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ABSTRACT X-ray imaging technology has been used for decades in clinical tasks to reveal the internal
condition of different organs, and in recent years, it has becomemore common in other areas such as industry,
security, and geography. The recent development of computer vision and machine learning techniques
has also made it easier to automatically process X-ray images and several machine learning-based object
(anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image
analysis. Due to the high potential of deep learning in related image processing applications, it has been used
inmost of the studies. This survey reviews the recent research on using computer vision andmachine learning
for X-ray analysis in industrial production and security applications and covers the applications, techniques,
evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets.
We also highlight some drawbacks in the published research and give recommendations for future research
in computer vision-based X-ray analysis.

INDEX TERMS Computer vision, deep learning, X-ray, industrial applications, security applications.

I. INTRODUCTION
The need of having a non-destructive procedure for examin-
ing the interior of objects to assess their structural patterns
or constituent contents has resulted in many applications of
X-ray technology in different fields. While the medical field
was one of the first to use the technology for assessing the
inner parts of the body [1], the use of X-ray technology
is expanding considerably for industrial and security pur-
poses [2], [3]. Factories can now assess whether there are
anomalies or defects inside a product without destroying
it [4], and border patrol officers at security gates can check for
forbidden objects inside baggage without opening them [5].

Considering the need for fast production lines in com-
petitive industries and issues related to human-based image
assessment, such as subjectivity and tiredness, the necessity
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of automatic and reliable image processing methods is obvi-
ous. Efficient automatic techniques for processing X-ray data
are needed also at security gates for baggage checking due
to the increasing number of travelers. Recent advances in
computer vision (CV), machine learning (ML), and deep
learning (DL) have the potential to provide efficient and reli-
able solutions to X-ray-based automatic and real-time object,
anomaly, or defect detection and recognition.

As the need for automatic X-ray applications is growing in
industrial production and security fields, several works have
proposed different CV-based techniques for processing the
data. To get an overall understanding of the current state of
the research, an extensive review of the published articles is
needed. There are also previously published related surveys:
A book by Mery [13] discusses widely computer vision algo-
rithms for industrially relevant applications of X-ray testing,
but does not cover the recent deep learning based-advances.
A survey by Hou et al. [14] focuses on computer-aided
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TABLE 1. Overview of available surveys on computer vision for industrial and security X-ray applications.

FIGURE 1. Paper outline.

weld defect detection from radiography images. Surveys by
Mery et al. [15] and Akcay and Breckon [16] focus on
computer vision for security applications. A summary of the
available surveys on this topic is presented in Table 1, where
X’s indicate the covered topics. We note that the previously
published surveys in these topics cover only a specific appli-
cation and/or just a limited type of CVmethods. Furthermore,
despite their obvious importance, the previously published
surveys do not comprehensively discuss evaluation setups and
metrics for different CV tasks in X-ray analysis.

We provide an extensive review of recent CV methods for
X-ray image processing in industrial production and security
applications. We aim to provide a full picture of both X-ray
data and applications as well as CV tasks and techniques to
be useful for experts, as well as for readers with no previous
experience on one or both of the sides. We also describe
evaluation metrics and public datasets for the covered appli-
cations. In addition, we summarize the performance eval-
uation of many of the existing methods conducted on the
public datasets for easier comparison of different techniques.
We observed some common limitations, in particular in the

experimental protocols applied on the reviewed works, which
we bring up in our survey. Furthermore, we give recommen-
dations for future research in computer vision-based X-ray
analysis to remedy such problems.

The remainder of the paper is organized as follows.
An introduction to X-ray imaging and CV tasks is pro-
vided in Section II. In Section III, we review works in the
field of CV for X-ray data, categorized into seven differ-
ent research fields (additive manufacturing, casting, weld-
ing, security, electronic industry, material sciences, and oth-
ers). Section IV introduces different CV methods applied on
X-ray data divided into traditional and DL-based methods.
Section V discusses how to evaluate the proposed methods
for different applications. Section VI introduces the publicly-
available datasets. The performance comparison of the exist-
ing methods on public datasets is provided in Section VII.
Finally, the paper is concluded in Section VIII and recom-
mendations for future research are given. The paper outline
and context are shown in an organization chart in Fig. 1. The
important abbreviations used throughout the paper are listed
in Table 2.
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TABLE 2. List of important abbreviations used throughout the paper in
alphabetical order.

II. BASICS OF X-RAY IMAGING AND
COMPUTER VISION TASKS
In order to provide a basic understanding of both X-ray
imaging and computer vision tasks and to make it easier to
follow the rest of the paper for readers unfamiliar with the
topics, this section provides basic information about available
techniques and related definitions.

A. X-RAY IMAGING TECHNOLOGIES AND METHODS
While visual imaging sensors measure light reflected on
surfaces to capture their color image, in X-ray imaging, the
ionizing beams are generated by X-ray tubes and penetrated
through the scanned object to be detected by the detectors on
the other side of the object (Fig. 2). Depending on the mass
density of the exposed object, the X-ray signal can be attenu-
ated, which leads to a lower intensity on the detector. In other
words, the measured intensity is inversely proportional to the
material density. Therefore, X-ray imaging can be used to
carry out non-destructive assessments, when mass density is
a parameter of interest.

X-ray imaging techniques can be categorized based on the
number of energy levels and the view they use. In terms of
energy level, X-ray imaging techniques can be divided into
mono- or multi-energy levels (irrespective of the view or the
number of X-ray beams). In mono-energy X-ray imaging
technology, only one energy level is used for the radiated
beams [17], which provides gray-scale images (see Fig. 3-a)
according to the object mass density. This is a suitable

FIGURE 2. X-ray imaging technology.

FIGURE 3. Different X-ray imaging techniques based on the number of
beam sources: a) mono-energy, b) multi-energy.

X-ray imaging technology when dealing with mono-material
objects (e.g., in additive manufacturing). Dual- and multi-
energy X-ray imaging technologies use several energy levels
to provide several X-ray images leading to a better under-
standing of the objects’ density and effective atomic num-
ber [18]. By using of look-up table [19], the measured values
can be transferred to a pseudo-colored image of the object
(see Fig. 3-b), where various colors are assigned to different
types of material. Thus, when different types of material are
assessed (e.g., in baggage security checks), these X-ray imag-
ing technologies can provide more information and make it
easier to analyze the inner structure of the objects.

In terms of the view, X-ray imaging techniques can be
divided into 2D, multi-view, and 3D imaging categories.
In 2D imaging, the X-ray beams are radiated by the X-ray
tube to the object from only one direction producing 2D
images. In multi-view imaging, the objects of interest are
exposed to the X-ray beams from various angles [20] (see
Fig. 4-a), providing more information on the object facil-
itating the analyses. In 3D view imaging, the output is in
a 3D form and it can be provided in different ways. One
approach, also known as tomography, is to capture 2D X-ray
images of different layers of the object and then stack them
on top of each other (see Fig. 4-b) to provide a 3D volume
of it [6], [21], [22]. Another approach for 3D imaging is
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FIGURE 4. Different X-ray imaging techniques based on the view:
a) multi-view, b) 3D view.

to combine multi-view imaging with image processing tech-
niques to transfer the 2D images from different angles to a 3D
volume [23].

In the end, it should be mentioned that visual and X-ray
imaging share some characteristics and challenges, such as
noise, occlusion, and perspective. Therefore, many image
processing methods developed for color images can be used
also with X-ray images [24].

B. COMPUTER VISION TASKS
In this section, we briefly describe the main CV tasks rele-
vant to different X-ray applications. We start by defining the
general terms: computer vision, machine learning, and deep
learning. In many cases, the terms are interchangeable, but
they still cover a different subset of methods.

• Computer vision (CV) is a sub-field of artificial intelli-
gence (AI) that focuses on processing images and videos
captured by a variety of sensors (e.g., visual cameras,
X-ray imaging sensors, depth sensors). Many CV meth-
ods are learning-based and thus also ML methods, but
there exist also non-learning-based CV algorithms.

• Machine learning (ML) is a sub-field of AI, where meth-
ods learn to perform a task without being explicitly pro-
grammed to do so. To be able to learn, most ML models
need to be trained by using input-target output pairs.
ML methods can be applied to many CV tasks involving
images/videos captured by a variety of sensors, but also
to tasks involving various other data types, which are out
of the scope of this paper.

• Deep learning (DL) is a sub-field of ML. DL methods
involve multiple layers of data transformations usually

FIGURE 5. Computer Vision task examples, a) Binary classification for
casting defect detection [25], b) Object detection in X-ray baggage
security inspection [25], c) Semantic segmentation of an X-ray welding
image [25], and d) Instance segmentation of glass fibers in industrial
computed tomography [26].

taking the form of neural layers to progressively extract
higher level and more complex patterns from data.

Classification is a CV task aiming at assigning a data
sample (e.g., an image or a video) into one class included in
a set of predefined classes. The classes can represent prop-
erties, such as intact/damaged, or types of depicted objects.
In single-label classification (commonly simply referred to
as classification), the classes are mutually exclusive and only
one label is assigned to each sample, while in multi-label
classification samples can be assigned a varying number of
labels. Based on the number of classes, (single-label) clas-
sification tasks can be categorized into binary and multi-
class types. Binary classification refers to tasks with only
two classes, while multi-class classification refers to tasks
with more than two classes. Fig. 5-a shows an example of
a binary classification task on casting defect detection, where
the image on the left is classified as non-defected and the
image on the right as defected.

Object detection [27] aims at both localizing and iden-
tifying each object in an image/video. Bounding boxes are
commonly used to represent where each object is in the
image, while the identification can be seen as classification
of the image patch depicting the object. Object detection
allows counting different objects or following specific objects
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in videos. Fig. 5-b illustrates the output of object detection
applied on an X-ray baggage security image. It can be seen
that the trained ML model detected three types of objects of
interest and put bounding boxes around them.

In semantic segmentation [28], the goal is to assign each
pixel in an image to a class. Compared to classification and
object detection tasks that provide the overall class or bound-
ing boxes around the detected objects, semantic segmentation
delivers an exact outline of the objects/content from different
classes. Fig. 5-c presents an example of a semantically seg-
mented X-ray welding image. In the segmented image, the
exact pixel-wise locations of the defects aremarked. Instance
segmentation [29] is a slightly different task, where the goal
is to segment the image according to the different instances of
the same class, e.g., to count the instances. In [26], instance
segmentation was applied for segmenting glass fibers in
industrial computed tomography as illustrated in Fig. 5-d.

While most CV-based X-ray image analysis methods
proposed in the literature can be categorized directly as meth-
ods targeting classification, object detection, or segmenta-
tion tasks, some works set their final objective beyond these
tasks. For example, in [30], object detection is used to iden-
tify incorrect assembly, missing assembly, or transposition
of internal components of a product and, in [31], defect
segmentation is followed by estimation of different defect
characteristics. In [32], features extracted from X-ray images
were used to predict geometrical parameters of welding as a
regression task.

III. APPLICATION AREAS OF X-RAY TECHNOLOGY
In this section, a short overview of different industrial pro-
duction and security applications that use X-ray images
along with computer vision techniques is provided. The main
covered research topics are additive manufacturing, casting,
welding, security, electronic industry, and material sciences.
The related methods are categorized based on their underly-
ing computer vision objective, i.e., classification, detection,
or segmentation.

A. ADDITIVE MANUFACTURING
Additive manufacturing (AM) technology, which is also
known as 3D printing [33], is broadly used in diverse indus-
trial applications with high material and geometric complex-
ities, such as car manufacturing. AM technology can use
several techniques including directed energy deposition [31],
powder bed fusion [34], binder jetting [31], and additive
friction stir deposition [31], to built final or near-net-shape
(i.e., initial roughly shaped) parts in a layer-by-layer manner
directly from digital files. However, structural defects, such as
pores, internal micro-cracks, air bubbles, surface pits, surface
scratches, and porosity arrays, are inevitable in current AM
processes [31]. Printing errors, cyberattacks, residual stress,
powder materials, chamber environment, as well as printing
parameters, namely heat source power, scan speed, hatch
space, and layer thickness, are considered to be the possible
reasons behind the mentioned defects [33].

