provide an efficient, derivative-free algorithm with a
lower processing cost per iteration. This will be accomplished by combining forward and finite-difference
techniques. We also detail the convergence criterion that was devised for the root-finding approach, and we
show that the method that was recommended is quintic-order convergent. We addressed a few engineering
issues in order to illustrate the validity and application of the developed root-finding algorithm. The
quantitative results justified the constructed root-finding algorithm’s robust performance in comparison to
other quintic-order methods that can be found in the literature. For the graphical analysis, we make use of
the newly discovered method to plot some novel polynomiographs that are attractive to the eye, and then
we evaluate these new plots in relation to previously established quintic-order root-finding strategies. The
graphic analysis demonstrates that the newly created method for root-finding has better convergence with
the larger area than the other comparable methods do.

INDEX TERMS Computational algorithms, convergence-order, non-linearity, Halley’s scheme, dynamical
aspects.

I. INTRODUCTION
The use of root-finding algorithms has become more impor-
tant across a variety of modern scientific fields, particularly in
the fields of computational and applied mathematics. In this
day and age, a wide range of root-finding algorithms may
be carried out with the assistance of a variety of computer
tools, including SageMath, MATLAB, Mathcad, Maple, and
Mathematica, amongst others. In recent years, mathemati-
cians working in a variety of subfields of mathematics have
increased their reliance on computers and the numerous types
of software available for use on computers. The quest for the
roots of the polynomial is the most important of them, as it
has had a significant impact not just on applied mathematics
and computational mathematics but also on a wide variety
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of other subfields within contemporary science. Equations
that are not linear represent a number of the technical issues
that must be addressed. Iterative algorithms are required to
address problems of this technical kind because analytical
approaches are typically unsuccessful in solving problems of
this nature. Around the end of the 15th century, Newton [1]
came up with the following formula, which is now seen as the
basis of the well-known classical iterative algorithm:

xp+1 = xp −
ξ (xp)
ξ ′(xp)

, p = 0, 1, 2, 3, . . . ,

which is quadratic-order Newton’s algorithm for root-finding
of non-linear scalar equations.

Recent years have seen the development of new multi-step
algorithms and the application of diverse mathematical
methodologies that vastly improve upon the previous
approaches. Using decomposition methods, the authors of [2]
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and [3] developed some new algorithms for root-finding of
non-linear equations. The authors of [4] and [5] propose and
study new three-step optimum methods for solving complex
polynomials. A novel high-order and economical family
of iterative approaches for nonlinear models was proposed
by Behl et al. in [6]. The scalar approach established by
Kou et al [7] forms the basis for the evolution of variousmeth-
ods. Multiple second derivative free root-finding methods for
non-linear equations were developed by Naseem et al. [8],
[9], [10] and then used for various problems in chemical and
civil engineering.

In this part of the article, we will talk about several quintic-
order multi-step algorithms that can be found in the research
literature. These algorithms were developed by a variety of
academics in order to locate approximate roots of nonlinear
scalar equations. Using the finite difference approach, authors
of [11] developed a method with the quintic-order that is
second derivative-free. The method is listed below:

yp = xp −
ξ (xp)
ξ ′(xp)

, p = 0, 1, 2, 3, . . . ,

xp+1

= yp−
2ξ (xp)ξ (yp)ξ ′(yp)

2ξ (xp)ξ ′2(yp)− ξ ′2(xp)ξ (yp)+ξ ′(xp)ξ ′(yp)ξ (yp)
.

Following that, in the year 2008, authors in [12] suggested
a quintic-order Chebyshev-Halley type approach of the
following form:

yp = xp −
2ξ (xp)ξ ′(xp)

2ξ ′2(xp)− ξ (xp)ξ ′′(xp)
, p = 0, 1, 2, 3, . . . ,

xp+1 = xp −
2ξ ′(xp)[ξ (xp)+ ξ (yp)]

2ξ ′2(xp)− ξ ′′(xp)[ξ (xp)+ ξ (yp)]
.

