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ABSTRACT Although deep learning models have exhibited excellent performance in various domains,
recent studies have discovered that they are highly vulnerable to adversarial attacks. In the audio domain,
malicious audio examples generated by adversarial attacks can cause significant performance degradation
and system malfunctions, resulting in security and safety concerns. However, compared to recent develop-
ments in the audio domain, the properties of the adversarial audio examples and defenses against them still
remain largely unexplored. In this study, to provide a deeper understanding of the adversarial robustness in
the audio domain, we first investigate traditional and recent feature extractions in terms of adversarial attacks.
We show that adversarial audio examples generated from different feature extractions exhibit different noise
patterns, and thus can be distinguished by a simple classifier. Based on the observation, we extend existing
adversarial detection methods by proposing a new detection method that detects adversarial audio examples
using an ensemble of diverse feature extractions. By combining the frequency and self-supervised feature
representations, the proposed method provides a high detection rate against both white-box and black-box
adversarial attacks. Our empirical results demonstrate the effectiveness of the proposed method in speech
command classification and speaker recognition.

INDEX TERMS Adversarial robustness, speech classification, feature extraction, adversarial example
detection.

I. INTRODUCTION
Recent advances in deep learning have demonstrated signif-
icant performance improvements in various domains such
as computer vision and speech recognition, yielding a large
number of industrial applications [1], [2]. In particular,
by combining deep learning models and traditional signal
processing techniques (e.g.,Mel-spectrogram), speech recog-
nition systems have been successfully developed to identify
or verify the physical sound of a human voice [3], [4]. More
recently, a line of work on self-supervised learning method
(e.g., Wav2vec [5]) has also improved the performance on
speech recognition tasks by converting an original waveform
to a feature with only neural network-based models. Based on
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these improvements, deep learning models are now actively
used in real-world applications such as autonomous vehicle
and smart home devices.

However, recent studies have revealed that deep learn-
ing models are vulnerable to adversarial attacks that gen-
erate malicious examples with subtle noises [6], [7]. The
potential risks of deep learning models can be induced by
adversarial attacks in real-world applications [8], [9], and
the audio domain is no exception. Indeed, recent studies
have verified that speech classification systems such as
speech command classification and speaker recognition mod-
els can easily malfunction due to attacks by adversarial audio
examples [10], [11], [12]. Figure 1 illustrates how adver-
sarial attacks generate malicious audio examples on speech
classification models. Given an input waveform x and the
corresponding label y (or a one-hot vector y), adversarial
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FIGURE 1. Illustration of adversarial attacks on speech classification
tasks.

attacks aim to maximize the final loss `(x, y) by adding
noise δ to the waveform x. Since the attack process can be
easily done by using propagation, these types of adversarial
attacks in the audio domain could entail severe hazards, e.g.,
causing autonomous vehicle accidents by manipulating voice
commands or extracting private information by circumvent-
ing voice authorization.

There have been many studies conducted to develop adver-
sarial attacks on speech recognition tasks in order to under-
stand adversarial robustness in the audio domain. Following
the Carlini and Wagner attack [11], various attacks have
revealed the vulnerability of speech recognition models [10],
[13], [14]. To defend models against adversarial audio
examples, numerous researchers have proposed defense
methods [15], [16]. However, most adversarial attacks and
defenses have mainly been evaluated on models with tradi-
tional feature extractions, such asMel-spectrogram. The anal-
ysis of models with newly proposed feature extractions, such
as Wav2vec, is necessary to realize robustness guarantees in
the audio domain.

