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ABSTRACT Color constancy is an important part of the human visual system, as it allows us to perceive
the colors of objects invariant to the color of the illumination that is illuminating them. Modern digital
cameras have to be able to recreate this property computationally. However, this is not a simple task, as the
response of each pixel on the camera sensor is the product of the combination of spectral characteristics
of the illumination, object, and the sensor. Therefore, many assumptions have to be made to approximately
solve this problem. One common procedure was to assume only one global source of illumination. However,
this assumption is often broken in real-world scenes. Thus, multi-illuminant estimation and segmentation
is still a mostly unsolved problem. In this paper, we address this problem by proposing a novel framework
capable of estimating per-pixel illumination of any scene with two sources of illumination. The framework
consists of a deep-learning model capable of segmenting an image into regions with uniform illumination
andmodels capable of single-illuminant estimation. First, a global estimation of the illumination is produced,
and is used as input to the segmentation model along with the original image, which segments the image
into regions where that illuminant is dominant. The output of the segmentation is used to mask the input
and the masked images are given to the estimation models, which produce the final estimation of the illu-
minations. The models comprising the framework are first trained separately, then combined and fine-tuned
jointly. This allows us to utilize well researched single-illuminant estimation models in a multi-illuminant
scenario. We show that such an approach improves both segmentation and estimation capabilities. We tested
different configurations of the proposed framework against other single- and multi-illuminant estimation and
segmentation models on a large dataset of multi-illuminant images. On this dataset, the proposed framework
achieves the best results, in both multi-illumination estimation and segmentation problems. Furthermore,
generalization properties of the framework were tested on often used single-illuminant datasets. There,
it achieved comparable performance with state-of-the-art single-illumination models, even though it was
trained only on the multi-illuminant images.

INDEX TERMS Color constancy, segmentation, multi-illuminant, illumination estimation, deep learning,
framework.

I. INTRODUCTION
Color constancy is an important part of the human visual
system, as it allows us to adapt to different colors of illu-
mination. This enables us to recognize the colors of objects
and illuminants independently. For images taken by digital
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cameras, it is essential to be able to estimate the color of
illumination as accurately as possible. Accurate estimation
allows us to create a fateful reproduction of the scene which
is satisfactory to the human observer. Furthermore, inaccurate
estimation creates images that are influenced by illumination,
which can decrease the performance of downstream image
processing tasks, as described in [1]. Thus, computational
color constancy has been studied by numerous authors since
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the advent of digital cameras, and many methods have been
proposed. Equation (1) describes the amount of light pc(x, y)
recorded for each channel c ∈ R,G,B at the position x, y in
the scene:

pc(x, y) =
∫
ω

I (x, y, λ)R(x, y, λ)Sc(λ)dλ , (1)

whereR(λ) and I (λ) are the reflectivity and illumination spec-
tral functions, respectively. Sc represents the spectral sensitiv-
ity of the observer (camera). Equation (1) also shows that for
each value pc, there are an infinite number of combinations
of I ,R, S that can produce it. Since I ,R, S are normally
unknown, that makes the problem of illumination estimation
under constrained.

However, assumptions about the properties of the illumi-
nation or the properties of the scene can be introduced. This
makes it feasible to approximate the value of the illumina-
tion present in the scene. That step of computational color
constancy is called illuminant estimation. The second step is
to white-balance the image, usually to make it look as it was
taken under a canonical illuminant, thus eliminating the influ-
ence of the illumination. The most common approximation
used is the von Kries [2] model:cRcB

cG

 =
ec,R/eu,R 0 0

0 ec,B/eu,B 0
0 0 ec,G/eu,G

pRpB
pG

 (2)

where [cR cB cG]T represents the corrected image, and
[pR pB pG]T is the value retrieved from the sensor. Canonical
illumination is represented by ec and eu is the estimated
illuminant.While Equation (2) does not provide true compen-
sation for the illumination, it is an approximation that works
well.