X-ray computed tomography (XCT), as a non-destructive
evaluation process, is widely used in AM processes to exam-
ine the internal and surface structure of produced parts to
detect different defects [22]. Most of the CV-based tech-
niques used for AM inspection aim at segmenting XCT data
in 2D or 3D [6], [33], [34]. In [6], defect segmentation of
cylindrical AM specimens belonging CoCr AM XCT dataset
(see Section VI-A) was carried out using a local thresholding
method on 2D slides. 3D defect segmentation of the same
data based on 3D fully-convolutional network was carried out
in [33]. In [34], a 2D segmentation network was employed
for automatic porosity segmentation of metallic AM speci-
mens. The XCT data was processed as a stack of 2D images
to provide porosity labels for the specimens, and different
segmentation methodologies were evaluated.

In [31], an application going beyond the basic CV tasks
was proposed as an inspection pipeline and applied for defect
characteristics and pore evolution analysis in a binder jetting
copper AM system.

B. CASTING
Casting is a manufacturing process finding applications
in complex industries, such as aerospace [2], [35] and
automobile [4], [36] industries, and with materials, such as
aluminum [37], [38] and titanium [2] alloys. Due to the limita-
tions of the manufacturing techniques [37], castings can host
several defects, such as holes and flaws, gas cavities, shrinks,
slags, cracks, high- and low-inclusions, wrinkles, casting
fins, shrinkage-holes, and incomplete fusion [2], [35], [36],
which can lead to catastrophic failures of critical mechanical
components [4], [37]. Therefore, it is crucial to implement a
non-destructive testing system to detect internal and surface
defects early in the manufacturing process to reduce the risks
and save time and costs [36], [38].

To this end, X-ray imaging is becoming a useful technol-
ogy to visualize the internal structure of castings and, com-
bined with CV methods, it allows for automatically assessing
the products and detecting anomalies [39]. In casting assess-
ment, most of the studies consider the problem as a binary
task (e.g., binary classification or segmentation) to differen-
tiate between defective and non-defective castings. There are
also some cases where more than one type of defects define
a multi-class detection or segmentation problem [2].

Several works that frame the problem as a binary clas-
sification task [37], [38], [40], [41], [42], where the goal
is to classify X-ray images into defective and non-defective
classes, have been conducted in the automotive industry.
In aerospace industry applications, [35] evaluated and com-
pared several traditional classification methods on casting
defect classification of image patches in supporting plates in
aeromotors.

In aerospace industry applications, most of the related
research focuses on detection of casting defects in aero-
engines. In [2], defect candidate search and classifi-
cation steps were applied to detect aerospace titanium
casting defects. For detecting core failures in die casting,
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an unsupervised inspection framework was designed and
introduced in [43]. A DL-based detection method that tries
to boost the detection performance at both data augmentation
and algorithm levels was used in [39]. Casting defects were
localized using several convolutional neural network (CNN)
architectures that were trained on a relatively small dataset
in [44]. As an alternative method, a classifier was trained
on image series and a sliding window-based approach was
applied for localization. To increase the safety in the con-
struction of road-worthymetallic components, several casting
defect detection CV methods were assessed and compared
in [36]. The defect detection approach proposed in [4] trains
the network simultaneously for detection and instance seg-
mentation on casting X-ray images. It was experimentally
shown that simultaneous training for detection and instance
segmentation led to a higher detection accuracy than training
to detect alone.

Semantic segmentation methods for casting inspection
were assessed in [45] and [46]. Authors in [45] used only real-
istically simulated X-ray data to train a network to perform
semantic segmentation on cast aluminum parts. Large defect
scale variation, small inter-class differences, and annotation
uncertainty issues were tackled in [46] for defect semantic
segmentation.

C. WELDING
Welding, as a manufacturing process that joins materials by
causing coalescence and melting two workpieces, plays a
critical role in a variety of production applications, such as
aircraft, shipbuilding, and automobile production [47]. How-
ever, the instability of welding process parameters, such as
welding current, voltage, speed, and nozzle height, as well
as the structural component deformation might cause defects
in the joints [47], [48]. These defects can reduce the quality
of the product by affecting strength, stiffness, safety, and
durability and cause catastrophic damages [49], [50]. Due to
the different welding energy sources, environments, chemical
and physical processes, and joining materials, welding is
considered a complex and not fully understood process [51].
Therefore, weld quality evaluation done by experts carries
limitations, such as subjectivity, misinterpretation, and time
consumption [52], [53]. To overcome the limitations and to
achieve real-time geometrical parameter monitoring, auto-
matic non-destructive techniques to assess welding quality
are needed [32]. The combination of X-ray imaging technol-
ogy and CV methods is a commonly chosen approach in this
regard.

To classify different welding defects, a CNN-based clas-
sification method was used in [54] and [55]. In [55], imbal-
anced class distribution was addressed by using resampling
methods to create a balanced dataset. In [32], an approach
including feed-forward neural network (FNN) and Support
Vector Machine (SVM) models was introduced for a laser
welding process monitoring and defect recognition. In [56],
binary classifiers with low data requirement for generic auto-
mated surface inspection was presented. Defective weldings

were classified in [51] employing a complex binary classifier
consisting of an artificial neural network (NN) and a fuzzy
logic system. A set of geometric features, such as shape mea-
sures (compactness, elongation, symmetry, etc.), was defined
in [57] to characterize defects in X-ray data and then these
features were used as inputs to a multi-class classifier that
divides the problem into one versus one binary problems.

Studies in [48], [49], [58], and [59] applied detection
CV tools on welding X-ray data. The class distribution of
welding X-ray image sets was balanced in [49] using two
data augmentation approaches, and then the balanced data
and a feature extraction-based transfer learning method were
used to train two deep models. The models were then com-
bined to perform defect detection via dividing the image into
sub-images and separately classifying each sub-image. The
method in [58] uses a hybrid automatic detection scheme
including a location extractor of weld region and a detector
based on a binary classifier. The detector uses sliding window
and the trained binary classifier to detect the defective parts.
A DL-based model was employed in [48] to automatically
identify multiple welding defects and extract their location
without any pre-processing.

In [47], high-precision automatic weld defect segmenta-
tion for small defects was achieved by employing a deep
neural network and data augmentation. In [60], an auto-
matic welded joints’ segmentation technique is introduced
which can localize weld beads, segment discontinuities (as
potential defects), and finally, extract the features to clas-
sify the discontinuities. In [52], minimum intra-class and
maximum inter-class variances were used to localize defects
after applying a noise reduction method on X-ray data.
Then, shape features were extracted and used to classify the
defects. The potential weld joint defects were segmented
using a background subtraction algorithm in [53], and then
defects’ features including average gray-scale difference to
the background, gray-scale standard deviation, and the defect
area were extracted and used by a classifier to differentiate
real defects from all potential ones. In [59], defects were
segmented by classifying each pixel using extracted feature
vectors.

D. SECURITY
One of the most common areas where X-ray imaging is
used is baggage inspection at, for example, security gates on
railway stations, subway stations, and airports, for detecting
prohibited items and threats [61]. However, the inspection
and threat detection in this context are usually performed
by humans [61], [62]. Fatiguing work schedules, complexity
in catching contraband items, inexperienced operators, and
squeezed and overlapped items can be named as limitations
of the human detection operation [3], [5], [63]. On the other
hand, especially during busy hours, quick evaluation and
detection are urgent to prevent any delay in the passengers’
transportation schedules [64], [65]. All these together empha-
size the necessity of reliable and time-efficient methods to do
the detection automatically. Several datasets are available for
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FIGURE 6. Samples of X-ray security images, available in OPIXray data [9].

developing CV-based approaches as discussed in Section VI.
Some sample images from one of the datasets, OPIXray [9],
are shown in Fig. 6.
To tackle the overlapping issue in X-ray images of tightly

packed luggages, a multi-label classification network was
used in [66] to recognize prohibited items such as guns,
knives, scissors, etc. A multistage analyzer and classifier
system was proposed in [67] to automatically perform threat
recognition in different security monitoring environments to
identify awide range of firearm threats. Tomanage intra-class
variability in contrast, pose, image size, and focal distance,
a new representation approach was introduced in [68] to
recognize objects. In [69], a method was adopted for binary
classification of firearms versus other objects in baggage
security X-ray images. A deep NN was employed in [70] as a
security image classifier with the ability to overcome the data
scarcity problem to classify among gun, knife, and electrical
device classes. Ten diverse CV-based strategies were investi-
gated in [24] for object recognition in X-ray security imaging.
In [71], an anomaly detection method was proposed that
categorizes anomalies in appearance and semantic anoma-
lies. Unusual shape, texture, and density were considered
as appearance anomalies and unfamiliar objects as semantic
anomalies. A multi-scale CNN architecture was used in [72]
to discriminatematerials into classes, such asmetal or organic
substances, using dual-energy X-ray scanner images.

Most studies in security applications aim at detection of
threats. Some works focus on binary detection tasks to dis-
criminate a specific class of objects, e.g., firearms/firearm
components [73], [74], [75]. Theworks in [5], [63], [74], [75],
[76], and [77] aim at recognizing multiple different threat
categories, such as knives and guns, whereas the work in [78]
aims at categorizing several object types, such as laptops and
mobile phones, either as benign or anomalous. An approach
for extracting multi-level information and handling nonrigid
deformations was employed in [79]. The problem of over-
lapping objects in X-ray security data was tackled in [80].
A patch-wise image classification method based on sparse
representation of direction features was introduced in [81]

and used for threatening object detection. The direction fea-
tures were extracted to build a foreground dictionary used
for assessing test data to detect the foreground. Another sim-
ple foreground-background segmentation technique based on
color thresholds was applied in [64] as a preprocessing step
for object detection in the X-ray images. To increase the
trust in automatic detectors on baggage security imagery
applications, a human-in-the-loop detection framework was
presented in [82]. The framework gives a score to each pro-
hibited item proposal and, based on the score, the baggage is
assigned to safe, suspicious, or dangerous classes. In case of
classification as suspicious, a human makes the final decision
on the baggage.

Using synthetic data is a way to tackle the lack of data
in security image detection [61], [62], [83]. In [61], data
for CNN training process was obtained using a method that
generated X-ray security images with multiple prohibited
items. The study in [62] used a data augmentation method
that first generates several RGB images of prohibited items.
Subsequently, the images are transformed into X-ray format
and combined to different backgrounds. Synthetically com-
posed X-ray images of transformed threats and backgrounds
were used in [83] to overcome the high data requirement
challenge in CNN training. To assess the approach, a CNN-
based object recognition method was trained with both real
and synthetic data and the results were compared, showing
promising results for the combination of real and synthetic
data.

Some studies on automatic X-ray security data analysis
applied image segmentation. The work in [84] presented
an automatic segmentation method for security screening
that first enhances images to improve performance and then
applies color-based pixel segmentation to distinguish diverse
materials (organic, inorganic, mixed, and opaque objects)
from the background. Amethod using a DLmodel as a robust
feature extractor and an adversarial auto-encoder to classify
images into organic and inorganic classes considering the
overlap among the materials was proposed in [3]. To find the
most suitable object level and sub-component level anomaly
detection strategy, several segmentation methodologies were
assessed in [65]. Their performances were analyzed by apply-
ing them to an extensive dataset focusing on electronic items.

E. MATERIAL SCIENCES
Following the recent developments in CV capabilities in
combination with diverse X-ray imaging technologies, a new
growing research topic focuses on the analysis of various
materials using CV methods on X-ray images. It should be
mentioned that the term material science here refers to the
studies that focus on the properties of materials, not the
production process of different materials. These methods can
be employed to achieve realistic textile composite finite ele-
ment models [85], fiber extractionmodels [26], links between
microstructures and physical properties [86], and characteri-
zation and mappings of materials [87].
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Atomic resolution images of materials can be obtained
by illuminating particles with random orientation with an
X-ray free-electron laser beam and collecting of the scatter-
ing patterns. In [88], neural networks were used for binary
classification of such diffraction patterns of non-crystalline
objects into single hit or non-single hit classes.

