
Received 14 December 2022, accepted 27 December 2022, date of publication 4 January 2023, date of current version 9 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3234182

A Simple Check Polytope Projection Penalized
Algorithm for ADMM Decoding of LDPC Codes
HUIYANG LIU , PINGQUAN HE , YUN JIANG, QINGLIN ZHANG , AND QIAOQIAO XIA
College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China

Corresponding author: Qiaoqiao Xia (xiaqq@mail.ccnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62101204.

ABSTRACT ADMMpenalized decodingmethod for Low-Density Parity-Check (LDPC)Codes can improve
the frame error rate (FER) performance than the standard ADMM decoder by adding penalty terms to
the objective function. However, penalty parameter optimization of the penalty terms is very difficult and
extremely time-consuming. Additionally, the Euclidean projection onto the check polytope is the most
complex part of ADMM-based decoding algorithms. In this paper, by dynamically choosing even-vertex
in the check polytope closest to the input vector as the approximate projection, a simple and novel check
polytope projection penalized algorithm for ADMM decoding is proposed which can avoid the tedious
work of penalty parameter optimization and simplify the check polytope projection. The simulation results
show that the proposed algorithm can substantially reduce the projection time while achieving better FER
performance when compared with the existing penalized decoding. In particular, the proposed algorithm can
save the decoding time by 23% to 41% compared with ADMM-PD-LSA algorithm.

INDEX TERMS Alternating direction method of multipliers (ADMM), low-density parity-check (LDPC)
codes, penalty terms, check polytope projection.

I. INTRODUCTION
Low-density parity-check (LDPC) codes have been widely
used in communication applications. Feldman et al. proposed
a linear programming (LP) decoding algorithm for LDPC
codes [1], and it also has be generalized to other codes and
channels [2], [3], [4], [5]. It satisfies all-zeros assumption and
maximum likelihood certification property, but the research
on LP decoding was hampered by the excessive complexity.
Therefore, the works [6], [7], [8], [9], [10] were proposed
to reduce the complexity of LP decoding model. In [10],
Barman et al. applied the framework of alternating direc-
tion multiplier method (ADMM) to LP decoding algorithm
and proposed the ADMM-LP decoding algorithm to reduce
the complexity of LP decoding algorithm. However, the
FER performance of ADMM-LP was actually worse than the
BP algorithm at the low SNRs. In addition, the Euclidean
projection onto the check polytope was very complicated and
time-consuming in ADMM decoding algorithms.
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In order to improve the FER performance, Liu et al. pro-
posed the ADMM penalized decoding algorithm by adding
penalty terms to the objective function [11], which greatly
improved the error correction performance at the low SNRs
by penalizing the pseudo-codewords, making them more
costly than codewords. Jiao et al. proposed to assign different
penalty parameters to variable nodes with different degrees
for irregular LDPC codes [12]. Wang et al. designed the
improved piecewise penalty functions for ADMM penalized
decoder by increasing the slope of the penalty function at
the points near x = 0 and x = 1 [13]. The works [12]
and [13] optimized the relevant parameters by differential
evolution algorithm. However, the relevant parameters opti-
mization is very difficult and extremely time-consuming.
Recently, Wei et al. proposed a novel ADMM check node
(CN) penalized decoding algorithm that codeword solutions
which satisfy all parity-check equations will have smaller
penalty values than non-codeword solutions [14]. The pro-
posed CN-penalized decoder in [14] can improve the FER
performance at the expense of increase in the decoding
complexity.
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To reduce the complexity of Euclidean projection in
ADMM decoding algorithm, Zhang et al. proposed the cut
search algorithm (CSA) [15] which is more computationally
efficient than the ‘‘two-slice’’ projection algorithm proposed
in [10]. Zhang et al. [16] demonstrated that the complex pro-
jection operation onto the check polytope can be transformed
to the projection onto a simplex. Jiao et al have simplified the
check polytope projection by establishing lookup table (LUT)
and quantization input vector [17], which reduced the compu-
tational complexity of Euclidean projection at the expense of
huge memory. Moreover, an iterative check polytope projec-
tion algorithm was proposed by Wei et al. to achieve the goal
of reducing the complexity of projection [18]. However, the
convergence speed of the algorithm is slow when keeping the
FER performance. A fast iterative check polytope projection
algorithim by bisection method was proposed to speed up the
projection onto the parity check polytope without increasing
computational complexity [19].

Xia et al. have tried to further simplify the Euclidean pro-
jection with line segment projection algorithm (LSA) [20],
which made a projection onto a line segment consisting
of two even-vertices to obtain an approximate projection.
Reference [21] recently proposed an efficient hybrid pro-
jection algorithm (HPA) by alternately using even-vertex
projection algorithm (EVA) and other accurate projection
algorithms to increase the percentage of unuseful projections.

