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ABSTRACT Left ventricular segmentation is a difficult and time-consuming task performed by clinicians,
requiring the use of manual contours. We propose a novel three-dimensional diffeomorphic registration
algorithm for endocardial segmentation of the left ventricle in magnetic resonance images and ultrasound
temporal sequences. The proposed diffeomorphic registration method computes a voxel-to-voxel corre-
spondence in three-dimensional space and is parameterized by one radial and three curl components to
emulate the cardiac deformations. In addition, the proposed method allows for enforcing constraints to
control the amount of deformation. The method was evaluated on 521 temporal frames from 20 patients
from the Automated Cardiac Diagnosis Challenge magnetic resonance imaging dataset and 213 frames from
10 patients undergoing ultrasound scans from the Mazankowski Alberta Heart Institute. The algorithm was
compared against six other registration methods, the Symmetric Normalization algorithm from the Dipy
package, two variants of the Demons algorithm from the Insight Toolkit software package, two versions of
RealTiTracker, and Elastix. The proposed method yielded overall Dice scores of 98.10 (0.90)% for the MRI
dataset and 92.90 (2.42)% for the ultrasound dataset. The robustness of the algorithm is demonstrated by the
high performance on multiple imaging modalities and various patient abnormalities.

INDEX TERMS Image registration, image segmentation, left ventricle, MRI, ultrasound.

I. INTRODUCTION
Assesment of the left ventricle (LV) is frequently performed
for a wide variety of disorders, including cardiomyopa-
thy, hypertrophy, myocardial infarction, and congenital dis-
eases [1]. Magnetic resonance imaging (MRI) and ultrasound
(US) imaging are frequently used to evaluate LV function,
where MRI is often considered the gold standard for diag-
nosis. A number of studies have shown that US can provide
similar results to MRI [2] with advantages including low
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cost, portability, and high spatial and temporal resolution.
Analysis of the geometry and function of the LV over the
cardiac cycle provides key indicators of many diseases. For
instance, the volume of the ventricle can be used to calculate
the ejection fraction, ameasure of the efficiency of the heart at
pumping blood. Other common diagnosis measures include
dimensions of the chamber and global and longitudinal
strain.

A. MRI REGISTRATION
Several approaches have been developed for the registration
of 3D cardiac MRI volumes. These can be divided into those
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that are non-deep learning-based and those using deep learn-
ing techniques to compute the 3D displacement fields. One
approach not based on deep learning describes a method to
create spatially and temporally smooth displacement fields in
4D [3], [4]. To compute a set of displacement fields tempo-
rally, it is common to perform pairwise image registration, but
in this manner, errors are propagated through the sequence.
In order to register starting from the end-diastolic (ED) frame,
authors create a second 4D sequence of only the ED frames,
and registered this to the original temporal sequence. To per-
form the image matching, an attribute vector is formed for
each voxel, which includes information concerning intensity,
boundary as well as geometric moment invariants, calculated
for various neighborhood sizes. A selection of the most dis-
tinct attribute vectors are matched together between the two
sequences of volumes in a hierarchical fashion.

One set of authors in their work developed a deformable
registration algorithm technique termed hyperelastic warping
[5], [6], [7] which has the ability to measure strain in a set
of medical images. The method performs image registration
resulting in a diffeomorphic transform, and incorporates the
use of fiber structure definitions and material properties.
Authors have used the technique to calculate the strain during
diastole [5] as well as during the systolic phase [8].

Others have developedmethods to jointly perform segmen-
tation and registration for delineation of the blood pools of
the left and right ventricles and the myocardium [9]. The
authors combine a level-set segmentation along with regis-
tration of two volumes, where multiple anatomical regions
are able to be segmented. They demonstrate two uses of
their method – temporal intra-patient segmentation and inter-
patient registration from an atlas.

A number of deep learning methods for the computation of
displacement fields in a 3D-to-3D manner have been devel-
oped. The ability to create reference deformations needed to
train a deep learning network is difficult. Authors [10] created
a uniqueway to generate reference deformations from regions
of interest that were previously segmented. Therefore the neu-
ral network they have developed learns to understand more
global information instead of matching the intensity of vox-
els as in classic registration algorithms. Another supervised
approach was developed by [11] where the authors developed
a multi-resolution convolutional neural network that outputs
a 3D displacement field taking as input two volumes to be
registered. They introduce the idea of a smoothness constraint
by use of the norm of the Jacobian matrix.