For detection of small-sized and dense void and inclusion
defects in spacecraft composite structures, transfer learning
and domain adaptation were used in [89]. In [90], detection of
internal defects of aluminum conductor composite core was
performed as a patch-wise classification task.

Several works apply 2D or 3D segmentation techniques
on XCT images. A 2D segmentation method was employed
in [91] on lab-based micro computed tomography (µ-CT)
images of carbon fiber reinforced polymers to tackle the
challenges caused by noise, low contrast between fiber and
polymer, and unclear fiber gradients. A 3D instance segmen-
tation method was developed in [26] for XCT scans of short
glass fiber reinforced polymers. The model has an additional
output for embedding learning, which allows a clustering
algorithm to distinguish among various fiber instances. Dif-
ferent 2D and 3D semantic segmentation techniques were
applied on XCT image data to study microstructures of
materials in [86]. The ground truth information of 3D X-ray
diffraction measurements was used to develop a grain-wise
segmentation model for Al-Cu specimens with additional
post-processing to enhance visible grain boundaries and
reduce over-segmentation. Aµ-CT image processing method
to build digital material twins was presented in [85], where a
deep learning model was applied on 2D glass and 3D carbon
reinforcements’ images to efficiently segment them based
on extracted multi-scale features using data-driven convolu-
tional filters. The scannedµ-CT images and images produced
by computer-generated virtual reinforcements models were
used to train the model.

F. ELECTRONIC INDUSTRY
The electronic industry and more specifically semiconductor
manufacturing has been under rapid development in the last
few decades [92], which increases the necessity of developing
fast and accurate methods for defect detection [92], unwanted
particles deposition [93], volumetric inspection [94], etc.
Therefore, the X-ray imaging technologies along with the
CV techniques have drawn researchers’ attention also in this
field.

In order to characterize, measure, and optimize the design
and production of buried interconnects in advanced integrated
circuit packages, XCT imaging was used in [23] to avoid
cross-section of the chips, and then several DL-based 3D
object detection and segmentation methods were used to
identify the components and perform 3D metrology. In [93],
a CNNmodel was trained on a set of energy-dispersive X-ray
and scanning electron microscopy images to classify the
chemical composition of particle defects on semiconductor
wafers to decrease analysis time and error caused by human
unpredictability. The internal wire bonding of chips is a

process that can easily face interference and produce defects
in the semiconductor enterprise capsulation step. Therefore,
two algorithms were used in [92] to distinguish defective
chips based on the standard template and similarity calcula-
tions among the neighbor chips. Also, as ML techniques need
a lot of labeled data, a data synthesis procedure was employed
in [94], where synthetic XCT images were produced during
the miniature fabrication of thin silicon wafer layers with
known orientation, position, and geometry features. These
known data characteristics were used as annotations and used
to train an automatic ML-based feature extraction model.

G. OTHERS
Besides the fields mentioned above, there are other industrial
production fields that employ different CV techniques on
X-ray images. A brief overview is provided here.

In [95], a two-stage method was employed for X-ray cargo
image inspection to solve the empty container verification
problem. First, a rule-based algorithm was adopted to dis-
cover the location of containers’ positions in the images and,
afterward, a DL method was used to identify the empty con-
tainers. Solder balls’ head-in-pillow defects were inspected
using an ML-based methodology in [96]. These defects
affect the solder balls’ conductivity and consequently lead
to intermittent failures. In another study [97] focusing on
solder joints, solder voids and head-in-pillow defects were
recognized.

In order to increase the safety in aircraft flying, a DL
method was proposed in [98] for X-ray image-based non-
destructive examination of aeronautics engines with multiple
defect inspection paradigms. Another application of using
X-ray images and CV techniques is assembly inspection of
internal components [30]. In this study, to ensure that all
components of a complex product are assembled accurately,
a multi-view X-ray imaging technique was used to obtain
projection information on each internal component. Then,
a deep CNN model was used to classify the internal com-
ponents and provide their coordinates to compare and match
the locations and consequently recognize transposition or
dislocation faults. To detect and reject defective products
in a mineral wool production line, a binary classifier was
developed in [99]. The goal of this work was to achieve fast
classification for a real-time application that can outperform
a thresholding-based method on the production line. To this
end, the authors performed structured parameter pruning on
the adopted deep learning model.

X-ray-based adaptive defect detection in milled aluminum
ingots surfaces was used in [100]. Automatic segmentation
of multi-class progressive matrix damage of aerospace-grade
advanced composite laminate images obtained by non-
destructive on-site mechanical tests coupled with synchrotron
radiation computed tomography was considered in [101].
In order to assess and classify tablets’ internal defects, an
X-ray-based method was used in [102] to explore the impacts
of a filler composition, roller compaction force, and mag-
nesium stearate on tablets quality. Also, it was shown that
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the use of X-ray images with quantitative CV analysis can
generate deeper mechanical knowledge of the compaction
phenomenon in tableting.

A two-step CV methodology was proposed in [103] to
detect voids and segment concrete samples. Another study
on concrete fractures [104] noted that due to the low number
of pixels for each fracture in X-ray images, high-frequency
noise, and weak contrast over fractures, the performance
of conventional segmentation methods is limited in extract-
ing the continuous fractures, which leads to an overestima-
tion of fractures aperture and thickness values. Therefore,
an encoder-decoder network was adopted with a CNN to
achieve rapid and precise detection of barely seen micro-
fractures. The organic microcapsules in cement were clas-
sified in [105] into five categories, namely microcapsules,
ruptured microcapsules, pores, adhesive objects, and others,
using a CV-based classifier.

IV. COMPUTER VISION TECHNIQUES
In this section, the computer vision and machine learn-
ing methods used in the previous X-ray-related studies are
summarized. While advances in deep learning during the
last decade have made deep learning techniques the default
solutions for many machine learning tasks, these techniques
require large amounts of training data, which is not always
available, and therefore, traditional techniques are still com-
monly used in many tasks. A major difference between
traditional and deep learning methods is that deep learning
methods can typically operate directly on high-dimensional
raw data, such as X-ray images, while traditional techniques
generally use as their inputs lower-dimensional features
extracted from the raw data. Therefore, feature extraction
techniques are important for traditional techniques, but not
for deep learning-based methods. On the other hand, as deep
learning models require large training datasets, different
approaches that allow training models with less data have
become important. We divide our description into two main
categories, traditional and deep learning methods, and further
into relevant subcategories.

A. TRADITIONAL METHODS
Numerous CV techniques have been implemented on a vari-
ety of image analysis tasks and applications. In this section,
we provide a comprehensive overview of traditional (non-
deep learning) CV methods that have been applied on dif-
ferent X-ray image analysis tasks.

1) FEATURE EXTRACTION TECHNIQUES
Traditional ML methods typically cannot directly use the
original high-dimensional raw data as their inputs, thus fea-
ture extraction methods are needed to transform the data to
lower-dimensional features conserving relevant information
for the analysis task at hand.
Scale Invariant Feature Transform (SIFT) [106] and

Speeded Up Robust Features (SURF) [107] are used to extract
features of local image patches and have been extensively

used especially in object detection applications. In [69] and
[108], SIFT and/or SURF were used to create Bag of Words
(BoW) [109] representations of bag inspection images to
classify them with SVMs. Well-known feature extraction
methods Gabor features [110], Histogram of Oriented Gra-
dients (HOG) [111], and Local Binary Pattern (LBP) [112]
were used in [35] to extract features for casting defect detec-
tion with several traditional classifiers. LBP features were
observed to give better results than Gabor or HOG features.
Similarly, Gabor, LBP, HOG, SIFT, SURF, and other features
including features extracted from pretrained deep CNNswere
used in [41] for classifying small image patches (defect vs.
no defect) of casting images and the best performance was
obtained with LBP features.

Manyworks applied also subspace learningmethods, most
commonly principal component analysis (PCA), for feature
extraction. In [67], a supervised multi-label dimensional-
ity reduction method, Multi-Output Proximity Embedding
(MOPE) [113], was used in feature extraction for threat clas-
sification from security images, where MOPE is the embed-
ding engine.
Adaptive Sparse Representation (XASR+) was introduced

in [68] for object recognition in security screening. It is a
learning-based representation, where several patches of each
object in the training set are used to learn a representa-
tive sparse dictionary for the class. In the test phase, the
unseen samples are classified using these dictionaries and
sparse representation-based classification (SRC), which is
introduced in Section IV-A2. The approach proposed in [68]
led to promising results compared to other traditional feature
extraction techniques.

It is also possible to use feature extraction as a preprocess-
ing step before deep learning methods. In [100], Difference
of Gaussians and Mask Gradient Response-based Threshold
Segmentation were used for Region of Interest (RoI) extrac-
tion in aluminum ingot images for surface defect detection.
The found RoIs were subsequently classified using a CNN.

2) TRADITIONAL CLASSIFIERS
Feed-forward neural networks (FNNs), artificial neural net-
works (ANNs), fully-connected neural networks (FCNNs) and
multi-layer perceptrons (MLPs) typically refer to the same
approach: a set of neurons arranged in layers and having a
connection (weight) between every pair of neurons in sub-
sequent layers. However, it should be noted that also deep
learning methods are ANNs and many of them are also
FNNs. The layers of traditional MLPs are commonly called
fully-connected layers and used also in deep learning. The
traditional MLPs are multi-input and -output functions, but
due to computational limitations, the input dimension cannot
be very high if the network has only fully-connected layers.
During training, the network learns the connection weights so
that the error between the predicted and ground-truth outputs
is minimized. The error is quantified using a loss function and
training happens via back-propagation of the loss so that the
loss reduces.
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MLPs have been used in several X-ray analysis works
including [32], [51], [60], [84], and [94]. In [32], [51], and
[60], they were used for welding defect analysis, in [94] to
evaluate synthesized data, and in [84] they were compared
against other traditional classifier types in baggage image
segmentation.
Support VectorMachine (SVM) [114] is a classifier that has

been originally developed for binary classification and aims
at finding a hyperplane that separates the features of samples
in different classes by maximizing the margin between the
classes. Non-linear decision boundaries can be obtained using
SVM together with the kernel trick and, e.g., by using radial
basis function (RBF) or polynomial kernel. SVMs can be also
used for multiclass classification by formulating the problem
as multiple one vs. one or one vs. all tasks.

In X-ray image processing, SVMs have been used in [41],
[53], [57], [59], [67], [69], [84], [96], and [108] as the clas-
sifier. In [41], both linear and RBF SVMs were used for
classifying patches of cast images (defect vs. no defect).
In [96], they were used to complement a CNN in solder ball
defect inspection (defect vs. no defect). Multiple works for
welding detect segmentation [53], [57], [59] used first some
simple methods (e.g., thresholding) for segmenting the defect
candidates and then a separate SVM to classify the candi-
dates. Binary classification with different kernels was applied
in [53] and [59], whereas [57] applied multiclass SVMs using
both one vs. one or one vs. all approaches. In [84], three
SVMmodels with different kernels (linear, RBF, polynomial)
were used to segment X-ray baggage security images into
organic and inorganic material. In [69] and [108], SVMs
were used for binary classification of security images (gun
or no). Multi-Output Proximity Embedding (MOPE)-SVM
was used as the classifier in the threat classification systems
in [67].
Random forest (RF) applies bootstrap aggregation to build

multiple classification trees and then classifies the objects
based on the majority vote of the trees. random forest (RF)
was compared against other traditional classifiers in [84]
for an X-ray baggage security segmentation, but it showed
inferior performance. In [115], RF was compared against
k-nearest neighbors classifier in an imbalanced mineral
phase segmentation task and the algorithms achieved similar
performance.
K-nearest neighbors (k-NN) is a simple classification tech-

nique that assigns labels for test samples by calculating the
distances of the samples with all the training samples, finding
k nearest samples and then selecting the most frequent label
or the average of the labels in case of classification or regres-
sion, respectively. k-nearest neighbors (k-NN) can become
noticeably slow when the data size grows. It was applied in
the same studies as RF [84], [115] with similar results.
Naive Bayes (NB) is a simple Bayes theorem-based prob-

abilistic classifier with (naive) independence assumption
among the features. It was the winner among the traditional
classifiers compared for X-ray baggage security segmenta-
tion in [84].