Different assumptions have been applied to the problem
of illuminant estimation. One such assumption is that there
was only one illuminant present in the scene. However, for
many real-world scenes that is not the case. They contain at
least two sources of illumination, e.g., outdoor scenes that are
illuminated with direct sunlight and with shaded areas illumi-
nated by skylight, or indoor scenes where one illuminant is a
light bulb and the other is the sunlight coming through the
window. For such scenes, illuminant localization is as impor-
tant as the estimation, as just the color of the illumination
does not provide enough information for accurate correction
of the image. Figure 1 shows an example of a real-world scene
with two illuminants. The effects of global correction are also
shown.

In this work, we propose a novel deep learning framework
that is capable of both segmentation and estimation of scenes
with two sources of illumination. The main idea behind the
framework is to separate the problem of illuminant local-
ization and estimation to different specialized methods. This
allows us to utilize well-researched single-illuminant estima-
tion models for multi-illuminant scenes. The framework is
composed of three main steps. First, a global illumination
vector for the image is estimated. Next, this illumination

FIGURE 1. Two corrections by different illuminants present in the raw
image, with gamma correction applied for easier visualization. The middle
image is corrected for the sunlight, and the shaded regions end up having
a blue hue. The right image is corrected for illumination in the shadow,
which corresponds to the blueish skylight. This gives the sunlit region an
orange cast. Groundtruth values were obtained from the gray sides of the
SpyderCube calibration object that are highlighted by red squares.

vector is fed into a segmentationmodel, alongside the original
image. The output of this step is the segmentation mask,
which shows where the first estimated illuminant is dominant
in the scene. Then, the original image is masked, and the
masked images are fed to global estimation models. The
outputs of estimation models are combined with the segmen-
tationmask to produce the final estimation of the illumination
in the whole scene.

Furthermore, we incorporate the possibility of illumi-
nant mixing, and the proposed framework is capable of
providing a per-pixel estimation of illumination. This is
achieved by linear combination of estimated illuminants
using the segmentation mask. We show that by incorporat-
ing joint end-to-end training of the framework, we achieve
state-of-the-art results. Additionally, we show that joint
training further improves the performance of underlying
models when compared to the same models that were
only trained separately. The training of the framework was
done on a large multi-illuminant dataset [3] containing
2500 indoor and outdoor images. Testing was done on
a hold-out set of images from the dataset for the multi-
illuminant scenario. The generalization performance was
tested by training the framework on multi-illuminant images
and testing it on single-illuminant images fromCube+ [4] and
ColorChecker [5] datasets. On multi-illuminant images, the
proposed framework achieves state-of-the-art results. It also
achieves results comparable with best single-illuminant esti-
mation methods on single-illuminant datasets. Furthermore,
usage of separate models for each sub-task makes the frame-
work modular. This allows us to easily train and test different
variations of the framework, thus balancing the accuracy
with complexity. We describe our framework in detail in
Section III, and show the quantitative and qualitative results
for both the segmentation and per-pixel estimation compared
to other single- and multi-illuminant methods in Section IV.
Finally, in Section V we conclude the paper.

