
Received 8 November 2022, accepted 25 December 2022, date of publication 4 January 2023, date of current version 9 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3234104

A Deep Learning Approach to Navigating the
Joint Solution Space of Redundant Inverse
Kinematics and Its Applications to
Numerical IK Computations
CHI-KAI HO , LI-WEI CHAN, CHUNG-TA KING , (Senior Member, IEEE), AND TING-YU YEN
Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan

Corresponding author: Chi-Kai Ho (chikaiho@gmail.com)

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 109-2218-E-007-023; and in part
by the Information and Communications Research Laboratories of Industrial Technology Research Institute, Taiwan.

ABSTRACT As an increasing number of robotic manipulators possess seven or more degrees-of-
freedom (DoF), solving inverse kinematic (IK) for kinematically redundant manipulators is becoming
critical. Numerical optimizations are commonly used to solve the problem due to their generality and
accuracy. Unfortunately, they typically only generate one joint solution at a time, despite the multiple joint
configurations that redundantmanipulators can provide tomove the end-effector to a target position. The long
iterative optimization process is also a concern, particularly if extra constraints such as obstacle avoidance
have to be evaluated. In this paper, we show that numerical methods may be complemented by deep learning
to overcome these limitations. Through deep learning, the solution space of redundant IKmay be learnedwith
neural networks (NNs), which allowsmultiple distinct joint solutions corresponding to a given target position
to be obtained by navigating the solution space. The main challenge is to overcome the one-to-one functional
mapping of NNs. This paper solves this problem with a novel probabilistic encoding of manipulator poses
and their corresponding infinite number of joint solutions. Two examples are presented to demonstrate the
application of the proposed method to facilitate numerical IK computations: (1) finding a good initial joint
solution to bootstrap the numerical IK calculation, and (2) evaluating extra constraints, such as obstacle
avoidance, off the optimization iterations. Experiments show that the proposed method can accelerate the
execution of different numerical IKmodules in the popular IKpy package up to 50% for a 7-DoFmanipulator,
depending on the accuracy required.

INDEX TERMS Feature encoding, inverse kinematics, redundant robotic manipulators, unsupervised
learning.

I. INTRODUCTION
A robotic manipulator is kinematically redundant if it
possesses more degrees of freedom (DoF) than that required
to execute a given task. Redundancy gives the manipulators
more flexibility in executing the same task at the end-effector
level in different ways at the joint level [7]. Let x denote
the m-dimensional coordinate of the end-effector in the

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

workspace required by the task and θ the n-dimensional
joint configuration. A manipulator is redundant if m < n.
Mathematically, this means that the inverse kinematic (IK)
function, which calculates the joint configuration θ by given
a workspace coordinate x,

θ = f −1(x) (1)

has an infinite number of solutions for the given x, where f ()
is the forward kinematic (FK) function calculating x = f (θ).

2274 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-2158-5947
https://orcid.org/0000-0002-5041-5795

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

Solving the IK function is a key computation in robot
control. If the accuracy of the solutions is a major con-
cern, then the IK problem can be solved by two general
approaches. Analytical methods compute the joint solutions
in closed-form expressions based on the structure of the
manipulator [3], [23], [31], [46]. They can obtain joint
solutions accurately and fast. However, for redundant manip-
ulators, the closed-form expressions are difficult to derive
and often rely on special measures such as parameterization
of redundant dimensions to obtain solutions, which limit the
applicability of analytic methods.

Numerical methods, on the other hand, solve the IK
function through an iterative optimization process, e.g.,
by gradient descent or Newton-like root-finding methods,
to obtain one joint solution [5], [7], [30], [39], [42]. They
can be applied to arbitrary manipulators with high accuracy.
For example, the popular IKpy package [28], which includes
many numerical IK solvers, can achieve a precise up to
7 digits. However, the iterative optimization process often
takes a considerable amount of time to compute. Besides,
numerical methods were traditionally targeted at obtaining
one joint solution at a time. A common practice for redundant
manipulators to resolve the infinite number of joint solutions
of a pose to just one is to impose extra constraints or
optimization directions [7], [39]. It not only increases
optimization complexity and prolongs the computation time,
but also limits the full flexibility inherent in redundant
manipulators.

While numerical methods strive for single solutions, there
are increasing demands for exploiting the IK solution space
to discover multiple joint solutions corresponding to the
given pose of the end-effector. In other words, instead of
constraining the optimization process towards one solution,
it is often desirable to gather all or many joint solutions
first and then choose the ones that satisfy the requirements.
The latter is normally faster and easier than formulating the
constraints into the numerical formulations. Unfortunately,
as far as we know, there is no efficient and systematic way
of finding multiple distinct joint solutions for a given pose
with numerical methods. One direction is to traverse the null
space of the pseudo inverse Jocobian matrix [39] and another
is to start the numerical calculations with different starting
poses. In either case, extra computations are incurred without
guaranteed computation time.

In this paper, we propose to leverage the modeling
capability of neural networks (NNs) to assist numerical
methods for flexible control of kinematically redundant
manipulators. Neural networks are parameterized functions
that can approximate any continuous function. Thus, by pre-
computing a sufficient number of pose and joint solution
pairs, i.e., (x, θ), it is possible to learn the solution space of
Eq. (1) with a NN. Ideally, given a target pose, the NN can
generate multiple distinct joint solutions to the IK function.
By filtering out those that do not satisfy the task requirements,
one or a few solutions may be selected to go through the
numerical methods to obtain the final joint solutions that are

accurate to the required precision. In this way, the complex
computation of task requirements can be moved out of the
optimization iterations of the numerical methods and carried
out once after joint solutions to the target pose are generated
with the NN. The computation time of the NN should be quite
short, because the NN learns from precomputed solutions.

However, there are two challenges if the above ideas
are to be realized. First, although NNs can learn one-to-
one mapping to approximate any continuous function, they
cannot approximate the ill-posed redundant IK function in
Eq. (1) well. To train the NNs to perform one-to-many
mapping is very difficult, because the multiple outputs may
compete for updating the weights of the NN, causing the
training to fail. Although there is a large body of data-driven
research that leveraged neural networks (NNs) to learn the
IK function [1], [10], [11], [12], [13], [29], [36], [41], [44],
most of them avoided addressing the one-to-many mapping
problem of redundant IK by focusing instead on generating
only one joint solution. Some papers employed customized
training datasets that admitted only one joint solution for
one desired pose [1], [10], [17], while others imposed extra
constraints to reduce the infinite number of joint solutions of
a given pose to one [14], [37], [44]. As far as we know, there is
no NN-based work that addresses this challenge with a single
neural network.

The second challenge is to identify and track the ‘‘distinct’’
joint solutions to a given pose of the end-effector, even if we
can navigate the solution space. Note that there are potentially
an infinite number of joint solutions corresponding to a target
pose. Many solutions are very similar and there is no need
to duplicate the computation to process them. A systematic
way of calculating distinct joint solutions of a given pose is
needed.

This paper proposes a novel deep learning approach,
called Probabilistic Selective Inverse Kinematics (PSIK),
to modeling the redundant IK solution space. To address
the one-to-many mapping in redundant IK, an extra index,
called posture index, is introduced to map probabilistically to
a joint solution of the desired pose. By varying the index, it is
possible to navigate the solution space to discover different
joint solutions. The posture indices are actually feature
vectors characterizing the poses and the corresponding
joint solutions, and they can be learned via Variational
Auto-Encoder (VAE) [20], [40]. To track the distinct joint
solutions, the solutions to a pose are first clustered and the
posture indices corresponding to the different clusters are
extracted and stored into an auxiliary dictionary to work
together with the trained NN.

We consider 7-DoF robotic manipulators in this paper.
Note that 6-DoF manipulators can theoretically move the
end-effector to any position in the Cartesian workspace
with any orientation. They are thus considered as ‘‘general-
purpose’’ nonredundant manipulators [39]. In practice,
however, joint range limitations, workspace obstacles, and
kinematic singularities may cause barrier regions that
the manipulator cannot reach. To increase dexterity and

VOLUME 11, 2023 2275

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

robustness, many commercial manipulators were purposely
made redundant with at least 7 DoFs, e.g., Franka Emika
Panda, Kuka LBR iiwa, Rethink Robotics Sawye, etc.
We therefore focus on ‘‘general-purpose’’ redundant manip-
ulators with 7-DoF. We also assume that the manipulator has
only one end-effector, e.g., a gripper, which is located at the
end of the link chain.

Note also that PSIK can generate all valid solutions to the
IK function. Unfortunately, their accuracy cannot match that
of the numerical methods at this stage. This is because the
cost is prohibitively high to sample a training dataset that
is sufficiently dense to reach that level of accuracy, even
for 7-DoF manipulators. Nevertheless, the PSIK models can
extend their capability of modeling the IK solution space to
assist numerical IK computations. Two example applications
are presented to demonstrate their effectiveness: (1) finding
a good initial joint solution to bootstrap the numerical
IK calculations, and (2) evaluating secondary tasks, such
as obstacle avoidance, off the optimization iterations of
numerical IK.