Logistic regression is used to evaluate class probabilities in
binary classification tasks. It aims at finding optimal param-
eters values to fit a logistic function to model a binary target
variable. The parameters are usually estimated using maxi-
mum likelihood estimation over cross-entropy loss. Logistic
regression was applied in [103] to differentiate the features of
aggregate and mortar pixels in concrete phase segmentation.
Sparse representation-based classification (SRC) [116]

computes a sparse representation for all training samples and
decides the class of an unseen test sample by evaluating
how well the sample can be constructed from the sparse
representations of different classes. The assumption is that
the sparse representations capture the central features of the
images belonging to a certain class, and a better reconstruc-
tion means that the central features of a test sample follow
the class characteristics. In [68], SRC was used together with
the XASR+ representations introduced in Section IV-A1 for
security screening.

3) CLUSTERING TECHNIQUES
Clustering refers to a process of grouping the input sam-
ples so that similar items are assigned to the same cluster
and dissimilar ones into different clusters. Segmentation can
be seen as a clustering task, where regions corresponding
to different objects should be assigned into different clus-
ters and evaluated via clustering metrics as described in
Section V-B3. Clustering techniques also find use in X-ray
image segmentation.
K-means clustering algorithm initially assigns all items

randomly in one of K clusters. Then the algorithm proceeds
iteratively by computing the centroid of each cluster, reas-
signing the items to the cluster of the closest centroid, and
repeating these steps until the algorithm converges. K-means
was assessed in [115] for 3D mineral phase segmentation
based on voxels’ gray-scale values. fuzzy C-means cluster-
ing (FCM) is a fuzzy version on K-means. While K-means
assigns each item into one cluster, in FCM the items can
belong to multiple clusters in a fuzzy manner. FCM was used
for 3D mineral phase segmentation based in [115].
Simple linear iterative clustering (SLIC) [117] is another

variant of K-means, where the distance measure combines
feature similarity and spatial distance of the pixels. Also, the
number of distance evaluations is limited to an area propor-
tional to the superpixel size. simple linear iterative clustering
(SLIC) was applied for sub-component level segmentation in
anomaly detection within X-ray security imagery in [65].

B. DEEP LEARNING METHODS
Deep learning has dominated many CV tasks by adopting
deeper and more complicated neural architectures that make
the networks capable of modeling more complex patterns
and relations. X-ray image processing is not an exception
and researchers have exploited the benefits of DL models,
too. In this section, we present a comprehensive overview
of DL methods applied on X-ray image analysis. We review
the adopted deep architectures categorized according to the
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considered CV tasks, i.e., classification, detection, and seg-
mentation, and we also cover different loss functions, data
augmentation strategies, and other approaches for improving
the performance of deep learning models.

A type of deep learning model that has been commonly
used for image analysis is convolutional neural networks
(CNNs) [118] leading to high performances [49], [96]. CNN
architectures consist of several layers with different proper-
ties. The most common types of layers are: convolutional
layer, pooling layer, and fully-connected layer. Convolutional
layers learn to extract useful features from the input images
and each layer transforms the input data into a more abstract
representation. Pooling layers are used to compress the fea-
ture maps and fully-connected layers make the final predic-
tion based on the extracted features. The last layer provides
the network output and the output format depends on the CV
task at hand.

1) DEEP CLASSIFICATION AND BACKBONE ARCHITECTURES
In CNN architectures for classification, the output format
usually is a one-hot encoded vector [118], which has one
element for each class and the value of the elements is a
form of predicted probability of the input image to belong
to the corresponding class. The image is assigned to the class
with the highest probability. This type of layer is typically
used together with categorical cross entropy loss function (see
Section IV-B4) and softmax activation function defined as

ŷ[i] =
ey[i]∑C
c=1 e

y[c]
, (1)

where y[i] and ŷ[i] denote the ith element in the output vector
before and after applying the softmax function, respectively,
and C is the number of output classes. Softmax activation
confines the output element values between zero and one
and makes the sum of the output elements equal to one. The
exponential function highlights the probability of the most
probable class making the predictions clearer.

While the CNN architectures presented below were orig-
inally proposed for classification tasks, they can be used
as backbone networks in other problems, such as object
detection [36], or within Generative Adversarial Networks
(GANs) used for data augmentation [44] simply by removing
the output layer designed for classification and adding other
types of layers.

Studies applying simple CNN architectures for X-ray
image classification include [55] using a simple CNN model
for weld defect classification, [105] using another simple
CNN model for binary classification of automotive compo-
nents into defective and non-defective class, and [2] using
Evenly Distributed CNN (ED-CNN) illustrated structure in
Fig. 7-a for casting defects classification.

A simple andwell-known classification backbone architec-
ture is VGG [119] which contains stacked convolutional and
max pooling layers. VGG-16 architecture shown in Fig. 7-b
was used in [97] for solder joint classification and in [40]

along with spatial attention and bilinear pooling for casting
defects classification. VGG-16 was used as a feature map
extractor (backbone network) in an anomaly detector net-
work for casting defect localization in [44] and in an object
detection network for X-ray baggage security assessment
in [64]. In [54], a different VGG variant was used for weld
defect classification. Different simple CNNmodels including
VGG-19, VGG-F, and VGG-2048 were compared in [41] for
casting defects classification from X-ray data.

One of the most common and well-known classification
architectures is Residual neural network (ResNet). ResNet is
an extension on CNNmodels that was proposed to prevent the
problems caused by very deep networks, in particular the van-
ishing gradient problem. To optimize and overcome the net-
work degradation problem, ResNets include residual blocks
that have skip connections over some layers (Fig. 7-c, left).
They also apply batch normalization after each convolution
layer. These factorsmake it easier to pass information through
the networks, which allowed to have a larger number of layers
and a smaller error rate on both train and test sets than the
earlier CNN models. Due to its benefits, different variants of
ResNet with various depths, such as ResNet-18 [85], ResNet-
34 [95], ResNet-50 [66], and ResNet-101 [44], have been
used in X-ray data assessment studies, e.g., in casting defect
recognition [44], [46] and detection of internal defects in the
Aluminum Conductor Composite Core (ACCC) [90].

In order to improve themulti-scale performance of ResNet,
a newer model known as Res2Net was introduced in [120].
In Res2Net, the residual blocks are replaced by hierarchical
residual-like connections within one single residual block
(Fig. 7-c, right). Res2Net was used as the generator in a
GAN in [61] for data augmentation (See IV-B5). A modi-
fication of ResNet-50, DetNet, was proposed in [121] as a
backbone network optimized for object detection alleviating
the loss of location information in feature maps caused by
down-sampling operations. DetNet-59 architecture shown in
Fig. 7-d was adopted in [36] as a backbone for casting defect
detection.

While convolutions focus on local relations in the data,
augmenting convolutions with different approaches to cap-
ture long-range dependencies have been proposed. Self-
attention [122] is an attention mechanism that can relate
different positions of the data in order to compute a feature
representation. A self-attention guided CNN was used in [38]
to detect small casting defects. Its overall structure of the
employed model is shown in Fig. 7-e.

Considering the special characteristics of the weld defects,
the usual pooling strategies have poor dynamic adaptabil-
ity. Therefore, an improved pooling strategy was proposed
in [123]. In the proposed approach, different pooling method
were used depending on whether the pooling domain is out-
side the defected area or on the defect’s edge.

Autoencoders are a special type of neural networks that
can be used for unsupervised feature extraction. They are
composed of an encoder that turns input images into fea-
ture representations and a decoder that tries to reconstruct
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FIGURE 7. Deep classification architectures: a) ED-CNN, b) VGG-16, c) ResNet vs. Res2Net, d) DetNet-59, e) Self-attention guided CNN, f) Convolutional
autoencoder, and g) Sparse auto-encoder.

the input from the feature representation as the network’s
output. While the task would be trivial if the feature rep-
resentation had the same dimensionality as the input (and
output), the feature representation in autoencoders usually
has a much lower dimensionality, which forces the network
to learn representations that contain the most useful informa-
tion for the reconstruction process. As the training requires

only the images with no need for class labels, training can
be performed in a fully unsupervised manner. The trained
encoder can be then used as a feature extractor for other
tasks, such as classification. This approach can be useful
when there is a large unlabeled data set available, but only
a limited number of labeled training samples. For instance,
a non-convolutional sparse auto-encoder (SAE) shown in
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Fig. 7-f was utilized in [58] as an intrinsic feature extractor for
welding defect detection. In [43], an unsupervised inspection
systemwas built on top of a convolutional autoencoder (CAE)
(Fig. 7-g) to inspect casting X-ray images with no labeling.
In [124], a CAE was trained using abundant normal images
of manufacturing production lines. The encoder was then
combined with fully-connected layers for classification that
were trained using a lower number of labeled samples of both
normal and defective engines.

2) DEEP OBJECT DETECTION ARCHITECTURES
Object detection networks aim at finding the locations of
objects in addition to recognizing them. The number of
objects can significantly vary in different images, which
means that the output layers for object detection architectures
cannot use a fixed fully-connected structure as is commonly
done in classification. The key design question in object
detection architectures is how to locate the possible objects
for deeper analysis. One approach would be to predefine all
possible bounding box locations and sizes and exhaustively
analyze whether they contain objects of interest. However,
this approach would have an enormous number of bounding
boxes to analyze and would be computationally too expen-
sive. Therefore, most object detection architectures propose
approaches for finding only the most promising subset of all
the possible bounding boxes for further analysis.
Region-based CNN (R-CNN) [125] is one of the architec-

tures commonly used for object detection. For a given image,
R-CNN applies a selective search mechanism to extract
approximately 2,000 RoIs. Afterward, each RoI is introduced
to a CNN to obtain the output features, and then a collection
of SVM classifiers is used to recognize the type of object in
the RoI (if there is any). Fast R-CNN [126] improves the effi-
ciency of R-CNN by not introducing all RoIs to the CNN, but
introduces the input image once, and the features for the RoIs
are then extracted from the overall feature map. An upgraded
version of Fast R-CNN, called Faster R-CNN (Fig. 8-a) uses
a separate network to predict RoIs instead of using the slow
selective search. Faster R-CNN was applied in [64], [78],
[83], [98], and [127] to detect defects in tires and prohibited
items in baggage, respectively. In [82], an additional branch
called Part-based Detection Network (PDN) was added to
Faster R-CNN (Fig. 8-b) to improve detection of occluded
items in threat detection on X-ray security images.
You Only Look Once (YOLO) [128] is another commonly-

used object detection architecture. The main difference
between YOLO and the region-based approaches is that
YOLO uses a single CNN to predict both bounding boxes
and class probabilities. Therefore, it can be trained in an
end-to-end manner and it is much faster than the region-
based approaches. There are multiple versions of YOLO
architectures and many of them have been employed also in
X-ray image processing. YOLOv2 [129] improves the original
YOLO in multiple ways, such as adding batch normalization,
removing fully-connected layers, and using anchor boxes.
As a result, YOLOv2manages to improve YOLO’s recall and

localization, while maintaining its classification accuracy.
YOLOv2 was used in [88] with the architecture shown in
Fig. 8-c for detection and classification of diffraction pat-
terns in single-particle imaging. YOLOv3 [130] improves the
accuracy of earlier versions by adding objectness scores to
bounding box prediction, adding connections to the backbone
network layers, and making predictions at three separate lev-
els of granularity to improve performance on smaller objects.
YOLOv3 was employed in [88] as a diffraction pattern detec-
tor on X-ray images by the illustrated structure in Fig. 8-d
and in [76] and [131] to detect dangerous objects in baggage
security application. It also was used in [132] to detect defects
in casting products. To achieve better detection speed and
accuracy, YOLOv4 is introduced in [133] with improvements
in network structure, training method, loss function, and data
enhancement in comparison to YOLOv3. YOLOv4 was used
in [134] as a detector in an X-ray security inspection task. The
fifth version of YOLO, known as YOLOv5 was used in [135]
to detect casting defects.
Single Shot Multibox Detector (SSD) [136] is a one-stage

object detection network that eliminates the proposal gen-
eration phase by discretizing the bounding box prediction
space into a set of default boxes and then calculating scores
presenting the existence of each object class in each box and
finally makes adjustments on the boxes to improve the scores.
During inference, the predictions obtained from multiple fea-
ture maps with different resolutions are combined together to
capture various object sizes. This method is combined with
VGG-16 and ResNet-101 in [4] as an object detector for
casting assessment.