II. RELATED WORK
The term computational color constancy usually includes
two basic steps. These are illumination estimation and color
correction (also referred to as chromatic adaptation). The
first step is determining the illumination vector for some part
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of the image. The granularity of the estimation can vary,
from per-pixel, through image patches all the way up to the
whole image. This defines the type of estimation method
that is needed, with single-illuminant estimation methods
estimating only one illuminant for the whole input image.
Patch and per-pixel estimations fall under multi-illumination
estimation methods, as they estimate more than one illumi-
nant per image. Since color constancy is an ill-posed prob-
lem, most research in the past focused on the problem of
single-illuminant color constancy. With this assumption, it is
assumed that the whole scene (or at least the vast majority) is
illuminated by one global illuminant. One of the first methods
for single-illuminant color constancy methods were simple
methods that relied on low-level image statistics. Two of those
methods are the Gray-World [6] and the White-Patch [7]
(Max RGB) methods. Gray-World method assumes that for
each scene, the average reflectance under white light is gray,
and thus any deviation from gray is caused by the color of the
illumination. On the other hand, theWhite-Patch (Max-RGB)
method assumes that the brightest part of the scene is the
reflected color of the illuminant from a specular surface.
However, it is easy to find common real-world examples
where these assumptions are broken. For example, for the
Gray-World method, any scene with numerous plants (like
forests and parks) will not have a gray reflectance under
white light but instead that average will be green. For White-
Patch, if the scene does not contain any specular highlights,
the assumption will be broken. More complex methods were
proposed over the years. They can be split into two main cat-
egories, statistics based and learning-based methods. Some
of the more well-known statistics-based methods include the
Gray-Edge framework [8], which generalizes all methods
such as Gray-World and White-Patch by adding the possi-
bility of using image gradients and different image norms,
as described by (3):(∫ ∣∣∣∣∂nfc,σ (x)∂xn

∣∣∣∣pdx) 1
p

= ken,p,σc , (3)

where | · | is the Frobenius norm, c ∈ R,G,B, n is the order
of the derivative and p is the Minkowski-norm.
There are also gamutmappingmethods, such as themethod

proposed in [9]. There, the goal of the method is to find the
gamut that the illuminant spans in the chromaticity diagram
and then use that knowledge to find the most probable illu-
minant color. On the other hand, learning-based methods are
more complex, and can be split into two categories: simpler
machine learning methods and more complex deep learning
methods. One of these learning-based methods [10] learns
the common surfaces in the train scenes and then uses the
exemplar approach to match the surfaces in the test images
to those learned surfaces. Other methods, such as [11], [12],
and [13] use a probabilistic model of the illumination and
reflectance as a random variable. Unfortunately, all of these
methods do not achieve good enough results, particularly in
more challenging conditions.

This is the reason more complex deep learning models
were proposed for the task of color constancy. The first
attempt at such a model was proposed in [14], where a simple
network was given a raw image and produced the estimation
of the illumination in the scene. Because there was no large
dataset, this method was trained mostly on image patches.
However, this reduced the semantic information present in
each patch, and eliminated cross patch information. This was
addressed in [15], where the authors proposed a method that
took as input the whole image and produced estimation for
patches of the image. Additionally, the method produced an
attention map which was used to multiply the patch estimates
and produce the final estimation mask. This approach was
successful because it allowed the model to reason about
the patches of the image that carry more information about
the color of the illumination. In [16], the authors propose
a very deep model for illuminant estimation (CRNA) that
uses cascading residual connections and ResNet architecture
to stabilize learning and improve performance. Similarly,
in [17], the authors propose a deep network which iteratively
estimates the illumination, which is also used to stabilize
training and improve performance. On the other hand, in [18],
a small network that still achieves state-of-the-art results for
illuminant estimation is proposed. Furthermore, some meth-
ods, such as [19] and [20], use only image histogramswith the
deep learning models to perform illuminant estimation. This
removes any spatial information and focuses only on colors
present in the scene.