A three-step quintic-order iterative algorithm was proposed
by Zhanlav et al. [13] in 2010. The algorithm’s given form is
as follows:

yp = xp −
ξ (xp)
ξ ′(xp)

, p = 0, 1, 2, 3, . . . ,

wp = yp −
ξ (yp)
ξ ′(yp)

,

xp+1 = yp −
ξ (yp)+ ξ (wp)

ξ ′(yp)
.

Nazeer et al. [14] recently used a finite-difference scheme to
present a new second derivative-free Householder’s method
that converges in quintic order.

yp = xp −
ξ (xp)
ξ ′(xp)

, p = 0, 1, 2, 3, . . . ,

xp+1

= yp−
ξ (yp)
ξ ′(yp)

[
1−

ξ ′(yp)ξ ′(xp)ξ (yp)− ξ ′2(xp)ξ (xp)

2ξ ′2(yp)ξ (xp)

]
.

In this research, we suggest a method that is the most
effective for locating the roots of non-linear scalar equations.
By combining the forward and finite-difference approaches,
we are able to develop an iterative strategy that is based on

Halley’s algorithm. The primary purpose of utilizing these
tactics is to produce an efficient root-finding method and to
come up with an approximation for derivatives. We study
the convergence condition of the recently proposed method
and prove that it converges in quintic order. We solved some
engineering problems to illustrate the robustness and validity
of the constructed root-finding algorithm. The numeric
results justify the robustness of the constructed root-finding
algorithm in comparison to other quintic-order methods that
are available in the literature. This was done to show that
the constructed root-finding algorithm is valid. In order
to examine the graphical behavior of polynomiographs,
we employ a computer program to plot them on the complex
plane using a variety of fifth-order processes.

The remaining parts of the paper are structured as
described in the following paragraphs. In the second
section II, we present an approach that has proven to be the
most effective for locating the roots. In the third section III,
the convergence criterion for the newly proposed method
was discussed. In the fourth section IV, six engineering
problems were successfully solved. The fifth section V
includes a graphic analysis that analyses the technique that
was described. The conclusion of the paper can be found in
the very final section VI wherein some future directions for
the improvement of the proposed algorithm are also discussed
in detail.

II. MAIN RESULTS
Let ξ : D → R, D ⊂ R be a function in one variable. With
the application of the Taylor’s series expansion, the following
root-finding algorithm was introduced by Edmond Halley:

xp+1 = xp −
2ξ (xp)ξ ′(xp)

2ξ ′2(xp)− ξ (xp)ξ ′′(xp)
, p = 0, 1, 2, 3, . . . .

(1)

The aforementioned approach is the cubic-degree technique.
The non-linear scalar equations may be solved using Halley’s
approach [15]. As a solution to the problem, the people who
made the method in [11] changed it and came up with the
following two-step iteration method:

yp = xp −
ξ (xp)
ξ ′(xp)

, p = 0, 1, 2, 3, . . . , (2)

xp+1 = yp −
2ξ (yp)ξ ′(yp)

2ξ ′2(yp)− ξ (yp)ξ ′′(yp)
. (3)

Calculating zeros of non-linear scalar equations can be done
with the help of the approach described above, which is a
two-step iteration strategy. By adding Newton’s algorithm,
the two-step process described before can become a three-
step process, as shown in the following form:

yp = xp −
ξ (xp)
ξ ′(xp)

, p = 0, 1, 2, 3, . . . ,

wp = yp −
ξ (yp)
ξ ′(yp)

,

xp+1 = wp −
2ξ (wp)ξ ′(wp)

2ξ ′2(wp)− ξ (wp)ξ ′′(wp)
. (4)
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Because it needs first-order and second-order derivatives in
order to have its execution, the method described above
has a significant computational overhead associated with
each repetition. We estimate its derivatives and make it
derivative-free in order to cut down on its processing
costs and boost its efficiency. This makes it easy to use
with nonlinear scalar functions where the first and higher
derivatives are either infinite or do not exist. To estimate
ξ ′′(w), we use the finite-difference approach as follows:

ξ ′′(wp) =
ξ ′(wp)− ξ ′(yp)
ξ (wp)− ξ (yp)

(5)

Now, we apply forward-difference scheme [16], [17] to
approximate ξ ′(x) as follows:

ξ ′(xp) =
ξ (xp + ξ (xp))− ξ (xp)

ξ (xp)
= g(xp). (6)

To approximate ξ ′(y) and ξ ′(w), we employ the finite-
difference scheme:

ξ ′(yp) =
ξ (yp)− ξ (xp)
yp − xp

= h(xp, yp). (7)

ξ ′(wp) =
ξ (wp)− ξ (yp)
wp − yp

= j(yp,wp). (8)

Using (7) and (8) in (5)

ξ ′′(wp) =
j(yp,wp)− h(xp, yp)
ξ (wp)− ξ (yp)

= κ(xp, yp,wp) (9)

Using (7)–(9) in (4), one can easily obtain the following
algorithm:
Algorithm 1: If an initial guess x0 is provided, one can

compute the approximate solution xp+1 with the help of
following iteration procedures:

yp = xp −
ξ (xp)
g(xp)

,

wp = yp −
ξ (yp)
ξ ′(yp)

,

xp+1 = yp −
2ξ (yp)h(yp)

2h2(yp)− ξ (yp)κ(xp, yp,wp)
.

When it comes to estimating the zeros of nonlinear
functions in a single variable, this ground-breaking method
of obtaining the optimal root is the strategy to use. The
application area handled by the presented method is an
important aspect of its design. This is due to the fact that
it can handle non-linear functions without the need for first
and higher derivatives. Because of the substitutes for the first
and second derivatives, the cost of calculating during each
iteration is reduced, which leads to a higher efficiency index
in comparison to other quintic-order iteration systems that are
similar. Based on the results of the test-example simulations,
the suggested method is better than similar methods that can
be found in the literature.

III. CONVERGENCE ANALYSIS
It is common knowledge that an iterativemethod for resolving
nonlinear equations is not dependable until and until it
converges to a single solution. In the next part, we will
conduct an abstract analysis in order to investigate the order
of convergence of the suggested root-finding method.
Theorem 1: If we assume that β is the simple zero of

ξ (x) = 0 and that ξ (x) has enough smoothness in the vicinity
of the exact zero (root) β, then the proposed approach (II) has
quintic-order convergence. In addition to this, it satisfies the
error equation, which is as follows:

ep+1 = Ae5p + O(e
6
p),

where A = 3( ξ
′′(β)

2ξ ′(β) )
4 and ep represents the error at pth

iteration.
Proof: To obtain the proof of the above theorem, assume

ep be an error at pth iteration, it yields to ep = xp−β and the
Taylor’s expansion about x = β gives the following:

ξ (xp) = ξ ′(β)ep +
1
2!
ξ ′′(β)e2p +

1
3!
ξ ′′′(β)e3p

+
1
4!
ξ (iv)(β)e4p + O(e

5
p),

ξ (xp) = ξ ′(β)[ep + c2e2p + c3e
3
p + c4e

4
p + c5e

5
p

+O(e6p)], (10)

g(xp) = ξ ′(β)[1+ 3c2ep + (7c3 + c22)e
2
p + (6c2c3

+ 15c4)e3p + (18c2c4 + 31c5 + c3c22 + 5c23)e
4
p

+ (50c5c2 + 63c6 + 2c2c23 + 22c3c4 + 7c22c4)e
5
p

+O(e6p)], (11)

where

cp =
1
p!
ξ (q)(β)
ξ ′(β)

.

With the help of Eqs.(10) and (11), we obtain:

yp = ξ ′(β)[β + 2c2e2p + (6c3 − 5c22)e
3
p + (−26c2c3

+ 13c32 + 14c4)e4p + (96c3c22 − 54c2c4 + 30c5

− 37c23 − 34c42)e
5
p + (96c3c22 − 54c2c4

+ 30c5 − 37c23 − 34c42)e
5
p + O(e

6
p)], (12)