The main contributions of the paper are as follows:
• A novel deep learning approach is proposed that can
model the ill-posed redundant IK solution space to find
multiple distinct joint solutions of a given pose. To the
best of our knowledge, this is the first work to use
a single NN to generate multiple joint solutions for
7-DoF manipulators. This opens up a new direction in
researching NN-based IK methods.

• An automated procedure is presented to collect the
training dataset. Only sparse data are needed to train
a NN that can closely model the solution space of
redundant IK. Training of the NN model only needs to
be done once after the manipulator is developed.

• Effectiveness of PSIK in facilitating numerical IK
computations is demonstrated with two example appli-
cations. Experiments based on the popular IKpy package
show that PSIK can accelerate the execution of the
different numerical IK modules in IKpy up to 50%
for a 7-DoF manipulator, depending on the accuracy
required.

The remainder of the paper is organized as follows. Sec. II
introduces related works, followed by Sec. III on background
of this paper. Sec. IV describes the proposed PSIK method,
whose applications are discussed in Sec. V. Experiments
and results are shown in Sec. VI. Conclusions are drawn in
Sec. VII.

II. RELATED WORK
In this section, we review briefly the different approaches
to solving the IK function, with emphasis on handling the
redundant IK and exploiting the multiple joint solutions to
a given pose of the end-effector.

Analytic methods derive closed-form expressions for
solving the IK function with high accuracy [3], [23], [31],
[46]. For redundant IK, the derived expressions can readily
be used for obtaining multiple joint solutions for a given

pose. Particularly, most analytic methods for redundant
manipulators relied on parameterization of the redundant
dimensions to resolve the ill-posed IK function. Hence,
by applying different values to the introduced parameters,
it is possible to obtain different joint solutions corresponding
to the given pose. The primary shortcoming of analytical
methods is that the closed-form expressions are very complex
and difficult to derive, requiring full knowledge of the
kinematic structure of the manipulators. Besides, it is unclear
how to systematically change the parameters to generate
distinct joint solutions of the same pose.

Numerical methods, on the other hand, were traditionally
targeted at obtaining one joint solution of the IK function [5],
[7], [30], [39], [42]. The most popular numerical approach is
based on the Jacobianmatrix that finds a linear approximation
to the movement of the end-effector relative to instantaneous
changes in the joints. The IK function may be solved by
the inverse of the Jacobian matrix through gradient descent
or Newton-like root-finding methods following an iterative
optimization process. They can be applied to arbitrary
manipulators with high accuracy. For example, the popular
IKpy package [28] includes many numerical IK solvers to
achieve a precise up to 7 digits. There are also heuristics that
move each joint of the manipulator iteratively to minimize the
deviation of the end-effector [2], [43]

For redundant manipulators, numerical methods often
relied on redundancy resolution techniques [7], [39] that
imposed extra constraints in the optimization iterations to
reduce the infinite number of joint solutions of a pose to
just one. Since they were not designed to exploit the joint
solution space, as far as we know, there is no efficient and
systematic way of finding multiple distinct joint solutions
for a given pose. One direction is to traverse the null
space of the pseudo inverse Jocobian matrix [39] or to start
the numerical calculations with different seeds. In either
case, extra computations are incurred without guaranteed
computation time.

Data-driven methods have been applied to study the joint
solution space and various properties of the IK function [33],
[35]. Using the sampled data to train neural networks, we can
obtain more concise modeling of the joint solution space
and approximation of the IK function, which are useful for
facilitating manipulator task executions. Such efforts can
be dated back to the 1990s [12], [13], [32]. For example,
in [12], a set of NNs were trained to identify the finite
set of solutions to the IK problem for a non-redundant
manipulator. The purpose is to provide the ability to choose
a particular solution at run time. In [13], the techniques were
extended to redundantmanipulators to obtain neural networks
to approximate the IK function. Our work shares similar
goals, but aims to train a single neural network for more
complex 7-DoF manipulators.

Most later NN-based research mainly focused on the
functional approximation characteristic of NNs and tried
to train NNs to approximate the IK function [1], [10],
[11], [14], [15], [17], [29], [36], [37], [44]. Unfortunately,

2276 VOLUME 11, 2023

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

as an approximation, the trained NNs can hardly achieve
an accuracy comparable to that of the numerical methods.
Furthermore, for redundant manipulators, the one-to-one
functional mapping nature of NNs also has difficulty in
approximating the ill-posed redundant IK function in Eq.
(1). For example, the work in [11] evaluated different
NN architectures in modeling the joint solution space for
manipulators with different DoFs, and concluded that the
pattern-free input data make it quite difficult for NNs to learn
the high-dimension mapping function between end-effector
poses and required joint values.

To work around, some papers employed customized
training datasets that admitted only one angle solution for
one desired pose [1], [10], [17], and some imposed extra
constraints to reduce the infinite number of joint solutions
of a given pose to one [9], [14], [37], [44]. It turns out that
the NNs developed in these works can at best provide a crude
model of the joint solution space and produce only single
solutions. This also makes it difficult to traverse the solution
space to obtain different joint solutions for the same target
pose. Works such as redundancy circle [9] fixed one joint,
e.g., the elbow, and allowed it to rotate freely, while using the
remaining 6 joints to arrive at a unique joint solution to satisfy
the target pose. Unfortunately, the solution space that they can
exploit is limited, within one self-motion manifold of certain
poses. In this paper, we consider modeling and navigating the
entire unconstrained, task-agnostic joint solution space and
address directly the one-to-manymapping in IK for redundant
manipulators.

In [29], a new method for learning a mapping between
redundant states and low-dimensional postures was proposed.
The work considered a high-DoF, complex musculoskeletal
robot and attempted to find sets of internal pressures of
pneumatic artificial muscles to meet a target position.
An auto-encoder architecture was employed to handle the
training data and supervised learning was adopted to learn
known low-dimensional corresponding vectors. To collect
the training data, they moved the arm first to the designated
positions and randomly gave different pressures to obtain
multiple solutions. Although the proposed method can gen-
erate different solutions to the same positions, the positions
still need to be on the designated trajectories. In contrast,
we focus more on the poses in the entire workspace
and address the multiple-solution issue in the whole
workspace.

III. BACKGROUND
In this section, some background information related to the
proposed method is discussed. Recall that PSIK adopts a
deep learning approach to training a neural network with
Variational Auto-encoder (VAE) [20] that can model the
ill-posed redundant IK solution space and navigate the space
to obtain multiple distinct joint solutions to a given pose.
Such a neural model is shown to be useful for facilitating the
numerical IK computations.

A. REDUNDANT IK SOLUTION SPACE
Although the IK function of a kinematically redundant
manipulator is ill-posed, it has very important application
in practice, allowing the manipulator to move without
displacing the end-effector. Such a property is referred to
as self-motion [4], [7], which gives the manipulators more
flexibility in executing the same task at the end-effector level
in different ways at the joint level or in maintaining operation
robustness.

Joint configurations corresponding to a given end-effector
pose can be represented as a finite set of disjoint continuous
manifolds in the configuration space, called the self-motion
manifolds [4]. The end-effector remains motionless as the
manipulator moves along these manifolds. Various properties
of the joint solution space for kinematically redundant
manipulators have been investigated extensively in the
past, including the number of self-motion manifolds, their
geometry, and the relationship to kinematic singularities [4],
[27], [35].

B. DEEP GENERATIVE MODELS
The architecture of PSIK is based on a deep generativemodel,
Variational Auto-encoder (VAE). In principle, one can use
any generative model, e.g., GANs [18] and normalizing flow
models [21], to model the joint solution space for navigating.
However, other methods may have difficulties in making
the training process to converge [34], so we chose VAE
for its simplicity just to examine our idea. Below, we first
give a brief introduction to deep generative models and then
VAE.

Deep generative models view any phenomenon in the
world under a certain probabilistic distribution. The goal
is to approximate the hidden distribution of the desired
target by using a finite dataset to train a parametric model.
With the learned model, it is then possible to perform
various downstream tasks based on the learn model of the
phenomenon. For example, it is hard to identify a human
from raw pixels. However, we know that the image of a
human image is comprised of some basic artifacts, such as
eyes, hair, skin color, etc. Deep generative models extract
and describe these basic artifacts with known distributions
so that we can exploit these statistical artifacts to estimate
an instance of a human [26], [45] and even generate a new
instance [38].

Under the context of modeling the redundant IK solution
space, our insight is that it is possible to decompose the joint
solution space into several control artifacts, and the redun-
dancy of the manipulator is just one or several of the control
artifact. An control artifact could refer to the angle between
the plane of the elbow joint and the vertical plane, and
another control artifact could refer to the orientation of
the end-effector. In other words, to deal with redundant
manipulators and multiple distinct solutions, we can directly
apply deep generative models with a sufficient number
of control artifacts to describe the hidden distribution of
the manipulator’s IK solution space. Ideally, if we know

VOLUME 11, 2023 2277

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

FIGURE 1. An overview of the proposed PSIK method.

the role of every learned artifact, we can even obtain a
specific joint solution with respect to the desired pose
of the end-effector by giving appropriate values in each
artifact. The artifacts mentioned here are exactly the posture
index introduced in Sec. I. In the following discussions, the
latter will be used, because it is more straightforward to
associate posture indices with different appearances of the
manipulator.