On the other hand, multi-illuminant color constancy has
been much less studied in the past than single-illuminant
color constancy. One reason for this is the lack of a large
multi-illuminant dataset, since it is difficult to accurately
annotate multi-illuminant images. Most of the methods that
were proposed for this problem are learning-based and model
the spatial distribution of illuminants. However, several
statistics-based methods have been proposed in [21], [22],
[23], and [24]. They share some similarity with our approach,
as they separate segmentation and estimation into separate
tasks that are combined. They use image texture [23] or
Kmeans [22] for localization and then use Max RGB method
for estimation. Finally, similar to our method, the localization
is used to compute the final per-pixel illumination of the
scene. On the other hand, [25] propose a white-balancing
method for scenes in which the total number of illuminants
is not known. They achieve this by selecting N white-balance
points and map them to ground truth ones. Finally, [26]
proposed a method that imitates the Adaptive SurroundMod-
ulation (ASM) capability of the human eye to regulate the
receptive field of neurons based on contrast. One classical
machine learning approach was presented in [27], where the
authors use conditional random fields to create the MIRF
algorithm, which can localize and estimate illuminants in
the scene. The main drawback of this approach is its high
computational cost and lower accuracy. Deep learning-based
approach for multi-illuminant color constancy was proposed
in [28] as an upgrade on the network proposed in [14], where
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the authors use kernel density estimation to determine the
number of illuminants in the scene. In [29], authors propose
a framework of two networks, HypNet and SelNet. HypNet
network proposes two hypotheses about the illumination of
each patch, and SelNet chooses which of those hypotheses to
use for the estimation.

More recently, in [30] the authors proposed a simple model
that used brightness threshold to perform image segmen-
tation, to which they applied simple estimation methods.
This method works very fast, but it produces many arti-
facts and incorrect corrections in parts of the scene where
the brightness assumption does not hold. Furthermore, three
methods for image segmentation and estimation using deep
learning models were proposed. In [31], the authors intro-
duced a vision transformer method that was able to perform
segmentation of parts of the scene that were incorrectly
white-balanced. In [32], the authors proposed an autoencoder
training strategy and a novel loss function which was capable
of learning the common distribution of colors in scenes,
to produce per-pixel estimation of the illumination. Finally,
in [33] the authors created a segmentation model that was
able to segment scenes with two sources of illumination
by first producing an estimation of the primary illuminant.
We based our framework on the same principle: that it is
possible to relatively accurately estimate one of the illuminant
sources in the scene using global methods, and then localize
its influence. However, unlike the model in [33] we do not
stop at segmentation, as our framework allows for accurate
estimation of both illuminant sources and their localization.

III. PROPOSED FRAMEWORK
In this work, we present a novel framework for simultane-
ous estimation and segmentation of illumination for scenes
with two sources of illumination. The main idea behind our
framework was to leverage well-researched single-illuminant
estimation models for multi-illuminant scenes. The proposed
framework consists of three main parts. A scheme of the
framework can be found in Figure 2. The first part is global
estimation of the dominant illuminant. Then, a segmenta-
tion model is used to localize the influence of the dominant
illuminant, which is represented as a binary segmentation
mask. This mask is used to create masked inputs for the
two estimation models. Then, those two single-illuminant
estimation models are used to estimate the dominant and
secondary illuminants. Finally, the per-pixel estimation of
illumination for the scene is obtained by linear combination
of the estimated illuminants based on the weights from the
segmentation output, using Equation (4):

p(x, y)c = (1− Sp(x, y))Ip1 + Sp(x, y)Ip2 , (4)

where (x, y) are the coordinates in the image, pc is the final
per-pixel estimation, Ip1 and Ip2 are dominant and secondary
illumination estimations, respectively, and Sp is the predicted
segmentation mask.

Each layer of the framework is implemented so that it
allows for the free flow of gradients using backpropagation.

This allows us to train the framework end-to-end. We refer
to this as joint training. Gradients in the upper layers dur-
ing training of the framework are computed from both the
estimation and the segmentation errors. This effect is not
present when layers are only trained separately. Another ben-
efit of this approach is in the transitional regions between
the illuminations. In those regions, the segmentation model
is encouraged to keep the output such that the linear com-
bination of the illumination sources corresponds to the real
mixed illumination. Thus, the segmentation output is pushed
closer to 0.5 than to 0 or 1 for those areas. In the case of
the pure segmentation training, where the goal is to create
hard borders between classes, no such regularization effect
is present. Furthermore, those regions carry less useful infor-
mation for either of the single-illuminant estimation models
that come after the segmentation. For them, this ambiguity in
the segmentation acts as an attention mechanism, by shifting
focus more to the parts of the scene where illumination is less
ambiguous. We show later that this type of joint training of
our framework improves the performance of both segmenta-
tion and estimation model compared with their counterparts
that were trained independently.