In this work, to gain a deeper understanding of adver-
sarial robustness in the audio domain, we analyze adversar-
ial robustness of speech recognition models with traditional
and newly proposed feature extractions. We first compare
the adversarial robustness of models using different fea-
ture extractions, and investigate generated adversarial audio
examples. We find that there exist different noise patterns of
adversarial audio examples generated from Mel-spectrogram
and Wav2vec, and demonstrate that they are easily distin-
guished by a simple classifier due to their difference. Lastly,
based on the observation, we propose a new detection method
that distinguishes adversarial audio examples from benign
examples. By using an ensemble of models comprising tradi-
tional frequency extraction and modern latent representation
extractions, and comparing the distance of outputs between
models, the proposed method successfully detects adversarial
audio examples compared to previous methods. The experi-
mental results confirm that the proposed method achieves the
state-of-the-art detection performance on speech command
classification and speaker recognition tasks.

II. RELATED WORKS
A. SPEECH CLASSIFICATION
Speech classification systems transform an audio waveform x
to a correct label y (or a one-hot vector y). To utilize an
audio waveform as input, a speech classification system has

FIGURE 2. Visualization of Mel-spectrogram and Wav2vec features. Both
features are extracted from the same waveform x, but have different
feature dimensions and sparsity.

a feature extraction and classifier (illustrated in Figure 1).
Feature extractions generally map an input waveform to a
numeric representation vector, in order to extract impor-
tant characteristics. Given a feature extraction f , a feature
z = f (x) is extracted from the original waveform x, and fed to
a classifier g. Then, g outputs the probability vector p = g(z).
Generally, in classification tasks, the i-th component that has
the maximum value, i.e. argmaxi pi, is used as a prediction ŷ.
As the classifier g, deep learning classifiers are considered
powerful baselines in speech classification.

Traditionally, frequency extraction methods such as
Mel-spectrogram and Mel-frequency cepstral coefficient
have been widely used [3], [4]. Frequency-based methods
usually involve dividing the waveform into several overlap-
ping frames, then transforming each frame into a spectro-
gram. To do this, a fast Fourier transform (FFT) is applied
to the frame, followed by windowing and Mel-filtering.
This produces a Mel-spectrogram feature, from which the
Mel-frequency cepstral coefficients (MFCC) are extracted
using the discrete cosine transform (DCT). In Figure 2,
we show an example of a Mel-spectrogram feature.
These types of transforms allow us to handle the orig-
inal waveform by extracting useful features and achieve
human-level performance in various speech classification
tasks [4], [17], [18], [19].

Recently, Schneider et al. [5] proposed a self-supervised
model called Wav2vec. Wav2vec is a set of convolutional
neural networks trained on a large amount of raw audio data
without any frequency extractions. In short, Wav2vec aims
to distinguish a feature vector (or a latent representation)
z from other feature vectors z̃ extracted from different audios
by using contrastive losses. Finally, a set of front layers
(i.e., the encoder) of Wav2vec is used as a feature extrac-
tion f . Unless otherwise noted, Wav2vec implies the encoder
in the rest of the paper. We plot an example of extracted
feature vector z from Wav2vec in Figure 2b. Wav2vec pro-
duces a more sparse and higher dimensional feature vec-
tor, which significantly differs from the Mel-spectrogram
(Figure 2a). Based on the advantages of self-supervised train-
ing, Wav2vec trains numerous audio samples and harness an
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effective latent space that largely improves the performance
on variety speech recognition tasks. Following the success
of Wav2vec, many researchers have proposed task-specific
Wav2vec-based models [20].

Although recent studies on speech recognition systems
have used Wav2vec-based models, only a few works have
addressed the adversarial robustness of these models [21].
In this work, we analyze adversarial robustness of Wav2vec-
basedmodels and compare it toMel-spectrogram-basedmod-
els. To the best of our knowledge, this study is the first
attempt at comparing both frequency and self-supervised
feature extractions in terms of adversarial robustness.

B. ADVERSARIAL ATTACK
Adversarial attacks aim to generate subtle perturbations that
lead to incorrect classification by deep learning models.
Given a benign input x, an adversarial example x′ = x+ δ is
generated by the following maximization:

max
‖δ‖≤ε

`(x+ δ, y), (1)

where ε is the maximum perturbation size and `(·) is a loss
function. In speech classification tasks, we generally use
cross-entropy loss [10] combined with diverse losses such as
decibel-based loss [11].