C. VARIATIONAL AUTO-ENCODER
Variational auto-encoder [20] (VAE) is a generative model
with stochastic latent variables. The objective of VAE is
to approximate the distribution of the observations p(x).
To do so, VAE introduces a latent variable z ∼ g(z),
namely artifacts, and a likelihood p(x|z) to model p(x). VAE
assumes the latent variable z obeys a known prior distribution
g(z), e.g., standard Gaussian distribution. However, directly
evaluating the integral of p(x|z)g(z) is intractable, so a
proposal distribution q(z|x) is also introduced. In deep
learning, we commonly regard p(x|z) as a decoder and the
proposal distribution as an encoder. All together, the final loss
function is shown below.

Loss = −
∫
z
q(z|x) · log p(x|z) dz+ KL(q(z|x)‖Nor(0, 1)),

(2)

where x is the observation, and z is the latent vector.

IV. APPROACH
In this section, the proposed PSIK (Probabilistic Selective
Inverse Kinematics) architecture is introduced. The overall
goal is to develop a novel architecture that can navigate
the joint solution space of the IK function for kinematically
redundant manipulators to supply multiple joint solutions at
any pose in the whole workspace. Such a capability is very
useful for assisting numerical IK calculations, which will be
discussed in the next section.

A. OVERVIEW OF PSIK
Fig. 1 gives an overview of the proposed PSIK system.
There are three parts. In the training stage, we first collect
an unbiased training dataset across the entire workspace of
the manipulator. This step is straightforward and can be
done with a few lines of code as described in Sec. IV-B.
The collected dataset is a multi-modal dataset, in which
a pose may have multiple joint solutions. Such a dataset
cannot be used to train NNs, which in essence are one-to-
one mapping functions. PSIK overcomes this limitation with
a novel probabilistic NN architecture, whichwill be presented
in Sec. IV-C. The key idea is to extract characterizing
features of poses and their corresponding joint solutions, and
identify signature features, called posture indices, that can
characterize the self-motion manifolds of the poses.

In the second stage, an auxiliary dictionary is introduced to
help track signature posture indices and important properties
of the solution space. Finally, in the inference stage, given a
desired pose, the associated posture indices in the auxiliary
dictionary are examined and one is selected (see Sec. IV-D).
Next, the desired pose and the selected posture index are
fed into the trained neural model to produce the final joint
solution, as introduced in Sec. IV-E. Note that the different
posture indices of a given pose will generate different
postures for the manipulator. We thus have a systematic
way of generate distinct postures for a given pose. Also,
by altering the posture index, it is now possible to navigate
the joint solution space.

B. UNBIASED TRAINING DATASET COLLECTION
PSIK adopts deep generative models and thus needs a
training dataset for offline NN training. As mentioned earlier,
most existing NN-based methods employed a biased training
dataset permitting only one joint solution for each desired
pose. In this way, the NN models can be trained successively
as one-to-one mapping functions. The problem is that the
training dataset has to be specially and manually designed,
which hinders the automation of the data collection process.
Furthermore, if the applications or requirements are changed,
new dataset has to be collected and the process has to be
repeated.

On the other hand, this paper aims to solve the one-
to-many mapping from a desired pose to the multiple
joint solutions for kinematically redundant manipulators.
Therefore, we only collect an unbiased multi-model dataset
across the entire workspace of the manipulator. The idea is
straightforward by moving each joint of the manipulator in
turn for a fixed displacement, say xi degrees for a rotating
joint i, across the working range of that joint. For each
movement of a joint, the configuration of all the joints is
recorded and the corresponding pose of the end-effector is
obtained by forward kinematics. After all joints are turned
across their working range in sequence, an unbiased dataset
that covers the entire workspace of the manipulator can be
collected. Note that in the dataset, a pose may have multiple

2278 VOLUME 11, 2023

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

joint solutions to reach it. The size of the dataset and the
density of the known poses depends on the displacement xi
to collect the data. Hence, the displacements are important
design parameters in PSIK.

C. PSIK MODEL TRAINING
A typical NN model is a parameterized one-to-one mapping
function. However, the training dataset collected in the
previous subsection is multi-modal, in which a pose has
multiple joint solutions to map to. It is not possible to learn a
set of parameters for the NN model to output all solutions
at once, causing the training to fail [11]. In this paper,
we propose to add an extra index vector to the input layer
so that the NN function maps from a given desired pose and
an index to an joint solution. This solves the one-to-many
mapping problem.

Since this index vector, called posture index, helps to walk
through the infinite number of joint solutions for a given
pose, it must be continuous. Also, all poses of themanipulator
must have their own posture index, and adjacent poses must
have similar posture index values. Therefore, it is critical
how posture index should be represented and learned from
the collected unbiased dataset. In this paper, we propose to
encode the posture index with probability distributions. The
posture index now covers a range of values instead of discrete
points.

To implement PSIK, we adopt Variational Auto-encoder
(VAE) [20], [40]. The VAE has the important advantage
of approximating posterior with continuous latent variables.
Fig. 2 shows the architecture of PSIK. The encoder is trained
to extract the features of poses and their corresponding joint
solutions into a latent vector characterizing by probability
distributions, e.g., normal distributions. Let the dimension-
ality of the latent vector be k . Then, the encoder will output k
sets of means µ and variances σ . Next, the decoder samples
the k sets of means and variances to obtain a posture index
and converts the posture index with the target pose back to
the joint solution. It should be noted that we do not really
sample latent variables, because backpropagation cannot
handle sampling. Instead, the reparameterization technique is
used to implement the idea. The original equation inVAE [20]
is modified slightly by adding extra conditions. The loss
function is as follows:

Loss = −
∫
z
q(z|g, x) · log p(x|g, z) dz

+KL(q(z|g, x)‖Nor(0, 1)), (3)

where g is the target pose, x is the corresponding joint
solution, and z is the posture index. The objective is to
minimize the loss.

D. POSTURE INDEX SELECTION
In Sec. IV-C, we introduce the proposed PSIK architecture
and how it associates a desired pose with multiple joint
solutions. The architecture has an encoder for generating
posture indices and a decoder for obtaining different joint

FIGURE 2. Implementation of the PSIK neural model.

solutions. During inference, the decoder receives a pose and
a posture index to generate a joint solution. The problem is
that the values of the posture index cannot be set arbitrarily.
Not any posture index would generate a meaningful posture
for the manipulator. Being a means to walk through the
self-motion manifolds of a given pose while being consistent
across adjacent poses, the posture index must have some
signature values, which allow distinct postures of a given
pose to be identified and represented. In addition, different
poses will have a different set of signature posture indices.

To track the signature posture indices for different poses,
we propose in PSIK to maintain an auxiliary dictionary to
store poses and their corresponding signature posture indices.
Although poses and posture indices are continuous across
the workspace of the manipulators, the continuity in PSIK
NN models ensure that adjacent poses have similar joint
solutions and posture indices. Therefore, a sparse and discrete
dictionary can serve the purpose. The question is how to learn
and obtain the signature posture indices. There are various
ways that this can be done.

In PSIK, we adopt the strategy that leverages the training
dataset. After the encoder is trained, we feed all the poses
collected in the training dataset to the encoder once more
to obtain the corresponding posture indices. Then, a simple
clustering is applied to identify those posture indices that are
sufficiently apart as the signature indices. Next, a KD-tree
and a dictionary data structure are used to store the signature
posture indices of each pose that appears in the training
dataset, as shown in Fig. 3. Additional information may be
stored in the dictionary, for example, the available ranges
of the posture index for a given pose, the distance to
singularities, the self-motion manifold id, and so on [13],
[33], [35]. In the next subsection, we will discuss how this
auxiliary dictionary can be used. Note that this procedure
does not exclude at all the possibility that new entries are
added into the dictionary dynamically as we gather more data
during the operations of the manipulator.

Note also that it is possible to skip querying the auxiliary
dictionary for posture indices and instead to leverage the
current or initial state of the manipulator to find the posture
index for the target pose. The idea is to feed the current joint
configuration and the desired pose into the encoder to obtain
a posture index, which is then used to obtain the joint solution
to reach the target pose via the decoder. The rationale is that

VOLUME 11, 2023 2279

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

FIGURE 3. The KD-tree and the dictionary to track positions in the
dataset and their posture indices.

the manipulator may move to the target pose with a posture
similar to that of the initial state of the manipulator.

E. PSIK MODEL INFERENCE
After the PSIK neural models are trained and the auxiliary
dictionary is set up, they can be used to infer joint solutions.
Given a desired pose, a typical workflow of the inference in
PSIK is as follows. First, the auxiliary dictionary is queried
to retrieve posture indices corresponding to the pose. If the
posture indices are fed into the decoder together with the
desired pose, multiple joint solutions can be obtained. All
of them can move the robotic manipulator to the desired
pose. Second, the retrieved posture indices can optionally be
adjusted before they are fed into the decode to obtain even
more postures. Third, one joint solution is selected as the
final output. Note that the first two steps in effect navigate the
self-motion manifolds corresponding to the desired pose via
the posture index to obtain multiple joint solutions for that
pose. Depending on the application, they can be skipped or
simplified, as discussed below. The last step corresponds to
the redundancy resolution optimizations [7], [39] in typical
numerical IK methods for redundant manipulators.