Moreover, we propose an additional recurrent component
because it can sometimes be difficult to estimate the domi-
nant illuminant from the whole image in the first step. The
recurrent connection is shown with a labeled dotted arrow
in the red part of Figure 2. It naturally follows that, if we
can localize and estimate one illuminant in the scene, the
estimation produced would be better than the global esti-
mation. Thus, the recurrent component enables additional
passes through the framework. In the second pass through
the framework, the recurrent connection replaces the initial
global dominant illuminant estimation with the output of
the local dominant illuminant estimation from the first pass.
For the final output of the framework, all the intermediary
estimation and segmentation steps are averaged. Such recur-
rent behavior can be implemented in as many steps as it is
necessary. However, since the task of color constancy usu-
ally needs to be performed quickly, we implemented only a
two-step recurrent framework. We compare the performance
of this recurrent framework to that of the base framework
as well as other multi- and single-illuminant models
in Section IV.
For the estimation task, the framework is designed in such

a way that it is interoperable with any state-of-the-art single-
illuminant estimation methods. In the scope of this paper,
we implemented a single-illuminant estimation model based
on the FC4 [15] model, with a reduced number of parameters.
We reduced the number of parameters to decrease the overall
complexity of the framework. We use one of these models
to first predict the dominant illuminant in the scene. Later,
we use two more such models to predict the illumination in
the regions highlighted by the segmentation model. Further-
more, in some variations of our framework, the weights are
shared between these two models. (In practice, this is imple-
mented with only one estimation model, to reduce memory

VOLUME 11, 2023 2131



D. Vršnak et al.: Framework for Illumination Estimation and Segmentation in Multi-Illuminant Scenes

usage.) These estimation models are shown in yellow
in Figure 2.

Finally, we limit the number of illuminants for two main
reasons. Firstly, we are limited by the types of datasets that
are available for multi-illuminant scenes, which are needed to
train our model. All the labeled datasets that have per-pixel
groundtruth information about the illuminants in the scene
contain only two illuminants. Moreover, most real-world
scenes actually contain either one or two illuminants. One
exception are very dynamic nighttime scenes like clubs or
urban areas. However, we show that even with this reduction
in the number of illuminants, our model can handle com-
plex scenes. We achieve this by allowing illuminant mixing,
which is very common in real-world scenes. Furthermore,
the results show that our model preforms well on single-
illuminant scenes, even though it was trained only on scenes
with two sources of illumination.

A. TRAINING
The framework was trained in two steps. First, each compo-
nent of the framework was trained on their respective task
separately. The segmentation part was trained to segment
the areas of the scene where the primary illuminant was
dominant, similar to the method proposed in [33]. The esti-
mation models were trained to predict either the dominant
or the secondary illuminant. After the pretraining step, the
framework was combined into the final model as described in
Section III and then trained end to end using backpropagation.
The framework was implemented in TensorFlow 2.4 and
trained on a system with an RTX 2080Ti GPU and AMD
Ryzen 3700x CPU. Pretraining was done over 500 epochs,
with cosine annealing scheduler [34] and stochastic gradient
descent [35] optimizer. We use a linear combination of the
binary cross entropy (BCE) and robust color constancy loss
(IL) function [36] for the segmentation and estimation out-
puts, respectively. This combined loss can be expressed as:

L(Ip0, Ip1, Ip2, Sp, Igt1, Igt2, Sgt)

= αIL(Ip0, Igt1)

+βBCE(Sp, Sgt)+ γ IL(Ip1, Igt1)+ δIL(Ip2, Igt2) (5)

BCE(Sp, Sgt)