ξ (yp) = ξ ′(β)[2c2e2p + (6c3 − 5c22)e
3
p + (17c32 − 26c2c3

+ 14c4)e4p + (96c3c22 − 54c2c4 + 30c5

− 37c23 − 34c42)e
5
p + (96c3c22 − 54c2c4

+ 30c5 − 37c23 − 34c42)e
5
p + O(e

6
p)], (13)

h(xp, yp) = ξ ′(β)[1+ 6c22e2p + (18c2c3 − 15c32)e
3
p

+ (−50c3c22 + 43c42 + 42c2c4)e4p(c6 + 32c5c2

− 39c2c23 + 20c3c4 + 89c3c32 − 55c22c4
− 34c52)e

5
p + O(e

6
p)], (14)

wp = ξ ′(β)[β + 2c2e3p + (8c2c3 − 7c32)e
4
p + (−37c3c22

+ 16c42 + 16c2c4 + 6c23)e
5
p + O(e

6
p)], (15)

ξ (wp) = ξ ′(β)[2c2e3p + (8c2c3 − 7c32)e
4
p + (−37c3c22
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+ 16c42 + 16c2c4 + 6c23)e
5
p + O(e

6
p)], (16)

j(yp,wp) = ξ ′(β)[1+ 2c22e
2
+ (6c2c3 − 3c32)e

3
p

+ (−14c3c22 + 14c2c4 + 6c42)e
4
p + (43c3c32

− 38c22c4 + 30c5c2 − 7c2c23 − 18c52)e
5
p

+O(e6p)], (17)

κ(xp, yp,wp)

= ξ ′(β)[
1
2
e−1p −

c3
c2
+ (

3
4
c3 −

7
8
c22

− 3
c4
c2
+ 3

c23
c22
)ep + (

5
4
c2c3 −

17
4
c4

−
49
16
c32 − 7

c5
c2
+ 5

c23
c2
+ 16

c3c4
c22

− 9
c33
c32
)e2p + · · · + O(e

6
p)], (18)

With the help of Eqs.(10)–(18) in proposed algorithm (II),
we have achieved the equality as given below:

xp+1 = β + 3c42e
5
p + O(e

6),

which implies that

ep+1 = 3c42e
5
p + O(e

6), (19)

Equation (19) proved that the proposed algorithm (II)
converges in a quintic order, which is the highest possible
order. �

IV. NUMERICAL COMPARISON AND ENGINEERING
APPLICATIONS
In this section of the study, wewill exemplify the applicability
and efficiency of the recently suggested optimum technique
by applying it to six different engineering challenges.
To show the performance of the suggested method, its
comparison is made with the iterative schemes as given
below:
• A modified version of Halley’s method (MHM) taken
from [11].

• Chebyshev-Halley type method (CHM) taken from [12].
• Zhanlav’s method (ZM) taken from [13].
• A new Householder’s method (NHM) taken from [14].
Example 1: Mathematical Model of Beam from Civil

Engineering Beams are horizontal members used in con-
struction to span gaps and support loads, such as the upper
portion of a wall made of brick or stone (in which case
the beam is referred to as a lintel) (see post-and-lintel
system). Depending on whether it’s supporting a floor or
roof, a beam is referred to as a ‘‘floor joist’’ or ‘‘roof
joist,’’ respectively. The floor beams are the larger transverse
components, while the stringers carry the lighter loads over
the bridge deck. Large beams that support the terminal ends
of smaller, perpendicular beams are commonly known as
girders. Single rolled pieces of metal can be used, or girders
can be constructed in the shape of an I by riveting or welding
plates and angles together to increase stiffness and lengthen
spans. Concrete girders find extensive application as well.

In this context, several mathematical models in terms of
nonlinear equations have been designed to represent the
accurate positioning of the beam. One of such models is given
below which has been taken from [18].