A couple of details in the above workflow need to
be discussed further. In the first step, when the auxiliary
dictionary is queried, the given desired pose may not be in
the dictionary. Therefore, in PSIK, we actually search for the
closest poses in the dictionary and take their posture indices
as the indices for the desired pose. The range to search in
the dictionary is a design parameter. In the second step, how
to alter the posture indices to obtain more joint solutions is
also a design problem. Since themapping from theworkspace
to the joint configuration space is nonlinear, there seems no
easy answer and we will leave it for future research. In the
following, we will only consider the simple strategy that
increments or decrements each component of the posture
index with a small amount and sees how the posture of the
manipulator is changed.

In the third step, the most important decision is to select
one posture index as the final output. The goodness evaluation
of the posture indices really depends on the application
requirements, which are often expressed as constraints

or utilities. As noted above, this roughly corresponds to
the optimization operations in redundancy resolution in
numerical IK methods that reduces the infinite number of
joint solutions of a pose to just one. An important difference
however is that in numerical methods the optimizations are
usually formulated as part of the mathematical formulations
and solved during the numerical iterations, while in PSIK
the optimizations are evaluated after the joint solutions are
obtained. This difference will be further elaborated when we
discuss the applications in the next section.

F. DISCUSSIONS
Although kinematic redundancy is task-dependant, i.e., the
dimensionality of the joint configuration space is larger than
that of the task workspace, the training of the PSIK neural
models is essentially task-agnostic, except for the dimen-
sionality of the workspace. In other words, as soon as the
dimensionality of the tasks is determined, e.g., 3-dimensional
position only, 6-dimensional position plus orientation, or any
other values, an unbiased training dataset independent of
the tasks can be collected and used for training the neural
models. Furthermore, during inference, any task-dependant
requirements and optimizations are performed after the joint
solutions corresponding to the given target pose are produced
by the PSIK models, not during the process in calculating the
solutions. This means that the PSIK models only need to be
trained offline once for 3- as well as 6-dimensional workspace
and then can be used throughout its lifetime. Of course, this
does not exclude the possibility of improving the models
dynamically for their specific working environments.

The primary goal of PSIK is to navigate the joint solution
space of kinematically redundant manipulators to obtain
multiple solutions for a given pose. We propose in this
paper the posture index as the means for navigating the
space. On the other hand, as mentioned in I, the joint
configurations corresponding to a given end-effector pose
can be represented as a finite set of disjoint continuous
self-motion manifolds [4]. To model the configuration space
of redundant manipulators more closely to the level of
self-motionmanifolds with PSIKmodels, we can leverage the
analytic techniques proposed in previous works [4], [33], [35]
on the training dataset to identify the self-motion manifolds
and then annotate the information in the auxiliary dictionary.
Alternatively, the signature posture indices mentioned in
Sec. IV-D, which are resulted from a clustering of all the
posture indices of a pose, may correspond closely to the self-
motion manifolds. Further studies are needed to establish the
link.

V. APPLICATIONS
In this section, two applications are introduced to demonstrate
how the offline-trained PSIK models can facilitate online
IK computations. The first application is to find a good
initial joint solution with PSIK to bootstrap the numerical
IK calculations, as suggested in [13]. The second application
is to leverage PSIK’s ability of generating multiple joint

2280 VOLUME 11, 2023

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

TABLE 1. The average number of iterations to reach the target position
by numerical IK.

solutions so that requirements of secondary tasks, such as
obstacle avoidance, can be evaluated off the numerical IK
iterations and at the stage after the multiple solutions are
produced by PSIK. In this way, numerical IK methods do
not need to calculate extra constraints during the optimization
iterations, speeding up the computations.

A. BOOTSTRAPPING NUMERICAL IK
As mentioned earlier, numerical IK methods typically rely
on iterative approximations, such as Newton’s method or
gradient descent, to solve for the joint variables to reach the
given target pose. The number of iterations correlates to the
distance between the initial position of the end-effector and
the target position. Table 1 shows the number of iterations that
the numerical IK method needs to run to reach the required
position precision (0.01 cm), even when the end-effector has
already reached a certain distance from the target position.
In this experiment, the 7-DoF Franka Emika Panda robotic
manipulator was the target, and the IK function was solved
by the L-BFGS-B IK solver [6] in the IKpy package [28].
The manipulator was initially positioned with the joint
configuration of (0,0, . . . ,0), and 10,000 positions in the
workspace were randomly sampled as the target position. The
average values are reported.

It can be seen from the table that the numerical IK method
needs quite a few iterations to reach the target position. If the
precision requirement is higher, say to 7 digits, then the
number of iterations will dramatically increase. We can also
see that even when the remaining distance from the current
position to the target position is smaller than 0.02 cm, the
numerical IK method still takes a few iterations to reach the
target.

Table 2 examines the effects of iterative numerical
optimizations from another perspective, i.e., the percentage
distance improvements for the first few iterations. We can see
that the numerical method moves the manipulator gradually
towards the target position. In average it takes two iterations
to bring the end-effector to about half way between the
starting location and the target location, and the first five
iterations only take it to about 75% of the way. Therefore,
if numerical IK can start from a pose that is close to the target
pose, the number of iterations can be significantly reduced.

Using PSIK, this can be done easily with several oper-
ational options. Given a target pose, if there is no special
requirements or constraints, we can query the auxiliary
dictionary for a pose that is closest to the target and then
randomly choose one associated posture index. The posture
index and the target pose is then fed into the PSIK decoder to
obtain the joint solution. The resultant joint solution can serve

TABLE 2. The percentage improvement in distance to reach the target
position for the first five iterations by numerical IK.

as the starting pose of the numerical IKmethod. Alternatively,
we can leverage the current state of the manipulator by taking
the current pose and joint configuration as inputs to the PSIK
encoder to generate a posture index. The obtained posture
index is then sent to the decoder together with the target pose
to generate the joint solution to bootstrap the numerical IK
computations.

The problem with the above two schemes is that they
ignore the manipulator transition from the current pose to
the target pose. One workaround is to combine the two.
We can take the posture index generated in the second scheme
from the PSIK encoder to compare with the posture indices
obtained from the dictionary in the first scheme. The posture
index from the latter that is the most ‘‘similar’’ to the former
is chosen to feed into the PSIK decoder to produce the joint
solution. The rationale is to allow the manipulator to transit
from the current configuration to the target pose in a most
smooth way. Again, there are many details in evaluating the
‘‘similarity’’ of two posture indices, and we will leave the
topic for future study.

Extra requirements such as posture similarity discussed
above, and singularity or obstacle avoidance may be added as
tasks demand. In PSIK, these requirements may be evaluated
after we obtain multiple joint solutions to the target pose,
a point to be further elaborated in the next subsection.
One final note is that the time of querying the auxiliary
dictionary and executing the PSIK neural models must be
significantly lower than that of iterative approximations by
numerical IK from a random initial solution. In the next
section, we will evaluate the effectiveness of using PSIK to
bootstrap numerical IK methods.

B. CONSTRAINTS OFF NUMERICAL ITERATIONS
If the task imposes extra requirements, such as obstacle
avoidance, numerical IK methods normally will formulate
them as optimization goals or constraints and compute them
as part of the approximation iterations. If the application
imposes more constraints, the approximation formulations
will become more complex and harder to converge, resulting
in more iteration count and computation time.With PSIK, the
extra requirements need not be formulated into the numerical
formulations. They can be checked after the PSIK models
produce multiple joint solutions for the given target pose.
The joint solution that best satisfies the constraints is then
returned as the initial guess for the numerical IK solver.
In this way, the numerical IK solver needs not calculate

VOLUME 11, 2023 2281

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

these constraints during the iterative optimization process.
This simplifies the computation complexity of each iteration
and speeds up the total execution. Note that since the joint
solutions produced by PSIK can move the end-effector close
to the target position, the pose of the manipulator will remain
similar when moving from those positions to the target
position. This will be further verified in the next section.

Algorithm 1 shows a simple framework for leveraging
the multiple joint solutions generated by PSIK to evaluate
extra requirements, including adjusting the posture indices to
get better solutions. The framework contains an evaluation
function that incorporates extra requirements of the task to
evaluate how well a joint solution satisfies the requirements.
The evaluation functions may include information such
as positions of the obstacles and consult the auxiliary
dictionary for information such as singularities of the joint
solution space. The framework also has an adjust function to
determine how to adjust the posture index. In Algorithm 1,
we show an example evaluation function, Freq(θ, I) = ρ,
and demonstrate how each element of the posture index is
adjusted in turn to find another posture index that can meet
the application requirements better.