Adversarial attacks can be classified into two types: white-
box and black-box. White-box attacks correspond to the case
of an attacker accessing all of a target model’s information,
including its structure and parameters [22], [23]. Currently,
the most powerful white-box attacks generally use the gradi-
ent information to maximize the loss. For example, projected
gradient descent (PGD), which is considered as a simple and
powerful adversarial attack, optimizes the perturbation δ with
a number of steps as follows:

δt+1 = 5‖δt‖≤ε(δt + α · sign(∇δ`(x+ δ, y))), (2)

where 5 is a projection and α is a step size. In classification
tasks, the cross-entropy loss is used as a default loss `. How-
ever, as Carlini et al. [23] proposed, a customized loss can be
used to generate adversarial examples:

`(x+ δ, y) = −max(max
i6=y

f (x+ δ)i − f (x+ δ)y, 0), (3)

where f (·)i is the i-th component of f (·). The attack that uses
the above loss function called the Carlini and Wagner attack
(CW). Both attacks are mainly applied in the vision domain,
but numerous studies have demonstrated that they also show
a high attack success rate in the audio domain [10], [11].

Black-box attacks are those in which an attacker only has
access to the publicly available information of a target model,
such as its predictions. Due to the limited access, black-box
attacks generally show a lower attack success rate compared
to white-box attacks, under the same computational cost.
To overcome a low attack success rate under the black-box
setting, a transfer attack uses another model that has been
trained on similar tasks [24]. To be specific, transfer attacks
first generate adversarial examples from the model with full

knowledge of its structure and parameters. Then, these adver-
sarial examples are fed to the target model. Prior studies have
found that transfer attacks generally achieve a higher attack
success rate over diverse tasks [8], [24], [25], [26]. In the
audio domain, both white-box and black-box attacks exhibit
high performance [10], [11].

C. ADVERSARIAL DEFENSE
To defend models against adversarial attacks, numerous
techniques have been proposed, such as adversarial train-
ing [22], [27], using randomized neural networks [28], [29],
and detection-based defense. Among them, detection-based
defense aims to distinguish between benign and adversarial
examples [30], [31], [32]. Detection-based defenses depend
on malicious examples typically having different distribu-
tions compared to those of benign examples.

Several studies also have focused on detection-based
defense to protect speech recognition systems. To mitigate
the effect of adversarial perturbation, most defenses add noise
to the input waveform [33], [34] or pad noise with sound
reverberation [16]. Recently, Park et al. [35] proposed a
detection method called logit noising (LN), which achieves
the state-of-the-art performance against adversarial attacks by
adding noise to the output of an encoder. They inject noise
that impacts the prediction of adversarial audio examples,
but hardly changes the prediction of benign audio examples.
Given the encoder f that outputs the intermediate results
(or logits) and the decoder g, the detection algorithm clas-
sifies an input audio x as an adversarial audio example when
the following condition is satisfied:

Eη∼N (0,σ 2I )[‖g(f (x))− g(f (x)+ η)‖] > τ, (4)

where N (0, σ 2I ) is a zero-centered normal distribution with
a standard deviation σ and τ is a threshold. By doing this,
adversarial audio examples that are highly sensitive to the
additional noise in the latent space can be distinguished from
benign audio examples, which are more robust to the same
noise level.

Jayashankar et al. [15] also proposed a detection method
that utilizes the high sensitivity of adversarial audio exam-
ples, but works in a different way. They manipulated the
dropout rate p of the model to detect adversarial audio exam-
ples by measuring uncertainty. The detection algorithm clas-
sifies an input audio x as an adversarial audio example when
the following condition is satisfied:

Ep[‖g(f (x))− gp(fp(x))‖] > τ, (5)

where both encoder fp and decoder gp depend on p. Practi-
cally, the medoid value of gp(fp(x)) is used as g(f (x)). In addi-
tion, Jayashankar et al. [15] trained simple classifiers, such
as support vector machine and decision tree, on the distance
distribution ‖g(f (x))−gp(fp(x))‖ and achieved high detection
accuracy for a sufficiently small p.
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FIGURE 3. Robust accuracy (%) against adversarial audio examples
generated from Mel-spectrogram-based models (MS and ML) and
Wav2vec-based models (WS and WL). Source models are in rows and
target models are in columns.