Another common one-stage object detection architecture,
RetinaNet [137], uses focal loss and feature pyramid net-
work (Fig. 8-e). It achieves good performance with dense
and small-scale objects, as the focal loss better addresses
the problems caused by a major class imbalance between
background and foreground classes. In the topic of X-ray
image analysis, RetinaNet is used in [48], [73], and [78]
to detect defects in welding, anomalies in cluttered secu-
rity imagery, and firearms in baggage security imagery,
respectively.

In [5], a Cascaded Structure Tensor (CST) framework
for detection and classification of heavily occluded baggage
items from X-ray scans was proposed. The framework uses
non-convolutional CST approach for object proposal extrac-
tion and a CNN only for subsequent object recognition.
Path Aggregation Network (PANet) [138] can be used for

both detection and segmentation tasks. It improves region-
based networks by including bottom-up path augmentation
to cut down the information path among lower layers and
topmost features, adaptive feature pooling to connect feature
grids at all levels of features, and fully-connected fusion
to enhance mask prediction. It was combined with Resnet-
50 in [36] (shown in Fig. 8-f) to detect defects in casting
products.
Feature Pyramid Networks (FPNs) [139] were introduced

for detecting objects at different scales. They use the inherent
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FIGURE 8. Deep detection architectures: a) Faster R-CNN, b) PDN branch, c) YOLOv2, d) YOLOv3, e) RetinaNet, f) PANet with ResNet-50, and g) FPN.

pyramidal and multi-scale hierarchy of deep CNNs to build
feature pyramids with marginal extra cost. A FPN was used
for detection of automobile casting aluminum parts in [39]
with the shown structure in Fig. 8-g. In [66], it was combined
with a ResNet-50 and used for prohibited item detection in
X-ray scanning images.

3) DEEP IMAGE SEGMENTATION ARCHITECTURES
In image segmentation, the network output is an image with
the same dimensions as the input image, and the task is to
predict the class of each pixel. Segmentation architectures
typically have a structure similar to autoencoders, where
an encoder learns to extract a descriptive lower-dimensional
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FIGURE 9. Deep segmentation architectures: a) U-Net, b) Mask R-CNN, and c) CHNet.

representation of the input and a decoder up-samples the
feature map size back to the input size and produces the
class predictions. The networks are often fully-convolutional
networks, i.e., they do not contain any fully-connected layers.
U-Net [140] (Fig. 9-a) is one of the widely used models

for image segmentation. It has an encoder-decoder struc-
ture with additional connections between them. The method
has been used on both 2D and 3D (an extension upon the
standard U-Net) X-ray data in [33], [86], and [91]. In [33],
defects in 3D AM X-ray images were segmented using a
modified U-Net. U-Net was used to segment continuous
carbon fiber reinforcements composites in [91]. 2D and
3D U-Net were applied in [86] to predict grain bound-
aries in Al-Cu alloy materials. U-net structure with addi-
tional skip connections was used in [47] for segmenting
the locations of welding defects. A U-Net-like structure
with residual connections was used in [34] for porosity seg-
mentation in XCT scans of additively manufactured metal
specimens.
Mask R-CNN [141] is an extension of Faster R-CNN (see

Section IV-B2) with an additional output for predicting seg-
mentation masks for each RoI. As this approach segments
each instance of an object class independently, Mask R-CNN
is an architecture for instance segmentation. In [78], Mask
R-CNN (Fig. 9-b) was used to segment anomalies in cluttered
security imagery. Casting defects and firearms in baggage
were segmented using Mask R-CNN in [4] and [73].

CH-Net [3] is a semantic segmentation model based
on adversarial autoencoders (AAEs) [142] (see Fig. 9-c).
It was proposed as a fast and memory-efficient method for
baggage security image segmentation in [3]. DeepLabv3+,
an encoder-decoder network with atrous separable convolu-
tions in the encoder was proposed in [143]. DeepLabv3+was
applied with ResNet18 as a backbone for semantic segmen-
tation of µ-CT images for creating digital material twins of
fibrous reinforcements in [85].

4) LOSS FUNCTIONS
As quantifiers of the difference between a model’s predicted
and expected outcomes, loss functions are essential in train-
ing deep neural networks. During training, the models are
guided towards minimizing this difference and, if the loss
function does not represent well the problem at hand, the
results will be suboptimal.

In regression tasks, where the goal is to learn to predict
specific values as the network’s output, mean squared error
(MSE) is a common loss function. MSE loss is defined as

L(ŷs, ys) =

∑N
i=1

(
ŷs[i]− ys[i]

)2
N

, (2)

where ys is a vector containing the target values for all the
network’sN outputs for a specific sample s, ŷs is the predicted
output vector, and ys[i] is the ith element of the target output.
The final loss is the average loss over the training samples.
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While MSE can be also used in classification tasks, cross
entropy loss, also called log loss, is preferred in classification
tasks in general, and also most of the works on X-ray image
classification use cross entropy loss. There are two commonly
used versions of the cross entropy loss. Binary cross entropy
loss is used in binary classification tasks as well as in multi-
class multi-label classification tasks, where each sample may
belong to multiple classes:

L(ŷs, ys) = −
N∑
i=1

(
ys[i] log(ŷs[i])+ (ys[i]) log(1− ŷs[i])

)
,

(3)

Categorical cross entropy loss is used in multi-class single-
label classification tasks:

L(ŷs, ys) = −
N∑
i=1

ys[i] log(ŷs[i]). (4)

Compared to MSE, cross entropy losses penalize output val-
ues that lead to wrong classification more. Similar to MSE
loss, the binary cross entropy loss gives an equal weight
for all the output elements, whereas the categorical cross
entropy loss focuses on positive samples, i.e., learning which
samples should be classified to a specific class instead of
trying to learn which samples should not be classified to the
class [118].

In object detection tasks, the models need to predict the
bounding box locations along with the corresponding class.
Thus, they usually minimize both a regression loss (MSE)
to learn the bounding box locations and a classification loss
(cross entropy) to learn the classes. As semantic segmentation
can be seen as pixel-wise classification, pixel-wise cross
entropy loss is commonly used also in segmentation tasks.
Below we briefly introduce some less common loss function
choices that have been considered in X-ray image analysis
tasks.
Triplet loss [144] is a loss function that tries to reduce the

distance between data in the same class and increase the dis-
tance between data belonging to different classes. To compare
performance, the triplet loss with cosine similarity is used as
the loss function in [96] for soldering defect inspection, lead-
ing to a higher accuracy compared to using the cross-entropy
loss function.
Mutual-channel loss function was introduced in [145] and

it consists of a discriminant component and a diversity com-
ponent. This results in a set of feature channels each of
which reflects different locally discriminative regions for a
particular class. This loss function was used for casting defect
detection in [37] to focus on different discriminative regions
without part annotations or bounding boxes of the defects.
Focal loss was designed to tackle multi-class object detec-

tion scenarios with a high imbalance between foreground
and background classes [137]. It gives a higher weight to
hard misclassified examples. It was used in [100] for an
imbalanced dataset of milled aluminum ingot defects.

Although focal loss makes one-stage detectors focus more
on hard samples for improving performance, the availability
of a fair amount of hard outlier samples can cause a reduc-
tion in accuracy [134]. Gradient Harmonization Mechanism
(GHM) loss was introduced in [146] to tackle this problem
and it was used in [134] on a YOLOv4 model in security
threat detection application.

5) DATA AUGMENTATION
Data augmentation refers to the process used to increase the
number of data by creating slightly modified versions of the
available real data or creating synthetic data. It can help
to reduce the overfitting problem. Common augmentation
tricks, such as random rotation, cropping, or flipping, are
often used for training deep learning models. Some more
specific augmentation techniques that were used in X-ray
related studies are presented here.

A common way to tackle the problem of lacking a high
number of images from real-world environments is learn-
ing based image synthesis. However, these methods usually
combine background and foreground images randomlywhich
limits the performance of the generated data. In X-ray secu-
rity applications, a learning-based image synthesis method
was proposed in [147]. In this method, a detector is first
trained to estimate difficult positions for each foreground
object detection. Then, a so-called difficulty map is created
and the objects are synthesized at hard-to-detect locations
using the difficulty map.
Attention-Guided Data Augmentation (AGDA), proposed

in [37], creates new training samples from existing ones
by suppressing the most discriminative parts found using
attention maps. The method was applied for casting defect
detection in [37].
Generative Adversarial Networks (GANs) [148] are a class

of DL models that learn to generate new data samples with
the same statistics as those in the training set. GANs consist
of two competing networks: a generator that generates fake
images and a discriminator that tries to distinguish between
real and fake images as shown in Fig. 10. To be able to fool the
discriminator, the generator needs to learn to create realistic
images. GANs were used in [149] to generate simulated data
of defective aluminum casting and improve the balance of the
dataset. A GAN-based method was used in [61] to synthesize
X-ray security images. Several modifications of the original
GANs have been also used for data augmentation in X-ray
applications. The authors of [49] noted that generating data
using prior human knowledge is not applicable for some spe-
cific types of welding defects (e.g., burn through and crack of
weld) due to their complexity. Therefore, they used Wasser-
stein Generative Adversarial Networks (WGANs) [150] for
the task. In WGANs, the discriminator gives a fakeness score
for the generated samples instead of just classifying them
into real and fake classes. Self-Attention Generative Adver-
sarial Network (SAGAN) was used in [62] that first gener-
ates several images of prohibited items. Subsequently, the
images are transformed to X-ray format using a cycle GAN
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FIGURE 10. Basic GAN structure.

and combined to different backgrounds. Also, Deep Convo-
lutional GAN (DCGAN) and Spatial-and-Channel Attention
Block and X-ray Wasserstein GAN Gradient Penalty (SCAB-
XWGAN-GP) were used in [151] and [152] for data augmen-
tation in X-ray security application.

V. EVALUATION SETUP AND METRICS
In order to evaluate the performance of new methods and
to have a valid comparison among different algorithms, it is
important to know the different evaluation protocols that
have been used in previous studies. Commonly, CV and
ML techniques are evaluated by dividing the datasets into
non-overlapping training and test sets in order to reliably
estimate the performance on unseen data. If the model to be
trained has some hyperparameters which need to be deter-
mined by the user, they are typically set using a third separate
part of the dataset called validation set. When no predefined
validation set is given by the experimental protocol defined
by the dataset, two approaches can be used. In the first one,
the training set is divided into two non-overlapping sets, one
used for training and the second used for validation. The sec-
ond approach divides the training set into k non-overlapping
subsets (sometimes called folds) and performs training and
validation k times. Each time, data in a different fold is used
for validation, while the data in the remaining k − 1 folds
are used for training the models obtained by using different
hyperparameter values. The average performance on all folds
is calculated and the best hyperparameter values are those
used in the model leading to the highest average validation
performance. Then, the final model can be trained on the
full training set using the best hyperparameter values. This
procedure is commonly known as k-fold cross-validation.
Especially for smaller datasets, an approach similar to k-
fold cross-validation approach may be used for the testing
as well to get a more reliable performance estimate. In this
case, the fold set aside should not be used for adjusting
the model’s hyperparameters, but the goal is to evaluate the
method on a wider variety of test samples not seen during
the training process. It can be also necessary to repeat the
overall experiment multiple times and use average values,
if variations in the methods’ performance are expected.