Algorithm 1 A Framework for Extended Task Execution
With PSIK
Require:

Desired pose: pose;
Posture indices: I1, . . . , Ik ;
Joint solution: θ ;
Auxiliary dictionary: Dict(pose);
PSIK decoder: PSIK_decoder(pose, Ii) = θ ;
Task requirements: I;
Evaluation function: Freq(θ, I) = ρ, where ρ is the degree
that θ satisfies I; ρ = 0 if not satisfy;
Adjustment function: Fadj(θ) = x, where x is the amount
to adjust for the posture index;

Output: Joint solution θo that best satisfies the requirements

{I1, . . . , Ik} ← Dict(pose)
for i = 1 to k do

θ ← PSIK_decoder(pose, Ii)
ρ ← Freq(θ, Ii)
while ρ = 0 do

Ii← Ii + Fadj(θ)
θ ← PSIK_decoder(pose, Ii)
ρ ← Freq(θ, Ii)

end while
end for
θo← the joint solution that has the maximum ρ

VI. EXPERIMENTS
In this section, details of the experimental setup are given
in Sec. VI-A. Since the posture index is the most important
element in PSIK, its design is first studied in Sec. VI-B.

FIGURE 4. The 7-DoF Franka Emika Panda.

The capability of PSIK to model the joint solution space
of redundant IK is then evaluated in Sec. VI-C. Sec. VI-D
focuses on using PSIK to navigate the redundant solution
space to find multiple distinct joint solutions to reach a
given target position is examined. Finally, in Sec. VI-E,
applications of PSIK to facilitate numerical IK computations
are evaluated.

A. EXPERIMENTAL SETUP
We evaluate the proposed methods using a 7-DoF robotic
manipulator, Franka Emika Panda.1 Its structure is shown in
Fig. 4. Joint 1, which is the axis nearest the base, controls
the orientation of the whole manipulator. Joint 4 is an elbow
joint, which gives more versatility to the end-effector. The
first three axes (Joints 1, 2, and 3) determine the position
of the elbow joint, and the remaining axes determine the
pose of the end-effector. The rotation limits of the joints
are as follows: Min/Max (degree) = Joint 1: -166/166,
Joint 2: -101/101, Joint 3: -166/166, Joint 4: -176/-4, Joint 5:
-166/166, Joint 6: -1/215, Joint 7: -166/166. The robot
has a maximum stretch of 855 mm. The experiments were
conducted in a virtual environment, the PyBullet [8] physics
simulator, for avoiding unexpected collisions and damage.
In the virtual environment, the physical parameters of the
manipulator are the same as those of the real robot, except
the self-collision mechanism was turned off. All experiments
were run on a computer with an Intel i7-8700 CPU and 64 GB
of memory.

The training dataset consists of the motor angles of the
arm, Cartesian coordinate (x, y, z) of the end-effector, and
the orientation of the end-effector. The dataset was collected
every 30 degrees of each motor. The dataset contains
6,967,296 data points with a total size of 589.5 MB. From the
collected data, we identified 580,608 different end positions,
resulting in about 12 data points per position on average. Note
that it does not mean there are only 12 postures per position.
Since the dataset is sparse, it is not possible to obtain all the
joint solutions to the same end position. To cope with the
sparsity and to generate a sufficient number of joint solutions
to a target position for selection, we actually included all the

1https://www.franka.de/

2282 VOLUME 11, 2023

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

data points that could be reached within 1 cm from the given
target position as the joint solutions to that position. Hence,
in Sec. VI-D, we also consider the posture indices from the
neighboring nodes that are close to the target position for
selection.

In addition to this dataset, we also collected a second
dataset called the uni-position dataset by dropping the data
points in the first dataset that have the same target position
of the end-effector. The second dataset was prepared for
especially training the two baseline methods for comparison.
As stated previously, the data points with the same target
positions (input) are considered noise while training a
classic fully-connected network, because the wights are in
competition. Hence, we attempted to alleviate the impact
of the ‘‘duplicated’’ data by removing those data with the
same positions. The uni-position dataset contains 523,267
data points with a total size of 61.2 MB.

To implement PSIK, the encoder and decoder each had five
fully connected layers. The encoder had 2048, 2048, 1024,
512, and 4 neutrons in the five layers respectively, whereas
the decoder had 512, 1024, 1024, 512, and 7 neutrons. Each
layer was followed by an ELU activation function, except for
the output layer. The output layer of the encoder generates
two outputs: one stands for the mean, and the other stands
for the variance. We have tried different parameters to train
the neural networks of PSIK. It is found that the learning rate
should be less than or equal to 0.0005, decreased after every
1000 training epochs, and the batch size should be 65536.
Stable and satisfactory results can be obtained for the entire
workspace after 3300 epochs.

B. DIMENSIONALITY OF POSTURE INDICES
Posture index is the most critical element in PSIK, which
allows us to navigate the joint solution space, or more
precisely the self-motion manifolds corresponding to a
pose. The dimensionality of posture index is thus an
important design parameter, which will be studied in this
subsection.

Since posture index can be used to navigate the self-motion
manifolds of a pose, its dimensionality must be closely
related to the dimension of the redundant joint space of the
manipulator. In this experiment, we first consider the case
that the tasks only require the end-effector to reach the target
position, i.e., the desired pose consists only of the position.
Therefore, the workspace of the tasks is a 3-dimensional
Cartesian space and the redundant joint space has a dimension
of four. We tried different dimensionalities of the posture
index, from one to seven, to train the PSIK models. The
experiments show that the models with a dimension smaller
than three failed to fit the training data. The loss values of
these models stopped decreasing in an early stage. On the
other hand, the models with a dimension greater than or
equal to three can successfully achieve a good comparable
performance. The main difference among them is the speed
to converge. The longer the indices are, the faster the loss
value decreases.

This result confirms that the dimensionality of posture
index is closely related to the dimension of the redundant
joint space. However, it also indicates that its dimensionality
needs to be exactly the same as the redundant joint space,
perhaps due to the nature of probabilistic distribution of
posture index. Since the models with 3-dimensional indices
need more hyperparameter adjustments and training time,
we therefore use 4-dimensional posture indices in most
experiments discussed in this section, if the tasks only require
the end-effector to reach a target position. On the other hand,
the dimensionality can be reduced to one if the tasks require
both position and orientation of the end-effector.

C. MODELING JOINT SOLUTION SPACE
In this subsection, we evaluate how closely the proposed
PSIK can model the joint solution space of redundant IK.
Although accuracy is not of primary concern in this paper,
because we focus on using PSIK to assist numerical IK
computations, accuracy nevertheless is a good indicator of
the closeness of PSIK in modeling the solution space. If the
tasks only require the end-effector to reach the target position,
i.e., the desired pose consists only of the position, then the
accuracy can be measured in terms of distance error, which
is the Euclidean distance from the given target position to
the center of the end-effector by setting the joints according
to the produced joint solution. If the desired poses include
target position as well as orientation, then the accuracy can
be measured by the distance error and the cosine similarity of
the orientation of the end-effector.

1) POSITION ONLY
We first consider the case in which the desired poses
only contain the position. The modeling capability of PSIK
is compared against two NN-based methods: an adaptive
neuro-fuzzy inference system (ANFIS) [11] and a deep
fully-connected neural network (FCN) [11], [41]. PSIK used
a 4-dimensional posture index. The parameters of the ANFIS
were as follows: the number of premise functions of each
feature was 2, the range of allowed values of the exponent
in the premise functions was from 0.2 to 0.5, the range
of allowed values of the exponent in the premise functions
was from 1 to 3, and the range of allowed values of the
coefficients in the consequent functions was from −10 to
10. The solver of the ANFIS was a particle swarm optimizer
(PSO), in which the number of populations was 100 and
the number of iterations was 200. Limited by the computing
resources available to us, ten premise functions for each
feature is the largest configuration we can compute. FCN
served as our baseline and had 3, 512, 1024, 1024, 512, and 7
neutrons in the five layers, which were identical to the PSIK
decoder except for the input layer.

In this experiment, we noted that the training dataset had
different densities in different regions of the workspace due
to the characteristics of the different joints and their links.
Therefore, we divided the workspace with different sizes
of circles centered around the base of the manipulator and

VOLUME 11, 2023 2283

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

TABLE 3. Modeling of joint solution space in terms of average distance error (cm) for tasks requiring position only.

sampled 100 random target positions on each of the circles.
The PSIK model was then used to find the joint solution.
Since the tasks did not require the end-effector orientation,
the first posture index in the auxiliary dictionary for the target
position was chosen.

Table 3 shows the results. For PSIK, the average distance
errors are relatively uniform across different regions, because
it treats the dataset as distributions during training and
considers nearby data points together. However, the average
distance error is about 1.73 cm. One reason for the limited
accuracy is the KL divergence that prevented PSIK from
fitting the training dataset, which is similar to a regularization
term in training. If high accuracy is required, the joint solution
provided by PSIK can serve as an initial solution to bootstrap
numerical IK, as will be discussed in Sec. VI-D.
In contrast, FCN can only achieve a 45 cm average

distance error. This is not surprising, because the multiple
solutions corresponding to the same pose prevent the neural
network from finding an effective association. Even if we
use the uni-position dataset, which keeps only one solution
for each pose, the FCN still suffers from poor performance.
The average distance error is improved by only about
5 cm. We speculate that this is because the dataset kept
inconsistent joint solutions across adjacent poses. Thus, the
neural network might receive similar inputs but have quite
different joint solutions. Both FCN models perform better
when the radius of target positions is under 40 cm, similar
to PSIK. Finally, the average distance error of the ANFIS
model is 70 cm, which is the worst among the three models
compared.