= −Sgt log(Sp)− (1− Sgt) log(1− Sp) (6)

IL(Ip, Igt)

=

∥∥∥∥ Ip − IgtIgt

∥∥∥∥
2
, (7)

where Ip0 is the initial estimation of the dominant illuminant,
Ip1 and Ip2 are the final estimations of the dominant and
secondary illuminant, and Sp is the predicted segmentation
mask. Igt1, Igt2, and Sgt are the groundtruth information about
the illuminants and the segmentationmask, respectively. BCE
(Equation (6)) is the binary cross entropy function applied
at the pixel level. The IL (Equation (7)) loss function is
the robust color constancy loss function proposed in [36].
Coefficients α, β, γ , and δ were selected using random search

FIGURE 2. Scheme of the proposed framework. In general, the framework
consists of the initial estimator of the dominant illuminant, followed by a
segmentation model that is capable of localizing the presence of that
illuminant in the scene. Then that output is used to create two masked
images, which are then given to the estimation models. The estimation
models then produce two estimations that are combined to create the
final per-pixel estimation of the illumination. The estimation models in
the bottom purple box can either be independent or have shared weights.
The recurrent extension to our framework is shown in red. The dotted line
represents the recurrent connection that allows us to use the dominant
illuminant estimation as the input to the segmentation model in the
second pass.

of the hyperparameter space and their values were set to 0.7,
1.0, 0.9, and 0.9 respectively.

Joint training of the framework was done using the same
scheduler and optimizer for another 500 epochs. To provide
a fair comparison, models that were not trained jointly were
all trained for 1000 epochs to eliminate any problems with
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FIGURE 3. Example of the images used for training. The first and second
rows show an outdoor and indoor scene, with 4 and 3 SpyderCube
calibration objects, respectively. Multiple cubes marked by red squares
are placed in the region illuminated by the ambient illuminant, which can
vary throughout the scene more than the direct illumination (e.g., sunlight
or one light bulb). We used only images where the difference in the
ground truth between the measured ambient illumination was less than
1 degree to ensure that the manual annotation of the regions shown in
the second column is accurate. Our annotation procedure is similar to
that described in [24].

under fitting. The parameters of the model that scored the
best on the validation set were taken for testing to prevent
overfitting. For the training, we used a newly constructed
dataset [3] containing 2500 outdoor and indoor scenes with
two sources of illumination, taken by 5 different cameras.
All images were manually annotated to contain per-pixel
groundtruth illumination values. Few examples of images and
the groundtruth from this dataset are shown in Figure 3.

B. PERFORMANCE MEASURES
We compare the model performance on a hold-out set of the
two-illuminant dataset on both the segmentation and illumi-
nation tasks. For the single-illuminant datasets, we compare
only the performance of illuminant estimation. To quan-
titatively compare the results, we use two metrics, Dice
coefficient [37] for segmentation and angular distance for
illuminant estimation.

Dice coefficient [37] is computed as:

Dice =
2|TP|

2|TP| + |FP| + |FN|
, (8)

where TP, FP, FN are true positive, true negative and false
negative values when comparing the prediction to the
groundtruth. | · | represents the cardinality (number of ele-
ments) of the set.

For the estimation task, we use angular error, which can be
computed as:

errang = cos−1
(
er · ep
erep

)
, (9)

where · denotes vector dot product, er is the real illuminant
and ep the estimated illuminant. Since the groundtruth and
estimation are pixel-based, we report the average error over
the whole image. The classes in the segmentation masks
are relatively well-balanced, so the average value of the
error is not biased towards either illuminant. For single-
illuminant comparison, our model was only trained on the

multi-illuminant images, and then tested on the images from
the single-illuminant dataset. In this case, we obtain the
single-illuminant estimate by applying global average pool-
ing to the per-pixel illuminant estimations.