We argue that the aforementioned works can be integrated
to a detection framework that uses the following condition:

Eg′,f ′ [‖g(f (x))− g′(f ′(x))‖] > τ. (6)

For example, g′ = g and f ′(x) = f (x) + η would be logit
noising [35]. In this work, we focus on the observation
that diverse feature extractions can improve detection perfor-
mance. In other words, f ′ ∈ F where F is a set of possible
distinct feature extractions. In our experiments, we demon-
strate that the proposed method shows higher detection per-
formance than existing methods by diversifying features.

III. METHODOLOGY
In this section, we first analyze the adversarial robust-
ness of Mel-spectrogram and Wav2vec-based models. Then,
we demonstrate that the adversarial audio examples gen-
erated from each feature extraction exhibit different char-
acteristics, and thus they can be distinguished from each
other. Based on this observation, we propose a new detection
method that determines whether an input audio example is an
adversarial audio example by diversifying feature extractions.

A. EXPLORING DIVERSE FEATURE EXTRACTIONS
To investigate adversarial robustness of different feature
extractions to adversarial attacks, we train models using
Mel-spectrogram and Wav2vec on the Speech Commands
dataset [36]. For each type of feature extraction, we assign
two neural networks with a small and large number of
parameters as a classifier. In total, we obtain four differ-
ent models: Mel-spectrogram + Small classifier (Model-
MS), Mel-spectrogram + Large classifier (Model-ML),
Wav2vec + Small classifier (Model-WS), and Wav2vec +
Large classifier (Model-WL). Then, we generate adversarial
audio examples with the CW attack for each model (detailed
settings are presented in Section IV). Note that we observe
similar results for the PGD attack.

The adversarial robustness of four models against gener-
ated adversarial examples is shown in Figure 3. The robust

FIGURE 4. Mel-spectrogram features of adversarial audio examples
generated from Model-ML (denoted as x′mel ) and Model-WL (denoted
as x′w2v ). Best viewed in color.

accuracy is defined as the percentage of correctly classified
audio examples out of all the audio examples that were
generated by the source models. Diagonal elements indicate
the robustness against white-box attacks and other elements
indicate the robustness against transfer attacks. Adversarial
audio examples generated by white-box attacks successfully
degenerate the performance of models (near 0% accuracy).
However, interestingly, adversarial audio examples gener-
ated from different models with the same feature extrac-
tion also degenerate the performance as much as white-box
adversarial audio examples. In contrast, models show a
high robustness against adversarial audio examples generated
from different feature extractions. This result implies that
adversarial audio examples are highly dependent on feature
extraction.

Motivated by Figure 3, we further visualize the Mel-
spectrogram of adversarial audio examples generated from
different feature extractions. In Figure 4, we present the
Mel-spectrograms of randomly sampled x′mel and x

′

w2v. x
′

w2v
exhibits a significantly noisy Mel-spectrogram, which is eas-
ily distinguished from x′mel even to human eyes.
To further verify the difference between adversarial

audio examples generated from different feature extractions,
we randomly sampled 100 audio examples of x, x′mel , and
x′w2v and scatter the results of principal component analysis
(PCA). PC1 and PC2 denote the two principal components
with the largest variance. As shown in Figure 5a, x′w2v are eas-
ily distinguishable from x and x′mel . Similarly, x′mel are easily
distinguishable from x and x′w2v in Figure 5b. In other words,
adversarial audio examples generated from a specific feature
extraction can be detected by other feature extractions.