2) POSITION AND ORIENTATION
We next examine PSIK when the desired poses include target
position as well as orientation. Again, the workspace was
divided by circles of different sizes centered around the
base of the manipulator, and 100 random target positions on
each of the circles were sampled with a random orientation.
The PSIK model was then used to find the joint solution.
Specifically, 50 data points closest to the target position in
the KD-tree were retrieved, their associated 1-dimensional
posture indices were used to find the corresponding joint
configurations, and the joint configuration that best matches
the target orientation was returned.

From Table 4, we can see that the average distance
error is 3.2 cm and the average cosine similarity is 0.99,
which means the deviation of the orientation is about

TABLE 4. Modeling of joint solution space for tasks requiring position
and orientation.

3 degrees. Compared with Table 3, the average distance error
increases significantly. This is because the data points in the
KD-tree closest to the target position did not have matching
orientations. We had to search data points that were further
away from the target position to find matching orientations.
This problem can be solved by adjusting the elements of the
posture indices that correspond to the closest data points to
align the pose, as will be discussed in Sec. VI-D.

D. MODELING REDUNDANCY
The ability of PSIK to navigate the solution space to find
distinct joint solutions is evaluated in this subsection. This
is done by randomly sampling one target position from each
of the four quadrants of the workspace and then selecting ten
different posture indices in each position from the auxiliary
dictionary. As mentioned in Sec. IV-D, the posture indices
stored in the auxiliary dictionary are selected to be as distinct
as possible. The four randomly sampled target positions had
the coordinates (x, y, z) in the Cartesian workspace as follows
(all numbers in meter):

• a: (0.1357, -0.321, 0.222)
• b: (-0.333, 0.246, 0.1999)
• c: (-0.188, -0.168, 0.321)
• d: (0.2020, 0.2021, 0.2022)

1) POSITION ONLY
Again, the case in which the tasks only ask for end-effector
position is considered first. The posture indices are
4-dimensional vectors. To examine the diversity of the ten
postures for each of the four positions, we show the variance
of their joints in Table 5. As shown in the table, Joint 1 has a
high variance in every position, which means Joint 1 has quite
different values in the ten joint solutions generated by the ten
posture indices in all four positions. Since Joint 1 is nearest
to the base of the manipulator, this implies that the robot
starts by facing very different directions and then moves its

2284 VOLUME 11, 2023

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

TABLE 5. The variance of each joint in the four target positions based on
ten different posture indices.

end-effector to reach the same target position. If we examine
Joints 1, 2, and 3 together, which determine the location of the
elbow (Joint 4), we can also see that they have high variances.
It means that Joint 4 can have very different positions while
still taking the end-effector to the same target position.

Table 6 illustrates the ten postures generated from the ten
posture indices to reach each of the four target positions
using PSIK. From the table we can see that the manipulator
can approach the target position (red dot) from different
directions with different heights of the elbow joint and even
different orientations of the end-effector. The postures are
quite distinct if examined visually.

Table 7 shows the accuracy of the ten joint solutions of the
four target positions. It can be seen that the average distance
error is between 1.1 cm to 1.5 cm. The smallest distance error
is 0.27 cm, occurred at position d using joint solution 2. The
worst error is 3.24 cm using solution 7 at position a.

2) POSITION AND ORIENTATION
We next examine the case in which the desired poses contain
both position and orientation. Now, the posture indices
are only 1-dimensional scalars. Table 8 illustrates the five
postures generated from the five posture indices to reach the
four target positions while maintaining a given orientation.
The orientation was chosen randomly in the experiment.
It is interesting to see that the postures corresponding to a
pose look similar. This is not surprising because the posture
indices are scalars and conceptually there is only one way
to varying the postures. We also trained PSIK using 3- and
4-dimensional posture indices, and it turned out that the
extra elements cause the same changing trend, i.e., slope
adjustment, but not orientation.

3) NAVIGATION WITH POSTURE INDEX
Posture index is a vector. Intuitively, every element in the
posture index should affect some aspects of the final posture
of the manipulator. Unfortunately, the unsupervised learning
to train the PSIK models lacks semantic explanation of the
elements of posture index, though it allows our approach
to generalize to any DoF robotic manipulator. In this set
of experiments, we study the effects of changing different
elements in the posture indices and how they help us to
navigate the self-motion manifolds of a pose.

Let us start with 4-dimensional posture indices, i.e., the
desired poses contain position only. Table 9 shows the

FIGURE 5. Effects of changing elements 1 (above) and 4 (below) in
posture index, which adjust the end-effector along a slant line while
keeping the target position unchanged.

changes of the postures when different elements in a posture
index are changed for the target position (-0.25, -0.25, 0.25).
The changes of each element was 0.01 per step. There are
two different trends in the postures when themanipulator tries
to reach the given target position. One affects the orientation
of the end-effector (elements 1 and 4), and the other affects
the body of the manipulator but keeps both the orientation
and the location fixed (elements 2 and 3). More specifically,
element 1 makes the end-effector rotate around the vertical
line, whereas element 4 rotates it around the horizontal line.
In other words, we can change the two elements to control the
direction that the end-effector approaches the target position.
Fig. 5 shows the results when we adjust both elements 1 and
4. As can be seen, the end-effector moves along slant lines.
On the other hand, elements 2 and 3 of the posture index
change the slope of the end-effector. They cause similar
effects except for the side.

We next study how the roles of the elements in the
posture index change when the dimensionality of the index
is changed. We examine 3-dimensional posture index first.
It is found that two of the elements affect the orientation.
This implies that they are essential so that the end-effector
can approach the target position from any direction in a
3-dimensional workspace. The remaining element alters the
slope, which means that the two elements that do the same
in the 4-dimensional posture index are now merged into
one due to their similarity. This also explains why the
dimensionality of the posture index has to be at least three.
When the dimensionality of the posture index increases,
PSIK models can have more room to contain the two types
of changing trends, which eases the difficulty of training.
However, different elements in the posture index may cause
similar effects.

E. APPLICATIONS OF PSIK
In this subsection, we evaluate the effectiveness of PSIK in
facilitating the numerical IK computations as discussed in
Sec. V. The experiments were conducted based on the IKpy
package [28]. The main numerical IK method used was the
L-BFGS-B method [6]. It estimates the inverse Hessian
matrix to steer its search through the variable space to
reduce the deviation to the target position. By maintaining
the history of the past m (m < 10) updates of the position
and the gradient instead of the whole inverse Hessian matrix,
L-BFGS-B converges fast and requires less memory. In this
set of experiments, a computer with an AMD Ryzen 5 3600
6-core processor and 16 GB memory was used.

VOLUME 11, 2023 2285

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

TABLE 6. Illustrations of the ten different joint solutions in the four target positions considering position only.

TABLE 7. The distance errors (cm) of the ten joint solutions for each of
the four target positions.

1) BOOTSTRAPPING NUMERICAL IK
We first examine PSIK in finding a good initial joint solution
to bootstrap the numerical IK calculations. Suppose the
tasks require solving IK for position only. Given a target
position, the numerical IK solver finds a joint solution for the
end-effector to reach that position. PSIK can provide a nearby
joint configuration for the solver to start the optimization
iterations.

In the experiments, 10,000 positions in the workspace of
the 7-DoF Franka Emika Panda were randomly selected as
the target position for IK calculations and the average of these
10,000 results are reported. The accuracy was set to 0.01 cm
on each dimension. In other words, the solution provided
by the numerical IK method must be able to move the
end-effector to within 0.01 cm from the given target position.
According to the default starting configuration of IPky, the
original IK solver started the optimization iterations from
the joint configuration (1.55,1.35,1.55,-1.35,1.55,1.35,1.55),
which was as close to the origin of the joints as possible.
In PSIK, the data point in the KD-tree closest to the target
position was returned as the initial solution to the numerical
method.

Performance of the numerical IK method with and without
using PSIK to bootstrap is shown in Table 10. From the table,
we can see that PSIK improves the total execution time and

the iteration count by 52.8% and 56.8% respectively over the
original IK method, if the tasks require only the end-effector
to reach a target position.

Our experiments also show that PSIK can provide an initial
configuration to the IK solver that is in average 1.48 cm away
from the target position. This is much better than the original
IK solver without using PSIK, which starts with an average
distance of 86.22 cm away from the target position.

We next consider solving IK for position as well as
orientation. As discussed in Sec. V-B, when the application
requires the end-effector of the robotic arm to move to a
desired position with a specific orientation, the orientation
evaluation may be moved outside of the optimization
formulations with PSIK. This is done by the following
steps:

1) PSIK generates multiple joint solutions with the given
target position.

2) The joint solution that best match the target orientation
is chosen.

3) The chosen joint solution serves as the initial solution to
start the numerical IK optimization until an optimized
joint solution that satisfies the position accuracy is
obtained.

4) The optimized joint solution is adjusted to align to the
target orientation.