ξ1(x) = x4 + 4x3 − 24x2 + 16x + 16, (20)

which is 4th-order polynomial with the roots 2, 2 and −4 ±
2
√
3 ≈ ±0.53. We take the initial guess x0 = 0.50 while all

the obtained numeric results are listed in Table 3.
Example 2: Flow Characteristics of Blood The study of

the properties of blood flow is the primary focus of blood
rheology, which is a subfield of the science of rheology [19].
In order to gain a deeper understanding of the plug flow of
fluids, the following function is being utilized in our research
on the topic:

H = 1−
16
7

√
x +

4
3
x −

1
21
x4. (21)

In the above model, the flow-rate reduction is determined by
H. If we use H = 0.40 in (21), the following nonlinear model
is then created:

ξ2(x) =
1
441

x8 −
8
63
x5 − 0.05714285714x4 +

16
9
x2

− 3.624489796x + 0.3. (22)

To solve ξ2, the initial estimate point was taken as x0 =
0.6 and the relevant results are shown in Table 1.
Example 3: Finding Volume from van der Waal’s Nonlin-

ear Model
The standard form of van der Waal nonlinear [20] is given

below:

(P+
K1n2

V 2 ) (V − nK2) = nRT . (23)

By choosing the possible values of the parameters in (23),
we have:

ξ3(x) = 0.986x3 − 5.181x2 + 9.067x − 5.289, (24)

To solve ξ3, the initial estimate point was taken as x0 = 0.6
and the relevant results are shown in Table 1.
Example 4: The Law of Plank’s Radiation
The standard expression of Plank’s Radiation Law given

by Planck [21] is:

ξ (σ ) =
8πcP

σ 5(e
cP
σkT − 1)

. (25)

By taking x = cP
σkT , we get:

1−
x
5
= e−x , (26)

which implies the following function:

ξ4(x) = e−x +
x
5
− 1. (27)

To solve ξ4, the initial estimate point was taken as x0 =
6.0 and the relevant results are shown in Table 1.
Example 5: Model for the Permeability of Fluids: The

measurement of the flow resistance in a hydraulic system is
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TABLE 1. Details on numerical comparison among nonlinear approaches under consideration for ξ1 − ξ6.

referred to as the hydraulic permeability. It shows that there
is a link between the pressure gradient and the speed of the
fluid. It can be written as follows:

τ =
rex3

20(1− x)2
(28)

rex3 − 20k(1− x)2 = 0. (29)
The previously mentioned value of tau symbolises the specific
hydraulic permeability. The value re represents the radius,
and the value 0 ≤ x ≤ 1 represents the porosity. See [22]
for further information and several other citations therein.
By setting re equal to 100 and setting τ equal to 0.4655 in
(29), we are able to obtain the problem described above in
the following non-linear function:

ξ5(x) = 100x3 − 9.31(1− x)2 (30)
In order to solve problem 5 (ξ5), the initial guess of x 0 =
0.6 was selected for the purpose of initiating the iteration
process, and the results are presented in Table 1.
Example 6: Nonlinear Model in Fluid Flow The well-

known equation of Manning [23], which describes the flow
of water in an open channel under the assumption of uniform
flow, reads as follows:

WaterFlow = G =
√
sar

2
3

N
. (31)

The parameters r, s, and a in (31) denote the hydraulic-
radius, the area, and the slope of the channel, respectively,

and N denotes the Manning’s roughness coefficient. If we
have a channel that is rectangular in shape and has a depth
of u and a width of w, then we have:

a = xu, & r =
wx

w+ 2x
. (32)

With utilization of the values given in (31), one can obtain:

G =
√
swx
N

(
wx

w+ 2x
)
2
3
. (33)

The aforementioned relationship can be written out as follows
in order to calculate the depth of the water:

ξ6(x) =
√
swx
N

(
wx

w+ 2x
)
2
3
− G. (34)

The following values are assigned to the parameters: G =
14.15 m3/s, w = 4.572m, s = 0.017 and N = 0.0015.
In order to get the iteration process going, we chose the initial
value of x0 = 10−2 as the starting point, and the results are
recorded in Table 1.

In Table 1, we examine the proposed strategy in relation
to a wide variety of well-known iterative approaches. The
table’s columns show the number of iterations that have
been done, the best guess for the root, the absolute value
of the function at that root, and the difference between the
next two best guesses. We can now confidently state that
the developed method outperforms competing root-finding
approaches when it comes to accuracy, speed, total iterations,
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and computing cost. Table 1 shows a summary of how the test
cases went and shows that the suggested method works well.