FIGURE 11. Confusion matrix.

In addition to the training setup, an important aspect of
the evaluation is the selection of the evaluation metrics.
Accepted and standard evaluation metrics must be employed
to ensure fair comparisons. For meaningful evaluations, it is
also important to understand which evaluation metrics are
suitable for the task at hand. Below we introduce the most
commonly used evaluation metrics for classification, detec-
tion, segmentation, and speed comparisons.

A. CLASSIFICATION METRICS
Many binary classification metrics rely on the counts of True
Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN) that are defined as shown in the
confusion matrix in Fig. 11. In multi-class classification, sim-
ilar confusion matrices can be computed either considering
all classes or independently for each class and generalized
evaluation metrics can be defined using these class-specific
numbers.

1) ACCURACY
Accuracy is maybe the most commonly used classification
metric and it is defined simply as the ratio of correct classi-
fications to the total number of samples. In binary classifica-
tion, this can be defined as follows:

η =
TP+ TN

TP+ TN + FP+ FN
. (5)

While accuracy is an intuitive measure, it is not a good
evaluation metric when the class distribution is not balanced.
For example, if there are dangerous items in every 1000th

bag, a classification method can achieve a very high accuracy
of 0.999 by simply classifying everything as safe. However,
in such applications missing a dangerous item is obviously
much more critical than incorrectly labeling a safe bag as
dangerous. The latter situation might only lead to an addi-
tional manual inspection while the former may cause signif-
icant danger. Therefore, other evaluation metrics should be
used in such imbalanced cases. Also, several works on X-ray
image classification have complemented accuracy with other
classification metrics. The combination of accuracy, recall,
precision, andF1 score (with possibly other metrics) has been
used, e.g., in X-ray-based casting defect classification [37],
[38], welding defect recognition [58], and concrete phase
segmentation [103].
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2) RECALL
Recall or sensitivity or true positive rate (TPR) is a commonly
used metric for binary classification to quantify the number
of correctly identified positive samples out of all positive
samples in the data. It is defined as follows:

Recall =
TP

TP+ FN
. (6)

Recall can be a good evaluation metric, when it is important
to correctly recognize samples of a particular class, while it is
less critical to incorrectly label objects from the other class,
as in the example of finding bags containing dangerous items.
However, a perfect recall can be always obtained simply by
labeling all the samples as positive. Therefore, recall alone is
not a sufficient evaluation metric.

3) PRECISION
Precision is another commonly used metric for binary classi-
fication that quantifies the ratio of correctly predicted positive
predictions to the total number of positive predictions. It is
defined as:

Precision =
TP

TP+ FP
. (7)

A good precision can be generally achieved by labeling only
very few and certain cases as positive and, therefore, it is not
a good measure by itself either. However, recall and precision
complement each other and other metrics combining the two
have been suggested.

4) F1 SCORE
F1 score is a widely used metric for binary classification that
takes both recall and precision into account and can be seen
as their harmonic average. F1 is defined as:

F1 = 2 ∗
precision ∗ recall
precision+ recall

=
2TP

2TP+ FP+ FN
. (8)

F1 score is typically considered a good single measure for
binary classification and more suitable for unbalanced data
than accuracy. However, it is not as intuitive to understand
what a certain score means in practice.

5) SPECIFICITY
Specificity or true negative rate (TNR) is another metric
for binary classification that can be used to complement
recall/sensitivity. While recall focuses on the positive items,
specificity focuses on the negative items. If the class assign-
ment to positive and negative classes is reversed, specificity
becomes equal to recall before the reversion. Perfect speci-
ficity can be obtained by classifying all the samples as nega-
tive. It is defined as

Specificity =
TN

TN + FP
. (9)

Specificity was used to evaluate binary pixel-wise welding
defect classification in [47].

6) AVERAGE PERFORMANCE
Average performance is another performance score that con-
siders both precision and recall defined in [24]. This score is
averaging the performance of the method over all available
classes and it is defined as:

p =
1

Nclasses

Nclasses∑
i

√
precisioni ∗ recalli . (10)

The metric was used in [24] for evaluating dangerous item
classification.

7) MATHEWS CORRELATION COEFFICIENT (MCC)
MCC can also represent an overall classification performance
as a single value and it is considered to be a reliable metric
also when the class distribution is very imbalanced. This
metric is defined as follows:

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

.

(11)

MCC was used to measure welding defect classification
performance in [51].

8) RECEIVER OPERATOR CHARACTERISTICS (ROC)
ROC curve and Precision-Recall curve can be used to evalu-
ate binary classification methods when the result depends on
a threshold. As explained above, perfect recall/sensitivity can
be obtained by classifying all the samples as positive, while
classifying all the samples as negative leads to perfect speci-
ficity or precision. When the threshold is varied so that the
number of positive assignments grows from zero, a good clas-
sifier assigns the true positive items as positive before falsely
assigning any negative item as positive. A method’s ability
to do so can be evaluated using ROC curves that plot true
positive rates vs. false positive rates (=1-true negative rate)
during the process as shown in Fig. 12-a or precision-recall
curves that plot precision vs. recall pairs (Fig. 12-b) as the
name suggests. In general, ROC curves are more suitable
for balanced class distributions, while precision-recall curves
are recommended for imbalanced cases [153]. ROC curves
were used to evaluate firearm recognition in [69], while both
ROC and Precision-Recall curves were used in [5] to compare
algorithms for identifying normal and suspicious items.

9) AREA UNDER CURVE (AUC)
AUC allows representing ROC (or Precision-Recall) curves
numerically by computing the relative area below the curve.
A higher area corresponds to better performance. AUC score
for ROC curves was used in [5] for the detection of different
suspicious items in a security application.

10) MEAN AVERAGE PRECISION (mAP) - CLASSIFICATION
MAP can be used as a classification metric for methods that
rank the test items based on their estimated probability to
contain certain objects. Each class-specific ranked list is used
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FIGURE 12. a) Receiver Operator Characteristics (ROC) curve, b) precision
vs. recall curve.

to compute precision and recall values for each rank. Here,
recall is defined as the ratio of positive examples ranked
above a given rank and precision is the ratio of all samples
above that rank that are from the positive class [154]. This
creates a precision-recall curve. Average Precision (AP) for
the class is defined as the average of precision values at eleven
equally spaced recall levels [0, 0.1, . . . , 1]. Finally, MAP is
the average over classes. As described in Section VI-C, MAP
was adopted with SIXray dataset [8] for the image-level clas-
sification task. In [108], AP is used as an evaluation metric in
a binary handgun recognition task.

B. SEGMENTATION METRICS
Segmentation can be seen as pixel-wise classification and,
therefore, classification metrics can be used also as segmen-
tation metrics. This has been common also for X-ray seg-
mentation tasks. For example, sensitivity, specificity, accu-
racy, Precision-Recall curves, and AUC on Precision-Recall
curves were used to evaluate segmentation performance in
welding defect localization in [47]. In [34], Precision, Recall,
and MCC were used to evaluate AM porosity segmentation
performance. In [115], TPR, false positive rate (FPR), and
AUC for ROC were used to evaluate the performance in
an imbalanced mineral phase segmentation task. Accuracy,
Recall, Precision, F1 Score, ROC curve, and AUC on ROC
were used to evaluate concrete segmentation in [103].

1) DICE COEFFICIENT
Dice Coefficient can be used to evaluate the ground-truth
segmentation mask A with the predicted segmentation
mask B as

dice =
2|A ∩ B|
|A| + |B|

, (12)

where ∩ denotes the intersection (common pixels) of the two
masks and |A| denotes the number of pixels in A. In classi-
fication terms, the union corresponds to TP, whereas A =
TP + FN and B = TP + FP. Thus, dice coefficient is
equivalent to F1 score. Dice coefficient was used to evaluate
welding defect segmentation algorithms in [47] and fiber
segmentation in [155] and [156].

2) INTERSECTION OVER UNION (IoU)-SEGMENTATION
IoU can be used to evaluate segmentation methods by com-
paring the ground truth segmentation mask A with the pre-
dicted mask B as

IoU =
|A ∩ B|
|A ∪ B|

=
TP

TP+ FP+ FN
. (13)

Comparing the above equation with Dice Coefficient (F1
score) shows that they are similar. In fact,

dice =
2 ∗ IoU
IoU + 1

. (14)

Therefore, it is not meaningful to use both IoU and Dice
Coefficient at the same time.

IoU was used in [157] to evaluate additive manufacturing
defect segmentation. In [33], the same task was performed
as 3D segmentation, and also here, IoU was used as the
performance metric. In this case, A and B consist of voxels.
This metric was used in [158] with the name Jaccard Index
to evaluate the segmentation performance in welding defects
inspection.

3) CLUSTERING METRICS-SEGMENTATION
Segmentation can be also seen as a clustering task, where
regions corresponding to different objects should be assigned
to different clusters. Therefore, different clustering metrics
can be used for evaluating the performance of segmen-
tation methods. In [84], the Davies–Bouldin index [159],
Calinski-Harabasz index [160], Dunn index [161] and Harti-
gan index [162] were used to compare X-Ray baggage image
segmentation methods. In [26], Adjusted Rand Index (ARI)
was used to evaluate a 3D fiber instance segmentationmethod
by considering voxels as items to be clustered into uniform
instances.

C. DETECTION METRICS
Object detection methods typically provide as output the
bounding boxes for the detected objects, their predicted
classes, and the corresponding confidence values for the
predicted classes. Each image can contain multiple objects
and each object must be first located and then recognized.
Therefore, comparing object detection algorithms is more
complicated than comparing classification methods. A com-
monly adopted approach is to report MAP at selected IOU
thresholds as described below.

1) INTERSECTION OVER UNION (IoU)-DETECTION
IOU defined in Section V-B2 is broadly used also for the
evaluation of object detection methods, but not as an inde-
pendent evaluation metric. A threshold in the IOU between
a detected bounding box and a ground truth bounding box is
used to decide whether the detected bounding box is consid-
ered to match the ground-truth bounding box. These matches
between detected and ground-truth bounding boxes are then
used in MAP computation.
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2) MEAN AVERAGE PRECISION (mAP)-DETECTION
In object detection, MAP is computed from class-
specific precision-recall curves as in classification (see
Section V-A10), but the difference is in computing the ranked
lists used for computing the precision and recall values.
In detection, an IOU threshold is first selected (a value of
0.5 is commonly used). Then, the detected bounding boxes
for a class are first ranked based on their confidence values.
They are then assigned as true positives or false positives by
comparing them with the ground-truth bounding boxes for
the class and using the selected IOU threshold. If there are
several detected bounding boxes corresponding to a single
ground-truth bounding box, the detected bounding box with
the highest IOU is considered as true positive, all the others
as false positives. The ranked list with the corresponding
true/false positive assignments can be used to compute the
class-specific AP scores and, finally, the MAP score as
described in Section V-A10.

3) SOFT-IoU
In defect detection, the defects such as gas cavities in casting
parts cannot be considered independent objects similar to
animals or humans, but it can be equally correct to anno-
tate cavities close to each other with a single bounding box
or several separate bounding boxes. While IOU criterion is
used to match a single output bounding box with a single
ground-truth bounding box at a time, Soft-IoU algorithm
proposed in [36] can match multiple bounding boxes with a
single bounding box or vice versa. MAP can be computed
using Soft-IoU when it is more suitable than IOU.

4) OBJECT LOCALIZATION ACCURACY
Object localization accuracy is used for evaluating object
localization heatmaps using ground-truth bounding boxes.
If the pixel of a maximum response is inside one of the
bounding boxes for the specific class, the detection is con-
sidered true positive. Otherwise, it is considered false posi-
tive. Finally, the object localization accuracy is computed as
TP

TP+FP . This metric is used in a class-specific object localiza-
tion task for SIXray dataset [8] described in Section VI-C

D. SPEED METRICS
There are several time-based metrics to assess the speed of
the models, such as Frames Per Second (FPS) that was used
in [38] to evaluate the speed of the model. The other common
speed metrics are Training time [5], [33], [63] and Evaluation
time [4], [5], [44], [63], which can be calculated based on
central processing unit (CPU) and graphics processing unit
(GPU)-based executions.