In this paper, in order to avoid the tedious work of
penalty parameter optimization and simplify the check poly-
tope projection, a simple and novel check polytope projec-
tion penalized algorithm for ADMM decoding is proposed
by dynamically choosing even-vertex in the check polytope
closest to the input vector as the approximate projection. The
simulation results show that the proposed algorithm can sub-
stantially reduce the projection time while achieving better
FER performancewhen comparedwith the existing penalized
decoding.

II. PRELIMINARIES
Consider an LDPC code C is defined by m × n parity check
matrix H. Let j ∈ J = {1, 2, 3, . . . ,m} and i ∈ I =
{1, 2, 3, . . . , n} be the indexes of the rows and columns of
the check matrix H, respectively. The degrees of the check
node cj and variable node vi are the number of 1s in the cor-
responding row and column ofH, and are defined by dj and di,
respectively. Let Nj(Ni) be the set of variable nodes(check
nodes) adjacent to check node cj(variable node vi).
Suppose that a codeword x ∈ C is transmitted over a

memoryless binary-input output-symmetric (MBIOS) chan-
nel, and the received vector is y. The LP decoding model with
ADMM can be described as follows:

min
∑
i

γixi

s.t. Pjx = zj, zj ∈ PPdj , ∀j ∈ J (1)

where γ = {γi|i ∈ I} is the vector of log-likelihood ratios
(LLRs), and γi can be defined as γi = log(Pr (yi/xi=0)Pr (yi/xi=1)

). Pj is

the dj × n transfer matrix which selects the dj components
of x involved in the j − th check node. zj is the auxiliary
variable of the check node cj. And PPdj represents the check
polytope, implying the convex hull of all permutations of a
length− dj binary vector with even number of ones. Further-
more, the augmented Lagrangian function corresponding to
formulation (1) can be described as follows:

Lµ(x,z,λ)=γ Tx+
m∑
j=1

λj
T(Pjx−zj)+µ2

m∑
j=1

‖Pjx−zj‖22 (2)

where λj ∈ Rdj represents the Lagrangian multiplier, and
µ > 0 is the penalty parameter. The iterative update rules
of x, z and λ can be described as follows:

xik+1 =
∏

[0,1]
1
|Ni|

(∑
j∈Ni

(
zkj→i −

1
µ

λkj→i

)
−

γi
µ

)
zjk+1 =

∏
PPdj

(
Pjxk+1 + λkj /µ

)
λj
k+1
= λkj + µ

(
Pjxk+1 − zk+1j

)
(3)

where k ≥ 0 denotes the iteration number, and
∏

[0,1] is
the projection to the interval [0, 1], and

∏
PPdj

represents the
Eulidean projection onto the check polytope.

III. A SIMPLE CHECK POLYTOPE PROJECTION
PENALIZED ALGORITHM
In this section, we propose a simple check polytope projection
penalized algorithm for ADMM decoding of LDPC codes.
First, we briefly describe the LSA algorithm [20]. Second,
we presents our sources of innovation and the proposed algo-
rithm will be introduced in detail.

A. LINE SEGMENT PROJECTION ALGORITHM
The Euclidean projection onto the check polytope is the most
complicated operation in the ADMM decoding algorithm.
The precision of the approximate projection depends on the
target FER and increases by decreasing the target FER [18],
it indicates that the approximate projection does not need to
always maintain a high level of projection accuracy and the
precision of the projection can be increased as the number of
decoding iterations increases. Therefore, Xia et al. proposed a
line segment projection algorithm in [20]. The specific steps
are shown in Algorithm 1.

According to Algorithm 1, the indicator vector θ can be
calculated as line 1-4. Next, in accordance with θ , we can
determine the odd-vertex O (the vertex has an odd number
of 1s) closest to v as shown in Algorithm 1,line 6. After
that, we can find the index p of the element in v the closest
to 0.5 and the index q of the element in v the second closest
to 0.5. Then, we can obtain the two even-vertices A and B
as shown in Algorithm 1, Line 8. At last, we can calculate
the projection of v onto the line segment LAB by Algorithm 1,
Line 9-11.
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Algorithm 1 Line Segment projection(LSA)

Input: Vector v ∈ Rdj

Output: Vector z
1: Initialize the indicator vector θ : θi = sgn (vi − 0.5)
2: if |{i|θi = 1}| is even then
3: i = argmini∈dj (|vi − 0.5|)
4: θi = −θi
5: end if
6: Odd-vertex O : Oi =