V. GRAPHICAL ANALYSIS VIA POLYNOMIOGRAPHY
In this section, we look at the graphical behavior of the
proposed root search method for a variety of complex
polynomials in the form of polynomyographs generated
during the polynomyography process. These polynomyo-
graphs are formed from the polynomyography process.
Dr. B. Kalantari [24], [25] is credited with coining the
term ‘‘polynomyography.’’ He defined it as the process of
drawing graphic objects that are aesthetically pleasing by
making use of the mathematical convergence properties of
iteration functions. Polynomyography is a term that was
established by Dr. B. Kalantari. When we talk about iterating
functions, we are referring to functions like these. When
polynomiography is done, the graphical result is called a
polynomiograph.

In the light of theorem of Algebra any polynomial p
with nth-degree must possess nth number of zeros and can
expressed as follows:

p(z) = dnzn + dn−1zn−1 + · · · + d1z+ d0. (35)

If z1, z2, . . . , zn−1, zn are the roots (zeros) of p, then (35) may
be rewritten as:

p(z) = (z− z1)(z− z2) . . . (z− zp), (36)

where {dn, dn−1, . . . , d1, d0} are the complex coefficients.
When plotting graphical objects, either of the two expressions
of p that were discussed earlier can be used, regardless of
whether or not they include an iteration process. Algorithm
or approach 2 gives the most general form of the algorithm
that can be used to plot polynomiographs. We consider an
algorithm to have converged when the Convergence Test
(zp+1, zp, ε) produces a result of TRUE, andwe consider it to
have diverged when the result of Algorithm 2 is FALSE.Most
of the time, the following test is used to see if an algorithm
converges or diverges:

|zp+1 − zp| < ε, (37)

where ε > 0 represents the level of accuracy, and zp and
zp+1 represent the two guesses that come immediately after
each other in the iterative process. As a second halting
condition, we use (37) in this article. Changing the values
of the parameters ε and k as well as the iteration strategy
enables the plotting of a wide range of color graphical
objects. for further information on polynomiography and the
applications it has, one can go through the research work
carried out by Kalantri et al. [27], Gdawiec et al. [28],
Scot et al. [29], Naseem et al. [30], Sharma et al. [31] and
Kwun et al. [29]. For the purpose of visualizing graphical
objects in the complex plane, we make use of the following
four distinct complex polynomials:

p1(z) = z3 − 1, p2(z) = (z3 − 1)2,

p3(z) = z4 − 1, p4(z) = (z4 − 1)2.

For the purpose of coloring the iterations, we use the
colormap that is shown in figure 1. Moreover, it may be noted
that the Figures are designated as follows:
• (i) MHM
• (ii) CHM
• (iii) ZM
• (iv) NHM
• (v) Proposed Method (Algorithm 1)

FIGURE 1. The colormap used for the aesthetically beautiful
polynomiographs.

Example 7: Quintic-Order Iterative Approaches for Poly-
nomiographs Towards p1 In the first illustration, we explore
and compare the dynamical results achieved through
several fifth-order iteration methods with the newly devised
fifth-order algorithm for the cubic-degree polynomial
p3 − 1 which possesses three separate simple zeros:
1,− 1

2 −
√
3
2 i,−

1
2 +
√
3
2 i. This is done in order to demonstrate

the use of the recently developed fifth-order algorithm. As a
means of locating the simple roots, we put all fifth-order
algorithms through their paces; the resulting data may be
seen in Figure 2.
Example 8: Quintic-Order Iterative Approaches for Poly-

nomiographs towards p2 In the second example, we showed
how different iteration strategies with the recently developed
fifth-order algorithm led to different graphical and dynamic
results. The second example considers the polynomial (p3 −
1)2 which possesses three unique roots: 1, − 1

2 −
√
3
2 i, −

1
2 +√

3
2 i with multiplicity 2. We run all fifth-order algorithms in
order to acquire the simple roots of the given polynomial, and
the results can be seen graphically in Figure 3.
Example 9: Quintic-Order Iterative Approaches for Poly-

nomiographs Towards p3 In this example, we consider a
fourth-degree polynomial p4 with four simple roots 1, −1,
i and −i. We run all fifth-order methods to find the simple
roots, and the results are shown in Figure 4.
Example 10: Quintic-Order Iterative Approaches for

Polynomiographs towards p4 In the last example, we consider
the fourth-degree polynomial p4 with four distinct roots 1,
−1, i and −i, having multiplicity two. We use all fifth-order
methods to design the graphical objects, and the results are
shown in Figure 5.