In addition, we numerically verify the difference between
features by conducting a simple experiment with a sup-
port vector machine (SVM) with RBF kernels on gener-
ated adversarial audio examples. To be specific, we first
feed x′mel and x′w2v into other feature extractions that were
not used during the attack process, i.e., Wav2vec and Mel-
spectrogram, respectively. Then, we train SVM to classify
benign features and generated features. For the train and test
sets, we randomly split datasets into 8:2. The classification
performance is summarized in Table 1. As shown in the table,
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FIGURE 5. Principal component analysis (PCA) results with different
feature extractions. (a) PCA result with Mel-spectrogram feature
extraction. x′w2v are easily distinguished from x and x′mel . (b) PCA result
with Wav2vec feature extraction. x′mel are easily distinguished from x
and x′w2v .

TABLE 1. Classification performance on benign and adversarial audio
examples generated from different feature-based models using an SVM.

a simple SVM is enough to distinguish adversarial features
from benign features. This is consistent with the result in
Figure 5, which implies that benign and adversarial features
are linearly separable for carefully selected components with
distinct feature extractions.

We believe that this phenomenon can be related to the fact
that adversarial audio examples inherit the characteristics of
the feature extraction where they were generated. It can also
be related to the adversarial attacks’ overfitting problem [37],
which demonstrate adversarial examples sometimes overfit to
the source model so that they show a low transferability to the
target model. In summary, the above results demonstrate that
diverse feature extractions can provide benefits for detecting
adversarial audio examples.

B. ENSEMBLE FEATURE EXTRACTIONS FOR ADVERSARIAL
DETECTION
In the previous subsection, we verified that diverse fea-
ture extraction brings the benefits to distinguish adversarial
audio examples from benign examples. However, in real-
world applications, a detection method is usually forced to
distinguish unseen adversarial audio examples from benign
examples. In order to overcome this limitation, we propose a
method to use probability information with distinct feature-
based models.

First, we argue that if adversarial audio examples x′mel
generated from a Mel-spectrogram-based model are fed to a
Wav2vec-base model, then the output probability would be
different from the output probability of the Mel-spectrogram-
based model, and vice-versa. This is consistent with Figure 3,

which shows a high robust accuracy against adversarial audio
examples generated from the different types of feature extrac-
tion. To rigorously verify this phenomenon, we measure the
predictions of models against the generated adversarial audio
examples (x′mel and x

′

w2v) for each model.
Figures 6 and 7 illustrate heatmaps of the predictionmatrix,

where each row of the matrix represents the predictions of a
source model while each column represents the predictions
of a target model, similar to a confusion matrix. Note that the
sum of elements in each row equals to 100%.

In Figure 6, we plot the percentage of x′mel and x
′

w2v for
the same feature-based models, i.e., (Model-ML and Model-
MS) and (Model-WL and Model-WS). Most of the diagonal
elements of the prediction matrix show the value over 50%,
which implies that they highly tend to share the same proba-
bility vectors for adversarial audio examples.

On the other hand, in Figure 7, we illustrate the same
prediction matrix for different feature based-models, i.e.,
(Model-ML and Model-WL) and (Model-WL and Model-
ML). In Figure 7a, the majority of the original prediction
of Model-ML, where x′mel is generated, does not maintain
when x′mel is fed to Model-WL. In Figure 7, x′w2v is more
likely to output a similar prediction than x′mel , but all diagonal
elements show values less than that of Figure 6b.We note that
similar results are observed with other combinations such as
Model-MS andModel-WS, which indicates this phenomenon
is generally observed regardless of model structures and the
number of parameters. Thus, the adversarial audio examples
highly tend to have different probability vectors for different
feature-based models.

To push further, we measure the output probability differ-
ence with benign and adversarial audio examples. Specifi-
cally, we first obtain the output probability vector of the audio
examples with Model-ML and Model-WL, then calculate the
distance between the two output probability vectors. Here,
we use the L1 norm distance as a default, but we note that
similar results are observed with L2 norm distance. As shown
in Figure 9a, for benign audio examples, the probability
distance is close to zero, which implies that the probability
vectors obtained fromModel-ML andModel-WL are similar.
However, for adversarial audio examples, most of the exam-
ples show probability distances over 0.1, which is extremely
higher than that of benign audio examples. Thus, due to the
variability of adversarial examples with respect to feature
extractions, we can detect the audio adversarial examples
with their probability information.