IV. RESULTS
The models were tested on a hold out set of our dataset [3],
and on single-illuminant images from the Cube+ [4] and Col-
orChecker [5] datasets. Thus, we test the performance of our
model in both single- and multi-illuminant scenarios. In the
case of the single-illuminant images, the models were trained
only on the images from our two-illuminant dataset, and then
tested as is on the single-illuminant images. The framework
was compared to othermethods for bothmulti-illuminant seg-
mentation and estimation tasks, and these results are shown
in Tables 1 and 2 respectively. The comparison of results on
single-illuminant images are shown in Tables 3 and 4.

Table 1 shows the results of the segmentation task. The first
block of models are the simple baseline models, the second
block is the segmentation models implemented from other
works. The third block presents the variations of the proposed
framework. They show that our framework outperform all
other implemented models, and by a solid margin, indepen-
dent of the number of parameters. The models that were
used for comparison include the illumination segmentation
models proposed in [32], [33], and [30], U-Net [38] models
with VGG-16 and VGG-19 [39] encoders (implemented such
that one illuminant was known, as described in [33]) and a
baseline Otsu threshold applied to the brightness histogram of
the image. It is important to note that the framework performs
better than the pure segmentation models (VGG-16). This
holds even when the number of parameters is comparable
(approx. 34 million parameters in the case of the VGG-19
based autoencoder andVGG-16 based framework). This indi-
cates that the joint training that was used to train our frame-
work increases both the segmentation and estimation parts of
our model. To further test this, we compare the jointly trained
framework to one whose components were trained only sep-
arately (i.e., no joint training was done). Again, we see the
improvement in performance, thus providing further evidence
of the benefit of joint training (seen in the last block in
Table 1). We denote the frameworks where the parameters
of the estimation models are shared by omitting the ‘‘x2’’
modifier in the name. RESE denotes the recurrent variant of
our framework with two steps.

Since our framework is primarily designed to produce a
per-pixel estimate of the illumination, the main focus will
be on those results. Table 2 shows the estimation results
on our dataset with two illuminants for many multi- and
single-illuminant methods that were implemented. In it, the
first block of models are the simple baseline models single-
and multi-illuminant estimation models. The second block
contains the estimation models implemented from other
works. The third block contains variations of the framework
that were not jointly trained. Finally, the fourth block contains
variations of the proposed framework with joint training.
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FIGURE 4. Example of the randomly selected images, corresponding groundtruths, estimations and corrections for multi-illuminant
estimation methods. The first row is the input image, the first set of images are the per pixel illumination estimations, while the second
set are the corrections. In each section, rows are marked with letters corresponding to different models and groundtruth. These are:
(a) Groundtruth, (b) Bianco-CNN [28], (c) Autoencoder-based [32] (VGG-16), (d) VGG-16 + FC4× 2 (non jointly trained framework), and
(e) ESE(VGG-16 + FC4× 2).

These results were obtained by computing the angular error
(Equation (9)) between each pixel in the estimated per-pixel

map and the groundtruth mask. It can be seen that all the
jointly trained models significantly outperform the other
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TABLE 1. Dice coefficient (Equation (8)) results of the models for the
illuminant segmentation task. The names in parentheses show the base
models used (in the case of our framework, the segmentation model is
named first, followed by the estimation model). The best results are
shown in bold. (Higher is better.)

TABLE 2. Angular error (Equation (9)) of the results of the models for the
multi-illuminant estimation task. The names in parentheses show the
base models used (in the case of our framework, the segmentation model
is named first, followed by the estimation model, ‘‘x2’’ indicates two
estimation models). The best results are shown in bold. (Lower is better.)

models, with the largest margin of almost 0.5 degrees (14.5%
improvement compared to the second best performing multi-
illuminant model). It is also important to note that the smallest
framework (composed of the small segmentation model [33]
and shared reduced FC4 model) still outperforms other mod-
els. Furthermore, the models with the independent estimation
estimators outperform their counterparts with shared estima-
tors, at the cost of more parameters. This shows that different
tradeoffs regarding accuracy, memory usage and speed can
be implemented. Figure 4 shows the qualitative comparison
of the segmentation and estimation results on imageswith two
sources of illumination from our dataset.