{
1, if θi = 1
0, if θi = −1

7: p = argmini (|vi − 0.5|)
q = argmini/p (|vi − 0.5|)

8: Even-vertex A =
{

Oi, if i 6= p
1− Oi, if i = p

Even-vertex B =
{

Oi, if i 6= q
1− Oi, if i = q

9: AB =
{
0, · · · ,Bp − Ap,Bq − Aq, · · · , 0

}
Av =

{
· · · , vp − Ap, · · · , vq − Aq, · · ·

}
10: t =

∏
[0,1]

(Bp−Ap)(vp−Ap)+(Bq−Aq)(vq−Aq)
2

11: z = A+ t · AB
12: return z

B. IMPROVEMENT STRATEGY
In last subsection, we refer to [20] to present the LSA algo-
rithm, it simplifies the calculation of the Euclidean projec-
tion onto the check polytope. However, in order to obtain
good FER performance, it need to introduce a penalty term
to the objective function of the LP decoding problem, and
the relevant parameters optimization is very difficult and
extremely time-consuming. The result of check polytope pro-
jection z can be regarded as the copy of variable node x
that means we can achieve better decoding performance by
penalizing the check node. The projection of EVA will make
zj be 0 or 1, which is equivalent to a penalty for x to keep
it away from the fractional vertices. In addition, the projec-
tion of EVA is the nearest even vertex, which means that
the check node of this part satisfies the local parity-check
equation. So, in this section, we try to introduce the idea of
penalized decoding to the simplified approximate projection
algorithm for check polytope. It can effectively improve the
decoding performance without any penalty parameters, that
means it will avoid the tedious parameter optimization. The
projection operation of the proposed algorithm will find the
vertex closest to the vector v on the unit hypercube, and
we denote this vertex as VT. Then, if the vertex VT has an
even number of 1s, we will output VT as the result of the
approximate projection and we call this procedure ‘‘even-
vertex projection’’. If VT is an odd-vertex(the vertex has
an odd number of 1s), we can then choose LSA algorithm
or CSA algorithm to perform the Euclidean projection onto
the check polytope. For convenience, we call the algorithm
improved line segment algorithm (I-LSA) if we combine the
proposed idea with LSA algorithm, and call it improved cut
search algorithm (I-CSA) if we combine the proposed idea

with CSA algorithm. The specific steps of I-LSA are shown
in Algorithm 2.

Algorithm 2 Improved Line Segment algorithm(I-LSA)

Input: Vector v ∈ Rdj

Output: Vector z
1: Initialize the indicator vector θ : θi = sgn (vi − 0.5)

2: Vertex VT : VT i =
{

1, if θi = 1
0, if θi = −1

3: if |{i|θi = 1}| is even then
4: z = VT
5: else
6: p = argmini (|vi − 0.5|)

q = argmini/p (|vi − 0.5|)

7: Even-vertex A =
{

VT i, if i 6= p
1− VT i, if i = p

Even-vertex B =
{

VT i, if i 6= q
1− VT i, if i = q

8: AB =
{
0, · · · ,Bp − Ap,Bq − Aq, · · · , 0

}
Av =

{
· · · , vp − Ap, · · · , vq − Aq, · · ·

}
9: t =

∏
[0,1]

(Bp−Ap)(vp−Ap)+(Bq−Aq)(vq−Aq)
2

10: z = A+ t · AB
11: end if
12: return z

According to Algorithm 2, in accordance with θ , the
vertex VT closest to v can be determined. Subsequently,
we will confirm the number of 1s in vertex VT, and if the
vertex VT has even 1s, we will output it as the projection
result, as shown in Algorithm 2, line 3-4. Otherwise, we will
use LSA algorithm to calculate the line segment projection,
such as described in line 5-12.

IV. SIMULATION RESULTS
In the simulations, the additive white Gaussian noise
(AWGN) channel with binary phase shift keying (BPSK)
modulation is assumed. Moreover, the adopted codes are the
irregular (576,288) rate 1/2 code C1, irregular (576,432) rate
2/3 code C2 from ieee802.16e standard [22], and regular
(2640,1320) rate 1/2 Margulis code C3. The check node
degree of C1 − C3 is {6, 7}, {14, 15} and 6, respectively.
The ADMM-PD denotes the ADMM algorithm with

the l1 penalty method, and the parameters µ and α

were optimized according to the method in [12]. Besides,
the over-relaxation operation is not adopted and the
over-relaxation parameter is set to 1. We adopt the
early-termination technology based on HTx = 0. The maxi-
mum number of iterations number is set to 500, and the points
plotted in all FER curves are obtained by generating at least
100 error frames.