Based on the observation, we propose a new detection
method, Ensemble Feature-based Detection (EFD), as shown
in Figure 8. Let us denote a original feature extraction f and
a classifier g as same as Equation (6). Then, an input audio
example x̄ is initially fed to f and g to obtain the probability
vector p. In the proposed method, we simultaneously obtain
the probability vector p′ from f ′ and g′, where f ′ is a distinct
feature extraction from f so that it captures the variability of
adversarial examples. Then, the distance between p and p′ is
calculated to determine whether the given audio example x̄
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FIGURE 6. Prediction matrix of x′mel and x′w2v for same feature-based models (in percentage). Best viewed in color.

FIGURE 7. Prediction matrix of x′mel and x′w2v for different feature-based models (in percentage). Best viewed in color.

is an adversarial example or not. If the distance between the
output probability is less than a threshold τ , then the pro-
posed method determines x̄ as a benign example. In contrast,
if the distance between the output probability exceeds the
threshold τ , then the proposed method determines x̄ as an
adversarial example.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
In this section, we conduct experiments on two popular
speech classification tasks: speech commands classification

on the Google Speech Commands dataset [36] and speaker
recognition on the VCTK dataset [38]. The Google Speech
Commands dataset includes 65000 samples in 30 classes such
as ‘‘go’’ and ‘‘stop’’. The VCTK dataset includes utterances
by 110 English speakers. Following [10] and [39], we extract
samples from the 10 most used labels in both datasets.

1) SPEECH COMMANDS CLASSIFICATION
For Mel-spectrogram-based models, we use 32 Mel-
filterbanks and the hop length is set to 512 so that
Mel-spectrogram outputs a feature with the size 32 × 32.
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FIGURE 8. Illustration of the proposed detection method, Ensemble
Feature-based Detection (EFD). The input audio example is fed to distinct
feature extractions f and f ′; then, based on the distance between the
probability vectors and the threshold, whether the given input audio is
adversarial or not.

Then, we assign two neural networks with small and
large numbers of parameters as the classifier. We use
DenseNet [40] as a small model (769,416 parameters)
and Wide-ResNet 28-10 (WRN) [41] as a large model
(36,480,188 parameters). ForWav2vec-basedmodels, we use
the pre-trained Wav2vec that outputs a feature with the size
512× 98. Then, similar to the Mel-spectrogram-based mod-
els, we use a fully connected model (6,381,580 parameters)
and a long short-term memory model with the self-attention
model (7,886,860 parameters) as a small and large model,
respectively. In total, we use two models for each feature
extraction as introduced in Section III: Mel-spectrogram-
based models (Model-MS and Model-ML) and Wav2vec-
based models (Model-WS and Model-WL). We train all
models over 70 epochs with Adam. An initial learning rate
is set to 0.005 and cosine learning rate decay is used.

2) SPEAKER RECOGNITION
For Mel-spectrogram-based models, we use 30 Mel-
filterbanks and the hop length is set to 512 so that
Mel-spectrogram outputs a feature with the size 30 × 44.
We use X-vector [42] for the classifier and control the number
of parameters by manipulating the channels of convolution
filters. The large model has 6,060,518 parameters and the
small model has 3,081,190 parameters. In total, four models
are used as same in the speech commands classification task.
For Wav2vec models, we use the same models in the speech
commands classification task. All models are trained with the
same setting used in the speech commands classification task.