Finally, we tested the performance of our framework on
two commonly used single-illuminant datasets, the Cube+ [4]
and ColorChecker [5] and compared it to other state-of-the-
art methods. We show these results in Tables 3 and 4. The
results show that, while some specialized single-illuminant
learning-basedmodels outperform our framework, it achieves
by far the best results out of all tested multi-illuminant

FIGURE 5. Example of the randomly selected images from the
single-illuminant datasets, corresponding groundtruths, estimations and
corrections. The first row is the input image, the first set of images are the
per pixel illumination estimations, while the second set are the
corrections. The first three columns correspond to images from the
Cube+ [4] dataset, and the rest correspond to the ColorChecker [5]
dataset. In each section, rows are marked with letters corresponding to
different models and groundtruth. These are: (a) Groundtruth,
(b) Autoencoder-based [32] (VGG-16), and (c) ESE(VGG-16 + FC4× 2).

TABLE 3. Angular error (Equation (9)) of the results of the models for the
single-illuminant estimation task on the Cube+ dataset [4]. The best
results are shown in bold. The best performing multi-illuminant model is
highlighted in yellow. Data for single-illuminant models was obtained
from [18] (Lower is better).

models. Furthermore, those results are still comparable with
the best single-illuminant models, and the difference even in
worst cases is less than the perceptual sensitivity of the human
eye described in [41]. It is also important to note that all
the single-illuminant models were trained on these datasets.
However, our framework was trained on our multi-illuminant
dataset and then only tested on these two single-illuminant
datasets. This shows that our framework generalizes well over
different images, as it is the only one of the multi-illuminant
models that was able to achieve comparable results with the
best single-illuminant models. Figure 5 provides a qualitative
evaluation of the performance of our framework on single-
illuminant datasets. It can be seen there that, even though
the datasets are supposedly single-illuminant, some scenes do
contain multiple illuminants, and that our model is capable of
detecting this (second and last column).
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TABLE 4. Angular error (Equation (9)) of the results of the models for the
single-illuminant estimation task on the ColorChecker dataset [5]. The
best results are shown in bold. The best performing multi-illuminant
model is highlighted in yellow. Data for single-illuminant models was
obtained from [15] and [16]. (Lower is better.)

V. CONCLUSION
In this work, we presented a novel framework that is capable
of segmenting and estimating illumination in scenes with one
or two primary sources of illumination. The proposed frame-
work is composed of specialized models for each task. First,
a global estimation model is used to estimate the dominant
illuminant in the scene. Then, a segmentation model is used
to localize the influence of the estimated global illuminant.
This produces regions of influence of illuminants, and the
input image is masked using this segmentation. The masked
images are then passed to estimation models that produce
the estimation for those unmasked regions of the scene. The
final estimation is done by linear combination of the esti-
mated illuminants using the segmentation mask. Moreover,
the proposed framework is modular as the estimation and seg-
mentation models can easily be replaced, offering different
tradeoffs in speed, memory, and accuracy.

The framework was tested on the novel dataset with
2500 images of varied indoor and outdoor scenes taken
by 5 different cameras [3]. Our framework achieved the
best results by a large margin, especially in the illumi-
nant estimation task, with a 14.5% improvement above the
second best scoring multi-illuminant model. We have also
tested our framework on images from the Cube+ [4] and
ColorChecker [5] single-illuminant datasets. For this task,
we did not retrain the framework, but have used the best
performing models from the multi-illuminant task. Here, our
framework achieves excellent results, only slightly worse
than specialized state-of-the-art single-illuminant estimation
models. This shows the excellent generalization properties of
our framework on cross dataset tasks.
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