The last step may be performed by adjusting the corre-
sponding posture index as discussed in the last subsection
or by heuristics similar to CCD or FABRIK [2], [43]. Note
that since the joint solution obtained from PSIK can move
the end-effector very close to the target position, the pose
of the manipulator will remain similar when moving from
that position to the target position. It is thus sufficient to
examine the candidate joint solutions generated from PSIK
for conformity to the imposed orientation.

2286 VOLUME 11, 2023

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

TABLE 8. Illustrations of the five different joint solutions in the four target positions considering position and orientation.

TABLE 9. Effects of different elements in the vector of posture index for the target position (-0.25, -0.25, 0.25).

TABLE 10. Bootstrapping numerical IK for position only with PSIK.

The overall results are shown in Table 11. In this
experiment, PSIK queried 50 data points closest to the target
position in the KD-tree to find the joint configuration with the

highest cosine similarity. The returned configurationwas then
served as the initial solution to start numerical IK iterations
to approximate the target position. The IK iterations did not

VOLUME 11, 2023 2287

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

TABLE 11. Bootstrapping numerical IK for position and orientation with PSIK.

TABLE 12. Effects of PSIK on bootstrapping different numerical IK solvers.

evaluate orientation, because the joint configuration returned
by PSIK had already matched the target orientation. From the
table, we can see that the improvement of total execution time
and IK iteration count over the original IK method are nearly
50% and 60% respectively. The poses generated by PSIK also
match the required orientation closely.

Finally, we evaluate the generality of PSIK in bootstrap-
ping numerical IK methods. The performance of PSIK in
couple with other numerical IK methods in IKpy, including
BFGS method [16], Sequential Least Squares method
(SLSQP) [22], and Conjugate Gradient method (CG) [25]
is evaluated. Table 12 compares the average execution time
and iteration count by these numerical IK methods with and
without PSIK to bootstrap.

The table shows that PSIK can speed up all the numerical
IK methods considered. For position only, the improvements
in execution time range from 14% to 28%. For position and
orientation, the improvements are from 36% to 48%. This is
not surprising, because PSIK only provides initial solutions
to numerical IK approximation and does not affect internal
operations of the solvers. Thus it can work well with all
numerical IK methods.

2) CONSTRAINTS OFF NUMERICAL ITERATIONS
Wehave shown above the effectiveness of PSIK inmoving the
orientation requirement out of the numerical IK formulation
and providing initial solutions that satisfy the orientation
requirement. In fact, PSIK can assist in evaluating other con-
straints during IK computations. We examine one application
and see how PSIK may help.

Consider the problem of obstacle avoidance in robotic
manipulators. Most current methods incorporate obstacles as
additional constraints into the numerical IK formations to
solve the problem [7], [39]. Using PSIK, we can collect all the
extra constraints and requirements into a separate procedure
and evaluate the joint solutions generated from PSIK with

the procedure for their conformity to the constraints. The
procedure can be organized as a hierarchical pruning model,
with each layer pruning out joint configurations that do not
satisfy one of the constraints. By placing stricter constraints
on the top layers, we can prune more joint configurations
early, leading to better performance.

In this experiment, we assume that the manipulator needs
to move the end-effector to a target position with a given
orientation. There are a number of static obstacles in the
workspace to avoid and certain task requirements for the
postures. The goal is to determine a joint solution to satisfy
all the constraints and allow the end-effector to reach the
target pose. Note that for simplicity we only concern the
final posture of the manipulator here, not the motion path.
Nevertheless, the final joint configuration may well serve as
a goal in motion planning [19], [24].

Four different tasks with different requirements and thus
computing complexities were designed:

• Task A: position+orientation
• Task B: position+orientation, 1 obstacle
• Task C: position+orientation, 2 obstacles
• Task D: position+orientation, 2 obstacles, 1 requirement
on posture

With the increasing task requirements, the original numer-
ical IK solver needs to calculate more constraints during
optimization iterations. Therefore, the computation time
per iteration will increase. On the other hand, with PSIK,
the numerical IK solver only needs to perform basic IK
computations for target position and leaves the constraint
evaluations to the separate procedure mentioned above.
Hence, the computation time will remain almost the same for
increasingly complex tasks.

Table 13 shows the effectiveness of PSIK in evaluating the
constraints. In the table, the ‘‘Constraint Time’’ is the time
to evaluate the extra constraints, and the ‘‘Total Time’’ of
‘‘PSIK+Numerical’’ includes the time of query, clustering,

2288 VOLUME 11, 2023

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

TABLE 13. Effects of PSIK on evaluating extra constraints.

and iterative IK approximation. From the table, we can see
that for the original numerical IK, the total execution time
and time per iteration both increase when the complexity
of the constraints increase. In contrast, the time to process
the constraints with PSIK and thus the total execution time
of ‘‘PSIK+Numerical’’ remain nearly unchanged with the
increase in constraint complexity.

VII. CONCLUSION AND FUTURE WORKS
In this paper, a novel deep learning approach is proposed
that can model the ill-posed redundant IK solution space to
find multiple distinct joint solutions of a given pose. The
key idea of the proposed PSIK is to introduce an extra
probabilistic vector, the posture index, to allow the navigation
in the redundant joint solution space. Such a capability is very
useful for speeding up numerical IK computations. To the
best of our knowledge, this is the first work that can use
a single NN to generate multiple joint solutions for 7-DoF
robotic manipulators. Furthermore, the process to collect the
training dataset can be fully automated with a few lines
of code, and it does not impose any special constraints on
training data. Thus, the proposed PSIKmethod can be applied
to any robotic manipulators.

This work can find a diverse set of applications in robotic
manipulators. Two example applications are presented in
the paper to demonstrate the effectiveness of PSIK in
facilitating numerical IK computations. Experiments based
on the popular IKpy package show that PSIK can accelerate
the execution of the different numerical IK modules in IKpy
up to 50% for a 7-DoF manipulator. Other applications are
possible. For example, if there are two different high-DoF
robotic manipulators, it is possible to use the posture
indices to make one manipulator imitate the other. The two
manipulators not only follow the same trajectories by the
end-effector but also have similar postures. This could be
very useful when one wants to transfer the skills from one
robot to another. Another possibility is to choose the best
posture index that can achieve certain optimization goals,
e.g., reaching a goal withminimal power or avoiding dynamic
obstacles.

This paper opens up a new direction for NN-based IK
methods. The current paper focuses mainly on the ability
of PSIK to model the joint solution space of redundant IK
and its applications to assist numerical IK computations.
Although PSIK can obtain solutions to redundant IK, the
accuracy still can not match that by numerical IK at this

point. It is thus interesting to exploit the accuracy of PSIK
models in the future. This work uses a sparse training dataset
(by every 30◦ per joint) and has a subcentimeter distance
error (∼0.5 cm). It is interesting to see whether denser
training dataset can improve accuracy and if there is a limit.
Furthermore, a systematic way of adjusting the elements of
the posture index is needed to change the posture of the
manipulator to a desired one. Another possible future work is
to research how to model the distinct self-motion manifolds
with PSIK and the use of PSIK to study the various properties
of joint solution space of redundant IK.

REFERENCES
[1] A. R. J. Almusawi, L. C. Dülger, and S. Kapucu, ‘‘A new artificial neural

network approach in solving inverse kinematics of robotic arm (Denso
VP6242),’’ Comput. Intell. Neurosci., vol. 2016, pp. 1–10, Aug. 2016.

[2] A. Aristidou and J. Lasenby, ‘‘FABRIK: A fast, iterative solver for the
Inverse Kinematics problem,’’Graph. Models, vol. 73, no. 5, pp. 243–260,
Sep. 2011.

[3] T. Asfour and R. Dillmann, ‘‘Human-like motion of a humanoid robot
arm based on a closed-form solution of the inverse kinematics problem,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2003,
pp. 1407–1412.

[4] J. W. Burdick, ‘‘On the inverse kinematics of redundant manipulators:
Characterization of the self-motion manifolds,’’ in Proc. Int. Conf. Robot.
Autom., May 1989, pp. 264–270.

[5] S. R. Buss and J.-S. Kim, ‘‘Selectively damped least squares for inverse
kinematics,’’ J. Graph. Tools, vol. 10, no. 3, pp. 37–49, Jan. 2005.

[6] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, ‘‘A limited memory algorithm
for bound constrained optimization,’’ SIAM J. Sci. Comput., vol. 16, no. 5,
pp. 1190–1208, 1995.

[7] S. Chiaverini, G. Oriolo, and A. A. Maciejewski, ‘‘Redundant robots,’’ in
Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Cham,
Switzerland: Springer, 2016, pp. 221–242.

[8] E. Coumans and Y. Bai, ‘‘Pybullet, a Python module for physics simulation
for games, robotics and machine learning,’’ Tech. Rep., 2016. [Online].
Available: http://pybullet.org/

[9] M. Crenganis, R. Breaz, G. Racz, and O. Bologa, ‘‘Inverse kinematics of
a 7 DOF manipulator using adaptive neuro-fuzzy inference systems,’’ in
Proc. 12th Int. Conf. Control Autom. Robot. Vis. (ICARCV), Dec. 2012,
pp. 1232–1237.