VI. DATASETS
Datasets have a central role in the development of CV
methodologies. They are necessary not only to adjust or train
the models, but the availability of a public dataset also makes
it possible to have a fair comparison among the performance

FIGURE 13. Samples of X-ray images from cylindrical AM specimens,
available in CoCr AM XCT dataset [6].

of different CV methodologies. As seen in our review of CV
studies on industrial or security-related X-ray images, most
of the studies in the field used lab and industrial environment
datasets that are not publicly available. In fact, in our opinion,
this is one of the main reasons that research on this topic
is not advancing at the same pace as other topics in CV
where a variety of publicly available datasets exists widely
used. However, there are a few publicly available datasets
that can be used to develop new methodologies and com-
pare their performance with previously proposed approaches.
The main characteristics of these datasets are summarized in
Table 3 and more details for each dataset are provided in the
following.

A. COCR AM XCT
The CoCr AM XCT dataset is introduced in [6] and it is
available on [21]. The dataset consists of 4,350 images of
five cylindrical additive manufacturing specimens. In each
specimen, a different minor variation along with geometric
magnifications is applied leading to small variations in voxel
sizes. A 4-times optical magnification is used on all the
specimens. Furthermore, a different exposure time is adopted
for each sample.

Sample images from CoCr AM XCT dataset are shown in
Fig. 13, including images from all five specimens. It should
be noted that this dataset was not provided for CV purposes
and there is no ground-truth labeling. In [6], the Bernsen local
thresholding method [163] was used for defect segmentation
and this segmentation was later used as the ground-truth
segmentation mask in [33] for evaluating the performance
a fully-convolutional 3D segmentation network. However,
as convolutional neural networks have the potential to outper-
form simple thresholding-basedmethods such as the one used
for the ground-truth generation, it cannot be guaranteed that
this evaluation protocol leads to a fair comparison between
more advanced methods.

B. GDXRAY+

The GDXray+ dataset [7] provides a collection of more
than 21,100 X-ray images to develop, test, and evaluate CV
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TABLE 3. X-ray datasets in industrial and security applications.

and image analysis methods. The dataset is named GDXray
according to the name of the Machine Intelligence Group
performing the data collection (GRIMA X-ray database).
The data can be used freely only for research and education
purposes.

GDXray+ includes five groups of images (casting, weld-
ing, security, nature, and setting). Three of these five groups
can be considered relevant for our review and they are briefly
described in the following:

• The GDXray Casting dataset contains 2,727 X-ray
images mainly from automotive parts, including alu-
minum wheels and knuckles, many of which contain
casting defects. The casting defects in each image are
labeled with tight-fitting bounding boxes. The size of
the images in the dataset ranges from 256 × 256 pixels
to 768 × 572 pixels. This group of X-ray images is
arranged in 67 series. The description and applications
of each series are available in [7]. Fig. 14 shows a
random collection of the images from the GDXray Cast-
ing dataset. While the dataset does not define a default
evaluation metric, MAP at IOU 0.5 has been used in [4]
and [44]. A random split into a 80% training set and a
20% test set was proposed and made publicly available
in [44].
A new dataset obtained from the GDXray Casting data
by cropping 32× 32 pixels patches is introduced in [41].
This dataset consists of 47,520 X-ray casting images
along with their labels.

• The GDXray Welding dataset includes 88 images of
metal pipes welding with porosity defects and it contains
pixel-wise ground truth segmentation information for
some of the images. This group of X-ray images is
arranged in 3 series. The description and applications of
each series are available in [7]. Two samples from this

FIGURE 14. Samples of X-ray images from casting specimens, available in
GDXray data [7].

dataset along with their ground-truth segmentation are
shown in Fig. 15.

• The GDXray Baggage dataset contains 8,150
X-ray baggage scans containing both occluded and
non-occluded items with marked ground truths for hand-
guns, razor blades, shurikens, and knives. This group of
X-ray images is arranged in 77 series. The description
and applications of each series are available in [7]. Some
image samples from this dataset are shown in Fig. 16.

C. SIXRAY
SIXray is a pseudo-color X-ray security inspection dataset
introduced in [8]. It includes over a million X-ray images that
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FIGURE 15. Samples of X-ray images from welding specimens and their
segmentation, available in GDXray data [7].

FIGURE 16. Samples of X-ray baggage scans, available in GDXray data [7].

were collected at several subway stations using color-X-ray
scanners that assign various colors to different materials.
The data is categorized into six common threat groups (gun,
wrench, knife, scissors, pliers, and hammer). Some samples
from this dataset are shown in Fig. 17.
To study the impact of class imbalance, three different

subsets known as SIXray10, SIXray100, and SIXray1000
are defined as follows: SIXray10 has all 8,929 scans with
suspicious items and ten times scans without suspicious
items; SIXray100 contains all scans including suspicious
items and 100 times non-suspicious scans; SIXray1000 has
only 1000 images with suspicious items and all images with-
out suspicious items. Each subset is randomly divided into
a training set containing 80% of the images and a test set
containing the remaining 20% of the images. Image-level
annotations provided by human security inspectors are avail-
able for the whole dataset, while bounding box annotations
of prohibited items are available only for the test datasets.

The original dataset paper provides results for two different
tasks: image-level classification and object localization. Both
tasks are evaluated separately for each class. For image-
level classification, the methods should rank the test images
based on their probability to contain a specific object and the
results are evaluated using mAP (see Section V-A10) simi-
lar to Pascal VOC classification challenge [154]. For object

FIGURE 17. Samples of X-ray security images, available in SIXray data [8].

localization, the evaluated methods produce heatmaps for
each class separately and the performance is evaluated using
object localization accuracy (see Section V-C4 as in [164]).

D. OPIXRAY
OPIXray [9] is a pseudo-color X-ray security dataset of
occluded prohibited items. The backgrounds of all samples
are scanned by the security inspection machine and the pro-
hibited items are synthesized into these backgrounds using
professional software. The dataset consists of 8,885 X-ray
images categorized based on 5 prohibited items from five cat-
egories: Straight Knife, Folding Knife, Utility Knife, Multi-
tool Knife, and Scissors. All prohibited items are annotated
manually with a bounding box by a professional inspector
from an international airport. Each image contains at least
one prohibited item, while some have more, and images are
stored in JPG format with a resolution of 1225 × 954. Some
samples from this dataset are shown in Fig. 6.
The dataset is partitioned into a 80% training set and a 20%

test set. Furthermore, the test set is divided into three subsets
(OL1-3) containing prohibited items with different occlusion
levels. The task to be performed is object detection and the
evaluation metric used in [9] is MAP with 0.5 IOU threshold.

E. PIDRAY
PIDray [10] is a large X-ray dataset including 47,677
real security images, each of which contains at least one
prohibited item. Some prohibited items have been deliber-
ately hidden. The images are collected from different scenar-
ios including airports, railway stations, and subway stations
using three different security inspection machines from dif-
ferent manufacturers resulting in a variety of sizes, colors,
and resolutions. The prohibited item categories are knife,
gun, scissors, lighter, sprayer, baton, wrench, pliers, hammer,
handcuffs, power bank, and bullet. Some samples of this
dataset are shown in Fig. 18.
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FIGURE 18. Samples of X-ray security images, available in PIDray
data [10].

The dataset is divided into a 60% train set and a 40% test
set. In addition, the data is split into three groups, namely
easy, hard, and hidden. The images are annotated with both
bounding boxes and segmentation masks. Therefore, this
dataset can be used for classification, object detection, and
instance segmentation. The performance metrics used in [10]
are Average Precision and Average Recall averaged over
12 classes and 10 IOU thresholds between 0.5 and 0.95.

F. HIXRAY
The High-quality X-ray (HiXray) security inspection image
dataset was introduced in [11]. It is the largest high-quality
dataset for prohibited item detection, and it contains 45,364
pseudo-color X-ray images with 102,925 common prohibited
items which are categorized into 8 classes, namely portable
charger 1 (lithium-ion prismatic cell), portable charger 2
(lithium-ion cylindrical cell), water, laptop, mobile phone,
tablet, cosmetic, and nonmetallic lighter. The images are
collected from a real-world airport security inspection and
bounding box annotations are provided manually by profes-
sional security inspectors. The images are in JPG format with
an average resolution of 1200 × 900, and on average, each
image has 2.27 prohibited items. A sample of each class in
HiXray dataset is shown in Fig. 19.
The dataset is divided into training and test subsets with

a 4:1 ratio. The dataset is proposed for detection tasks and
can be used for more specific tasks such as small object or
occluded object detection. The evaluation metric used in [11]
is MAP with 0.5 IOU threshold.

G. CLCXRAY
The Cutters and Liquid Containers X-ray Dataset (CLCXray)
[12] focuses particularly on the overlap problem in security
images. While OPIXray dataset also focuses on the overlap
problem, CLCXray has more overlap between objects and

FIGURE 19. Samples of X-ray security images, available in HiXray
data [11].

similar backgrounds, as well as overlap between multiple
objects. In addition, the images in OPIXray are synthetic,
while CLCXray contains real images. Overall, compared
to other security datasets, CLCXray has the most labeled
images, the most labeled threat objects, the most threat cate-
gories, and more accurate bounding box annotations.

There are 9,565 pseudo-color X-ray security images that
consist of 4,543 images collected from real subway scenes
and 5,022 simulated images from manually designed bag-
gages. The images are labeled by professionals in 12 cate-
gories including 5 classes of cutters (blade, knife, dagger,
scissors, Swiss army knife), and 7 classes of liquid containers
(cans, carton drinks, plastic bottle, glass bottle, vacuum cup,
tin, spray cans). In total, there are more than 20,000 poten-
tially dangerous items in the dataset resulting in an average of
more than two items per image. The images have resolutions
between 373× 200 and 732× 1280 pixels. A sample of each
category in CLCXray dataset is shown in Fig. 20.

The dataset is divided using an 8:1:1 ratio into training,
validation, and testing sets. Annotations are provided in
COCO format. For evaluation, CLCXray adopts the COCO
evaluation metrics [165]: mAP is the mean average precision
computed across 10 IOU levels of 0.5:0.05:0.95, mAP50 is
computed at a single IOU of 0.5. mAP75 is computed at a
single IOU of 0.75, mAPs in the MAP for small objects (area
< 322), mAPm is the MAP for medium objects (322 < area <
962), and mAPl is the MAP for large objects (962 < area).

VII. PERFORMANCE COMPARISON
Due to the lack of available public datasets for indus-
trial X-ray image processing, most studies have used pri-
vate data, which makes it difficult to compare and verify
the performance of different approaches for different tasks.
Furthermore, even studies using public datasets use different
evaluation protocols and metrics. Several works have not
reproduced the results of some of the methods used in the
comparisons but simply transferred them from prior work.
Thus, direct comparison with the exact same experimental
protocol is not possible. In some cases, this has even led to
directly comparing results for different tasks (e.g., classifica-
tion and detection).
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FIGURE 20. Samples of X-ray security images, available in CLCXray data [12].

TABLE 4. Performance comparison on CoCr AM XCT dataset. mIoU : mean Intersection over Union.

In this section, we have collected results reported in pre-
vious works using public datasets. These results are divided
based on the datasets and presented in Tables 4 to 12. Due
to the above-mentioned problems, we report the results col-
lected from different studies in separate blocks of rows with
different background colors. Furthermore, we indicate where
the comparative results have been collected from different
studies, and in our discussion, we point out some of the
clearest problems we observed.