In Examples 7-10, we utilized the computer program
Mathematica 12.0 to execute all of the comparable fifth-order
procedures for constructing aesthetically pleasing poly-
nomiographs. This was accomplished by running themethods
on the computer. Using the acquired graphical objects, we are
able to quickly and simply investigate the graphical behavior
and stability of a variety of methods. It is important to
underline the fact that the newly constructed technique has
a convergence zone that is noticeably larger than those of the
previous methods. The shades of color are a representation
of how well the algorithm that was used to draw the
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FIGURE 2. Several eye-catching polynomiographs obtained for the
cubic-degree polynomial p1 with the iterative approaches under
consideration.

polynomiograph performed. The rate of convergence and
the dynamics of the various iteration strategies that were
considered in the formation of these graphs are both essential
qualities that are indicated by these graphical objects.

The first may be demonstrated by looking at the different
color tones used in the image. The richness of color in graph-
ical objects exhibits significant convergence while using
fewer repeats of the same color. The second property may
be evaluated by looking at the different color combinations
that are used in the drawn polynomiographs. Zones with
low levels of dynamic activity have small color fluctuation
regions, whereas zones with high levels of dynamic activity
have vast color variation zones. The regions in the visuals
where the solution cannot be reached with the required
accuracy in the allotted number of iterations are indicated by
the areas of the visuals that have dark shading. The same color
on different parts of a graphic object means that the same

FIGURE 3. Several eye-catching polynomiographs obtained for the
sextic-degree polynomial p2 with the iterative approaches under
consideration.

number of iterations are needed to find the desired solution
to the given accuracy.

VI. CONCLUDING REMARKS AND FUTURE ASPECTS
For the purpose of calculating the roots of nonlinear equations
using the finite- and forward-difference schemes, an optimum
root-finding technique was developed. This approach is
presented in this paper. We spoke about the convergence
criterion of the devised approach that was provided, and we
determined that it converges in quintic order. In order to
highlight the great performance and authenticity of the ideal
approach that has been offered, we assume a few different
technological hurdles. The numerical findings presented
in Table 1 demonstrate that the newly developed optimal
technique outperforms the older equivalent quintic-order
techniques in terms of convergence, precision, and the
approximate computational order of convergence. This is
demonstrated by the fact that the new technique has a
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FIGURE 4. Several eye-catching polynomiographs obtained for the
quartic-degree polynomial p3 with the iterative approaches under
consideration.

higher order of convergence. The accuracy of the successive
approximation, which is significantly better than that of
the other comparable algorithms, is another evidence of the
robust performance of the novel approach.

We employed a piece of software on the computer to
generate polynomiographs while taking into consideration
a wide variety of complicated polynomials in order to
investigate the graphical behavior of the approach that
was recommended. The enhanced convergence speed and
other graphical characteristics of the constructed optimized
approach are demonstrated by the inventive and aestheti-
cally pleasing graphical items that were made, which also
showcase the system’s potential. Using the same basic idea
presented in this article, it is possible to create a new family
of better ways to find the roots of nonlinear equations.
Moreover, very accurate approximations to solutions are not
needed in most practical circumstances. Therefore, it appears
that the only people interested in high-order techniques are

FIGURE 5. Several eye-catching polynomiographs obtained for the
octic-degree polynomial p4 with the iterative approaches under
consideration.

academics. In comparison to less time-consuming strategies,
however, these tend to be fairly sophisticated and provide
little value to the production process. This approach is similar
to those described in the article that avoid the need for
a memory device. Additional processing effort is needed
to evaluate Jacobian matrices when dealing with nonlinear
systems. Future studies will include a finite-difference
approximation with memory, an adjustment we hope will
lessen the computing burden of the current approach. The
suggested method’s semi-local convergence will also be
investigated in further detail.
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