[10] A. Csiszar, J. Eilers, and A. Verl, ‘‘On solving the inverse kinematics
problem using neural networks,’’ in Proc. 24th Int. Conf. Mechatronics
Mach. Vis. Pract. (M2VIP), pp. 1–6. IEEE, 2017.

[11] J. Demby’s, Y. Gao, and G. N. DeSouza, ‘‘A study on solving the inverse
kinematics of serial robots using artificial neural network and fuzzy neural
network,’’ in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Jun. 2019,
pp. 1–6.

[12] D. DeMers and K. Kreutz-Delgado, ‘‘Learning global direct inverse
kinematics,’’ in Proc. 4th Int. Conf. Neural Inf. Process. Syst., vol. 4, 1991,
pp. 589–594.

[13] D. DeMers and K. Kreutz-Delgado, ‘‘Issues in learning global properties
of the robot kinematic mapping,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 1993, pp. 205–212.

[14] A. D’Souza, S. Vijayakumar, and S. Schaal, ‘‘Learning inverse kinemat-
ics,’’ in Proc. Int. Conf. Intell. Robots Syst., vol. 1, Oct. 2001, pp. 298–303.

[15] A.-V. Duka, ‘‘Neural network based inverse kinematics solution for
trajectory tracking of a robotic arm,’’ Proc. Technol., vol. 12, pp. 20–27,
Jan. 2014.

[16] R. Fletcher,PracticalMethods of Optimization. Hoboken, NJ, USA:Wiley,
2000.

[17] J. Ghasemi, R. Moradinezhad, and M. A. Hosseini, ‘‘Kinematic syn-
thesis of parallel manipulator via neural network approach,’’ 2019,
arXiv:1904.04668.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial networks,’’
Commun. ACM, vol. 63, no. 11, pp. 139–144, 2020.

[19] L. E. Kavraki, P. Svestka, J.-C. Latombe, andM.H.Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,’’
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug. 1996.

VOLUME 11, 2023 2289

C.-K. Ho et al.: Deep Learning Approach to Navigating the Joint Solution Space

[20] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

[21] I. Kobyzev, S. Prince, and M. Brubaker, ‘‘Normalizing flows: An
introduction and review of current methods,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 43, no. 11, pp. 3964–3979, May 2020.

[22] D. Kraft, Software Package for Sequential Quadratic Programming.
Cologne (Köln), Germany: DFVLR, 1988.

[23] K. Kreutz-Delgado, M. Long, and H. Seraji, ‘‘Kinematic analysis of 7
DOF anthropomorphic arms,’’ in Proc. IEEE Int. Conf. Robot. Automat.,
May 1990, pp. 824–830 vol. 2.

[24] S. M. LaValle, ‘‘Rapidly-exploring random trees: A new tool for path
planning,’’ Iowa State Univ., Ames, IA, USA, Tech. Rep. TR-98-11, 1998.

[25] J. Lenarčič, ‘‘An efficient numerical approach for calculating the inverse
kinematics for robot manipulators,’’ Robotica, vol. 3, no. 1, pp. 21–26,
Jan. 1985.

[26] Y. Lu and P. Xu, ‘‘Anomaly detection for skin disease images using
variational autoencoder,’’ 2018, arXiv:1807.01349.

[27] C. L. Luck and S. Lee, ‘‘Self-motion topology for redundant manipulators
with joint limits,’’ in Proc. IEEE Int. Conf. Robot. Automat., May 1993,
pp. 626–631.

[28] P. Manceron. (2022). IKPy: An Inverse Kinematics Library
Aiming Performance and Modularity (V3.3.3) [Online]. Available:
https://github.com/Phylliade/ikpy

[29] H. Masuda, A. Hitzmann, K. Hosoda, and S. Ikemoto, ‘‘Common
dimensional autoencoder for learning redundant muscle-posture mappings
of complex musculoskeletal robots,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Nov. 2019, pp. 2545–2550.

[30] Y. Nakamura and H. Hanafusa, ‘‘Inverse kinematic solutions with
singularity robustness for robot manipulator control,’’ J. Dyn. Syst., Meas.,
Control, vol. 108, no. 3, pp. 163–171, Sep. 1986.

[31] S. Neppalli, M. A. Csencsits, B. A. Jones, and I. D. Walker, ‘‘Closed-
form inverse kinematics for continuummanipulators,’’Adv. Robot., vol. 23,
no. 15, pp. 2077–2091, 2009.

[32] E. Oyama, N. Young Chong, A. Agah, and T. Maeda, ‘‘Inverse kinematics
learning by modular architecture neural networks with performance
prediction networks,’’ in Proc. ICRA. IEEE Int. Conf. Robot. Autom.,
May 2001, pp. 1006–1012.

[33] J. Pan and D. Manocha, ‘‘Efficient configuration space construction and
optimization for motion planning,’’ Engineering, vol. 1, no. 1, pp. 46–57,
Mar. 2015.

[34] Z. Pan, ‘‘Loss functions of generative adversarial networks (GANs):
Opportunities and challenges,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 4, no. 4, pp. 500–522, Aug. 2020.

[35] A. Peidró, Ó. Reinoso, A. Gil, J. M. Marín, and L. Payá, ‘‘A method
based on the vanishing of self-motion manifolds to determine the collision-
free workspace of redundant robots,’’Mechanism Mach. Theory, vol. 128,
pp. 84–109, Oct. 2018.

[36] K. D. Polyzos, P. P. Groumpos, and E. Dermatas, ‘‘Solving the inverse
kinematics of robotic arm using autoencoders,’’ in Proc. Conf. Creativity
Intell. Technol. Data Sci.Cham, Switzerland: Springer, 2019, pp. 288–298.

[37] A. Ramdane-Cherif, B. Daachi, A. Benallegue, and N. Levy, ‘‘Kinematic
inversion,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2002,
pp. 1904–1909.

[38] A. Razavi, A. V. D. Oord, and O. Vinyals, ‘‘Generating diverse high-
fidelity images with VQ-VAE-2,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, 2019, pp. 1–11.

[39] B. Siciliano, ‘‘Kinematic control of redundant robot manipulators:
A tutorial,’’ J. Intell. Robot. Syst., vol. 3, no. 3, pp. 201–212, Sep. 1990.

[40] K. Sohn, H. Lee, and X. Yan, ‘‘Learning structured output representation
using deep conditional generative models,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 28, 2015, pp. 3483–3491.

[41] J. S. Toquica, P. S. Oliveira, W. S. R. Souza, J. M. S. T. Motta, and
D. L. Borges, ‘‘An analytical and a deep learning model for solving the
inverse kinematic problem of an industrial parallel robot,’’ Comput. Ind.
Eng., vol. 151, Jan. 2021, Art. no. 106682.

[42] C. W. Wampler, ‘‘Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods,’’ IEEE Trans. Syst., Man,
Cybern., vol. SMC-16, no. 1, pp. 93–101, Jan. 1986.

[43] L.-C.-T. Wang and C. C. Chen, ‘‘A combined optimization method for
solving the inverse kinematics problems of mechanical manipulators,’’
IEEE Trans. Robot. Autom., vol. 7, no. 4, pp. 489–499, Aug. 1991.

[44] Y. Xia and J. Wang, ‘‘A dual neural network for kinematic control of
redundant robot manipulators,’’ IEEE Trans. Syst., Man, Cybern., B,
Cybern., vol. 31, no. 1, pp. 147–154, Feb. 2001.

[45] W. Xu and Y. Tan, ‘‘Semisupervised text classification by variational
autoencoder,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 1,
pp. 295–308, Jan. 2019.

[46] I. Zaplana and L. Basanez, ‘‘A novel closed-form solution for the inverse
kinematics of redundant manipulators through workspace analysis,’’
Mechanism Mach. Theory, vol. 121, pp. 829–843, Mar. 2018.

CHI-KAI HO received the bachelor’s degree from
the Department of Computer Science, National
University of Kaohsiung, Taiwan. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science, National TsingHuaUniversity,
Taiwan. His current research interests include
reinforcement learning and robotic manipulation.

LI-WEI CHAN received the bachelor’s degree
from the Department of Computer Science,
Tonghai University, Taiwan, and the master’s
degree from the Department of Computer Sci-
ence, National Tsing Hua University, Taiwan. His
current research interests include reinforcement
learning and robotic manipulation.

CHUNG-TA KING (Senior Member, IEEE)
received the B.S. degree in electrical engineering
from the National Taiwan University, Taiwan,
in 1980, and the M.S. and Ph.D. degrees in
computer science fromMichigan State University,
East Lansing, MI, USA, in 1985 and 1988,
respectively. From 1988 to 1990, he was an
Assistant Professor in computer and information
science at the New Jersey Institute of Technology,
NJ, USA. In 1990, he joined as the Faculty

Member of the Department of Computer Science, National Tsing Hua
University, Taiwan, where he is currently a Professor. He served as the Chair
of the Department, from 2009 to 2012. His research interests include parallel
and distributed processing and networked embedded systems.

TING-YU YEN received the bachelor’s degree
from the Department of Computer Science,
National Tsing Hua University, Taiwan, where
he is currently pursuing the master’s degree with
the Department of Computer Science. His current
research interests include reinforcement learning
and robotic manipulation.

2290 VOLUME 11, 2023