Figure 1 shows the ratio of even-vertex projection of
C1, C2 and C3 codes for the ADMM-LP decoder with the
proposed algorithm under the 500 iterations. The points
plotted in the curves are obtained by generating at least
100000 frames. As can be seen from the figure, for the three
codes, the ratio of even-vertex projection are all over 70% for
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FIGURE 1. The ratio of even-vertex projection in different SNR.

the ADMM-LP decoder with the proposed check polytope
projection penalized algorithm, and it presents an upward
trend with the increase of SNR. It means that most of the
vector v was projected onto the closest even-vertex VT, and
the operation is very convenient, so the algorithm proposed
in this paper can greatly reduce the time of projection calcu-
lation and further reduce the complexity of the algorithm.

FIGURE 2. The ratio of even-vertex projection under different number of
iterations.

Figure 2 shows the ratio of even-vertex projection of C1,
C2 and C3 codes for the ADMM-LP decoder with the pro-
posed algorithm under 3.0 dB, 3.5dB and 2.6dB, respectively,
and the points plotted in the curves are obtained by generating
at least 100000 frames. As shown in this figure, we can
draw a conclusion, as the increase of the iterations, the ratio
of even-vertex projection will be raised rapidly and then
become converge. For the three codes, the ratio of even-vertex
projection will be over 79% when the number of iterations is
over 150.

FIGURE 3. The FER performance of C1, C2 and C3 with different
algorithms.

Figure 3 shows the FER performance of C1, C2 and
C3 for the ADMM-LP decoder with CSA, LSA, HPA and
the proposed algorithms. As shown in the figure, for the
three codes, the proposed ADMM-I-CSA andADMM-I-LSA
will achieve better or similar FER performance compared
with other algorithms. For example, for C1 code, when the
FER = 10−4, performance gains for the proposed ADMM-I-
LSA are about 0.1dB to ADMM-HPA and ADMM-PD-LSA.
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FIGURE 4. Average number of iterations of C1, C2 and C3 with different
algorithms.

Besides, performance gains for the proposed ADMM-I-CSA
are about 0.15dB to ADMM-PD-CSA.

Figure 4 shows the average number of iterations for
C1 − C3 with various projection algorithms. It can be seen
from the figure, for C1, when SNR = 2.0dB, compared
with ADMM-HPA, ADMM-PD-LSA, ADMM-PD-HPA and
ADMM-PD-CSA, the average number of iterations of the
proposed ADMM-I-LSA is reduced by 14%, 13%, 24%

FIGURE 5. Average decoding time of C1, C2 and C3 with different
algorithms.

and 34% respectively. And the average number of itera-
tions of the proposed ADMM-I-CSA is also reduced com-
pared with existing algorithms. For C2, when SNR = 2.5dB,
the average iteration of the proposed ADMM-I-LSA and
ADMM-I-CSA are basically the same, which is reduced by
2% compared with ADMM-PD-LSA, and 6% compared with
ADMM-PD-CSA.

Figure 5 shows the average decoding time forC1−C3 with
various projection algorithms. As can be seen from the figure,
for the three codes, the average decoding time of the proposed
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FIGURE 6. The frame error rate of C1, C2 and C3 with different algorithms
at different number of iterations.

algorithms in this paper is decreased compared with other
algorithms. For instance, for C1 code, the proposed ADMM-
I-LSA can save the average decoding time with regard to
ADMM-PD-LSA, by roughly 40% at 3.0 dB. Besides, the
proposed ADMM-I-CSA can save the average decoding time
with regard to ADMM-PD-CSA, by roughly 41% at 3.0 dB.

Figure 6 shows the FER of each algorithm for the three
codes at the different number of iterations, and the points

plotted in the curves are obtained by generating at least
100000 frames and 100 error frames. As shown in the
figure, for the three codes, the convergence behavior of
these algorithms are similar. For C1 and C2 codes, the pro-
posed ADMM-I-LSA and ADMM-I-CSA have better FER
performance than other algorithms at the same number of
iterations. For C3 code, the proposed ADMM-I-LSA and
ADMM-I-CSA have a similar FER performance compared
to the ADMM-PD-CSA with the increase of the number of
iterations.

V. CONCLUSION
To summarize, we propose a simple and novel check polytope
projection penalized algorithm for ADMM decoding. On the
one hand, compared with the existing penalized ADMM
decoding algorithms, the algorithm we proposed can not only
avoid the tedious work of parameters optimization, but also
have an improved performance of FER. On the other hand,
according to the experimental reseults, the proposed ADMM-
I-LSA can save 23% to 41% average decoding time compared
with other existing decoding algorithm with achieving better
FER performance.
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