A. COCR AM XCT
As can be seen in Table 4, only one paper employed this
dataset [33]. The paper assessed three variants of 3D U-Net
on the dataset. The first one is a 3D U-Net with convolu-
tional, batch normalization (BN), and rectified linear unit
(ReLU) layers. The second one uses convolutional, group
normalization (GN), and ReLU layers, and the last one is a
residual symmetric 3D-Net. mIoU and training time on GPU
were chosen as the accuracy and time metrics and the results
show that the residual symmetric 3D U-Net achieved the best
accuracy, but it was slower to train. As the training time is
not connected to the real-time operation, the computational
time can be neglected, and the higher accuracy would be
the selection index among these three methods. However,
as mentioned in VI-A, the ground-truth annotations were
generated using a simple thresholding approach and it is
unclear whether this leads to a meaningful comparison of the
more advanced methods.

B. GDXRAY CASTING
As can be seen in Table 5, two papers employed this
dataset [4], [44]. In the first one [44], the performances of six

different methods including Sliding window, Faster R-CNN
VGG-16, Faster R-CNN ResNet-101, R-FCN ResNet-101,
SSD VGG-16, and SSD ResNet-101 were compared. Faster
R-CNN with ResNet-101 as the backbone achieved the
highest accuracy by 0.921 mAP. The best evaluation time
on both CPU and GPU was obtained by SSD architecture
with VGG-16 backbone. The second study from the same
authors [4] proposed using a Mask R-CNN-based approach
that produces both a segmentation mask and bounding boxes.
Comparative results with different learning strategies (ran-
dom weight initialization, pretrained ImageNet weights, and
ImageNet weights with pretraining on MS-COCO dataset)
are shown in Table 5. Here, MAP is reported for both bound-
ing boxes and mask predictions, while the ground truth anno-
tations consist of bounding boxes.

C. GDXRAY WELDING
Results for the GDXrayWelding dataset are shown in Table 6.
An improved U-net was compared in [47] with U-Net and
eGAN, assessing by five accuracy indices (recall/sensitivity,
specificity, accuracy, AUC, and dice), and on four out of
the five indices, it achieved a better performance. Two DL
networks with two and three hidden layers were proposed
in [58]. The three-hidden layer network achieved a better per-
formance evaluated by Precision, Recall, and F1. As the orig-
inal dataset contains only 88 large welding images, both of
the above studies applied cropping to create a larger dataset.
However, different cropping makes the results incomparable.
Furthermore, in [4] transfer learning from casting defect
detection to welding defect detection was evaluated using
the GDXray Welding dataset with again a different image

2468 VOLUME 11, 2023



M. Rafiei et al.: CV on X-Ray Data in Industrial Production and Security Applications

TABLE 5. Performance comparison on GDXray Casting dataset. mAPbbox : mean Average Precision at 0.5 IOU of for bounding box predictions. mAPmask :
mean Average Precision at 0.5 IOU of for mask predictions.

TABLE 6. Performance comparison on GDXray Welding dataset. η: Accuracy, AUC : Area Under Curve.

TABLE 7. Performance comparison on GDXray Security Dataset. mAP: mean Average Precision, Sp: Specificity, η: Accuracy, AUC : Area Under Curve, R:
Recall, P: Precision.

cropping approach. In this work, a MAPmask of 0.85 was
achieved.

The GDXray Welding data was used as a part of the
experiments also in [48], where a Retina-based network
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TABLE 8. Performance comparison on SIXray dataset. mAPcla: mean Average Precision (classification), mAPdet : mean Average Precision (detection).

TABLE 9. Performance comparison on PIDray dataset. AP: Average Precision.

was used for welding defect detection. However, here the
dataset used in the experiments contained as also the GDXray
Casting data as well as privately collected welding X-ray
images, and thus the results are even less comparable to other
studies.

D. GDXRAY SECURITY
As shown in Table 7, all available studies on the GDXray
Security dataset applied different experiment protocols, such
as different subsets of data, different splitting between train
and test sets, and different classes included. Therefore, it is
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not possible to reliably compare the performance of the sug-
gested methods between studies.

The authors of the GDXray dataset, applied implicit shape
model (ISM), adapted implicit shape model (AISM), SURF,
and SIFT-based non-deep learning methods for threat detec-
tion in [166] and AISM led to the highest performance.
To evaluate their performance, they computed ROC curves
on three different IOU levels. Then they reported AUC, true
positive rate (recall) at the false positive rate of 0.05, R0.05
as well as true and false positive rates at the best operation
point. In Table 7, we report AUC and the best operation point
results as R and Sp (1-false positive rate), but it should be
noted that in the later works also thesemetrics were computed
in a different manner.

In [167], Faster R-CNN, YOLOv2, and Tiny YOLO were
used for object detection, but the performances were evalu-
ated on image level using classification metrics apparently
without considering the bounding box overlap in any way.
Faster R-CNN achieved the best performance in terms of
accuracy, F1 score, recall, and precision. The works in [5] and
[63] compared the performance of their proposed methods
with themethods presented in [166] and [167]. However, con-
sidering different experiment protocols, these comparisons
are not reliable as noted also by the authors themselves.

Although the MAP metric was used to assess detection
performance in [82], [147], and [168], it is not possible to
reliably compare the performance due to the variations in the
experimental protocols. In [82], adding PDN branch to Faster
R-CNN led to improved performance. In [147], a learning-
based image synthesis methodwas proposed to generatemore
training data. This method was evaluated with four different
detection architectures and compared against random training
data generation proposed in [170]. PFPNet was the best-
performing architecture, while the proposed image synthesis
approach consistently led to better results. In [168], differ-
ent transfer learning techniques were compared, and using
SSD300 led to the best performance in comparison to Faster
R-CNN and YOLOv2.

Unlike the other studies on the GDXray Security dataset,
classification was considered as the CV task in [24]. The
performance of ten CVmethods was assessed and GoogleNet
achieved the best test accuracy.

E. SIXRAY
As explained in VI-C, the original dataset paper [8] defines
three different subsets of data (SIXray10, SIXray100, and
SIXray1000) as well as two tasks: image-level classifica-
tion evaluated by MAP and object localization evaluated by
localization accuracy. The original dataset paper also pro-
vides baseline results for three different network architectures
with/without class-balanced hierarchical refinement (CHR)
on these tasks on each subset as reported in Table 8.

In [5] and [63], the performance is directly compared
against results copied from [8], but due to a different exper-
imental protocol, this is questionable. In [5] and [63], the
classification is carried out on object proposal level, not

TABLE 10. Performance comparison on OPIXray dataset. mAPdet : mean
Average Precision (detection). mAPcla: mean Average Precision
(classification).

TABLE 11. Performance comparison on HiXray dataset. mAP: mean
Average Precision.

on image-level as in [8]. Furthermore, while not clearly
described, it appears that only the detected object proposals
are considered, i.e., completely undetected objects will not
harm the classification performance. The computation of
localization accuracy is not described.

In [80], the focus is on foreground-background separation.
The proposedmethod FBS is compared against four detection
methods, namely, YOLOv4, De-Occlusion AttentionModule
(DOAM), CHR, and RGBS on SIXray10 data using MAP
(detection) at 0.5 IOU as the evaluation metric.

The remaining studies [66], [134], [169] on SIXray dataset
did not use the subsets defined in [8], but instead, they picked
only the images containing prohibitive items (8929 images).
Image-level multi-label classification was tackled in [66],
whereas [134], [169] focused on detection. In [169], the
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TABLE 12. Performance comparison on CLCXray dataset. For evaluation metric definitions, see Section VI-G.

results are directly compared with image-level classification
results picked from [8] despite the different subset of the
dataset used and the different CV task evaluated. Further-
more, different splitting into training and test sets makes the
results from the detection papers [134], [169] incomparable.
Furthermore, the papers do not report the IOU threshold used
for MAP evaluation, which makes also future comparisons
with the reported results unreliable.

F. PIDRAY
At the time of writing this paper, the main paper that intro-
duced PIDray dataset [10] was the only one reporting results
on this dataset. Two tasks, i.e., detection and segmentation
were considered and several methods were evaluated for both
tasks using AP obtained by averaging over multiple IOU
levels and all categories. We report these results in Table 9.

The methods evaluated in [10] included the proposed
Selective Dense attention Network (SDANet), which is an
architecture based on Cascade Mask-RCNN [171] that has
a ResNet-101 network as its backbone. It can be seen that the
SDANet achieved the best performance compared to others
with overall Detection AP and Segmentation AP of 61.6 and
49.8, respectively.

G. OPIXRAY
The original OPIXray dataset paper [9] provides several
results for object detection task evaluated using MAP
at 0.5 IOU threshold focusing on the performance of
the proposed De-occlusion Attention Module (DOAM).
In Table 10, we report the results for three architectures (SSD,
YOLOv3, and fully-convolution one-stage object detector
(FCOS) [172]) with and without DOAM. FCOS + DOAM
obtained the best performance.

Compared to other datasets, there appears to be more con-
sistency in the way the OPIXray dataset has been used in
the evaluations, and therefore, comparison of results across
papers is possible. In [80], YOLOv4 was evaluated by
itself and with different additional modules, namely DOAM,
CHR, RGBS, and the proposed FBS. The proposed FBS
approach achieved the best performance in terms of MAP
(shown in Table 10), η, and Recall, while DOAM achieved
the best performance in terms of precision and F1 met-
rics. In [11], the authors of the OPIXray dataset paper pro-
posed Lateral Inhibition Module (LIM) and provided some

additional results that are reliably comparable with the orig-
inal OPIXray results. The best performance was achieved
by YOLOv5 combined with LIM. Adaptive Training Sample
Selection (ATSS) model [173] was evaluated in [12] by itself,
with DOAM, and with two proposed Label-aware Mecha-
nisms. Lable-aware classification (LAcls) achieved the best
performance. In [169], Cascade R-CNN + Information-
exchange Enhanced Feature Pyramid Network (IEFPN) led
to the best accuracy in comparison to other implemented
methods.

The dataset has been also used for image-level multi-
label classification in [66]. The performance of the proposed
SXMNet was compared with ResNet-50, ResNet-50 + FPN,
and CHR.As the results show, the suggestedmethod achieved
the best performance.

H. HIXRAY
At the time of preparing this article, the HIXray dataset
paper [11] was the only one providing results on the dataset.
Three object detection architectures (SSD, FCOS, YOLOv5)
were evaluated as such, with DOAM and with the proposed
LIM. The performance was evaluated using MAP at 0.5 IOU.
As shown in Table 11, the combination of YOLOv5 and LIM
led to the highest performance.

I. CLCXRAY
At the time of writing this article, only the CLCXray dataset
paper [12] provides results on the CLCXray dataset. Sev-
eral approaches for object detection are evaluated using the
COCO evaluation metrics as described in Section VI-G.
We report results for the best-performing approaches along
with some results for well-known detection architectures in
Table 12. Based on themainmetricmAP the proposedmethod
using LAcls reached to the best performance.

VIII. CONCLUSION
As a non-destructive technology, X-ray imaging is finding use
in different industrial and security applications to assess the
inner structure or contents by measuring mass distributions
(absorption rate). Automatic assessment of X-ray images,
in terms of detection, classification, and segmentation, can
be achieved by applying CV-based methods. In this paper,
a review of CV studies onX-ray data applications in industrial
production and security areas was presented.
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While a large number of recent studies have focused on this
topic and many advances have been made as evident from
our review, we observed a lot of room for improvement for
the field as a whole in experimental evaluation. To advance
as a field, the proposed approaches and obtained results need
to be comparable across studies. At the moment, a large part
of the studies use only private data. Furthermore, even the
studies using public datasets use varying experimental setups
that often make the comparisons incomparable.

We recommend to all the works comparing their results
with prior works to first carefully check the computer vision
task and note that the same evaluation metrics can be used in
classification, detection, and segmentation, while the results
naturally are not comparable. Furthermore, we recommend
carefully following the experimental protocols including data
subsets, splitting into training and testing sets, and evaluation
metrics and note that any variations make the results incom-
parable. It should be also noted that common metrics, such as
mean average precision have multiple implementations, and
therefore, every work should carefully report also the details
of their selected metric.

New larger datasets for different applications are still
needed. For newly published datasets, it is naturally important
to document all the details of the experimental protocol.
To avoid variations in later works using the same dataset,
we also recommend publishing the implementations for run-
ning evaluations on the dataset.
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