3) ATTACK SETTINGS
To measure the general detection performance against adver-
sarial attacks, we considered both white- and black-box
adversarial attacks. The white-box adversarial examples were
generated on the same model using the same feature extrac-
tion and classifier. The black-box adversarial examples were
generated on the model using different feature extractions

or different classifiers. For both cases, we use the CW and
PGD attacks with decibel regularization, as proposed in [11],
to satisfy dB(|x′−x|) ≤ dB(x)−20 where dB(x) = maxt 20 ·
log10(xt ). PyTorch [43] and Torchattacks [44] aremainly used
for the experiments on six NVIDIA TITAN V GPUs and an
Intel Xeon(R) Gold 6126 CPU using the Ubuntu 16.04 OS.

B. BASELINES AND METRICS
We consider the previous state-of-the-art detection methods,
logit noising (LN) [35] and dropout uncertainty (DU) [15],
as baselines. Logit noising is a method that distinguishes
adversarial audio examples from benign audio examples by
injecting noise into the logit space. Following [35], the noise
is drawn from the normal distribution and added to the fea-
ture space. Dropout uncertainty is a method that determines
whether an input audio example is an adversarial audio exam-
ple by manipulating the dropout rate of models. Follow-
ing [15], we use SVM to classify the uncertainty distribution.
For the proposemethod (EFD), we emphasize that anymodel
can be used as a combined model if it uses a different feature
extraction from the base model due to the model-independent
characteristic of the proposed framework. We basically use a
large model that uses a different feature extraction as f ′ and
g′, but we note that using a small model is also enough to
gain sufficient improvement in detection rates. We estimate
the four different detection performance measures: accuracy,
precision, recall, and F1 scores. For all methods, we perform
grid searches over the threshold τ on the training set, then
report the best performance that shows the highest F1 score.
Each experiment is conducted with three different random
seeds. We report the average and standard deviation of each
detection performance measure.

C. RESULTS AGAINST WHITE-BOX ATTACKS
In Table 2, we summarize the detection performance against
the white-box attacks. For most of the measures, the pro-
posed method shows the best performance. Specifically,
the proposed method outperforms other methods on the
speaker recognition task. On the speech classification task,
the proposed method achieves near 0.9 F1 scores for both
Mel-spectrogram-based models and Wav2vec-based models.
On the speaker recognition task, the proposed method outper-
forms other baselines, especially on Wav2vec-based models.
Considering that the speaker recognition task is more com-
plicated than the speech classification task, we believe that
using bothMel-spectrogram andWav2vec feature extractions
becomes more important in terms of adversarial robustness.

D. RESULTS AGAINST BLACK-BOX ATTACKS
In Table 3, we evaluate the detection performance against
the black-box attacks. In this experiment, the adversarial
audio examples are generated from other models that use
different feature extractions and classifiers. Similar to the
white-box attack cases, the proposed method shows stable
performance across all tasks and models with high detec-
tion rates. Especially, for the speaker recognition task and
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FIGURE 9. Distribution of the distance between probability vectors of Model-ML and Model-WL for 200 randomly sampled benign and adversarial
audio examples.

TABLE 2. Performance comparison of detection methods against white-box attacks. Higher is better.

TABLE 3. Performance comparison of detection methods against black-box attacks. Higher is better.

Wav2vec-based models, the proposed method shows over
20% improvements in accuracy compared to other baselines.
Since both comparison methods [15], [35] depend on the
specific feature extraction that the target model used, they
hardly detect adversarial examples generated from unseen
feature extractions.

V. CONCLUSION
In this work, we investigate and analyze the adversarial
robustness of different feature extractions: Mel-spectrogram

and Wav2vec, representing traditional and modern feature
extractions in the audio domain, respectively. We discover
that they yield distinct latent spaces that help us deter-
mine whether an input is an adversarial audio example.
The proposed method reveals the effectiveness of using
diverse feature extractions and affords high detection rates
for both white-box and black-box adversarial audio exam-
ples. Our observation points toward potential directions for
future research on more complicated speech challenges, such
as speech-to-text tasks. Thus, in future work, we plan to
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investigate the effect of utilizing diverse feature extractions
in speech-to-text systems with recent models and to improve
the proposed method to provide a secure speech recognition
system on large-scale datasets.
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