Other authors have developed unsupervised techniques
for the formation of the displacement fields. One method
developed by [12] is an unsupervised approach based on
the use of a conditional variational autoencoder. Within this
paradigm, constraints are applied to the transformation in
order to enforce symmetry and to be diffeomorphic. Another
set of authors developed an unsupervised technique where
the network learns the transformation parameters that are
used to form displacements. The displacements are then
used for resampling of the moving image and this warped

image is compared to the fixed image [13]. This method
was extended [14] to use mutual information as a loss func-
tion instead of the typical mean squares and normalized
cross-correlation metrics. Other methods that have been pro-
posed calculate displacement fields over the entire cardiac
cycle [15], where the authors use a multi-resolution patch-
based approach based on the U-Net architecture [16].

As slice misalignment is an issue with 3D cine MR vol-
umes, in one proposedmethod the authors [17] first employed
a correction to align each of the 2D slices in a single frame
based on [18]. The approach uses a regression-based method
using convolutional neural networks to predict the center of
the blood pool. After the slice correction, the authors used
the VoxelMorph approach [19] to produce the deformation
fields.

Other deep learning approaches that have been developed
are based on free-form deformation. For instance, one set of
authors [20] developed a group-wise registration approach
where deformation is represented by a 1D convolution cas-
cade. Authors perform registration and optimization of all
frames simultaneously to a reference image, where the intro-
duction of the 1D convolutional cascade greatly decreases the
execution time.

B. ULTRASOUND REGISTRATION
There have been several approaches proposed in the liter-
ature for where 3D registration of the LV over a temporal
sequence is used for computing the deformation fields [21]
for US sequences. These can be divided into areas includ-
ing intensity-based, regularization model-based approaches,
and also deep learning methods. Authors [22] used spatio-
temporal registration based on an elastic approach to measure
the strain of the LV. A classic multi-resolution approach
with a B-spline transformationmodel andmutual information
as a similarity metric was used for the registration. Others
have tried to use the envelope-detected image, instead of
the processed ultrasound data, to perform registration in the
spherical coordinate system [23]. One drawback of using
B-spline transformation models as in [22] is that a rectan-
gular grid is used in Cartesian space for the control points,
which may not be appropriate for capturing the motion of
the heart. In this formulation by [24], criteria for spatial
smoothness are not enforced in the radial direction, which
is necessary for cardiac images. Therefore basis functions
are chosen that allow for the appropriate representation of
the heart anatomy. This approach has been expanded by [25]
in order to include the constraint of volume conservation
in the anatomical free-form deformation model. Temporal
diffeomorphic free-form deformation approaches have been
developed [26] to perform an assessment of the motion
and the strain of the LV. These have been extended by
numerous authors by the introduction of new similarity met-
rics [27], [28]. The concept of sparsity has also been intro-
duced [29] in order to represent deformations that are locally
discontinuous.
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One deep learning approach for registration and segmen-
tation of echocardiography sequences performs both tracking
of the LVmotion as well as segmentation of the chamber [30].
The authors proposed the use of an unsupervised 3D U-Net
neural network architecture for obtaining the motion, sim-
ilar to the method of VoxelMorph [31]. A 3D U-Net type
architecture is again used for the segmentation network in a
weakly supervised fashion [32]. The use of incompressibility
constraints is incorporated within the combination of these
networks in order to produce anatomically feasible displace-
ment fields.

A deep learning technique for performing both motion and
strain estimation has been developed by [21]. The authors
first use a multi-layer perceptron in a supervised manner in
order to learn the features between the input and ground
truth deformation fields. The authors used three approaches to
produce the starting estimates of the fields, a radio-frequency
block matching method, flow network tracking, and a free
form deformation approach for nonrigid registration. The
displacement fields utilized were 4D, therefore including
both spatial and temporal patterns. The method was further
extended by the use of biomechanical constraints in order to
produce deformation fields that were anatomically possible.

C. PUBLICLY AVAILABLE REGISTRATION ALGORITHMS
There are a number of registration algorithms that are publicly
available and have been applied to a variety of image modal-
ities and patient characteristics. Dipy’s Symmetric Normal-
ization (SyN) algorithm [33] is one widely used algorithm
that ensures a diffeomorphic transformation is generated. The
algorithm has been applied to a significant number of appli-
cations, most notably brain registration [34], [35]. Insight
ToolKit (ITK) is a commonly used open-source toolbox for
analysis of medical images, ranging from various filters to
segmentation and registration algorithms [36]. One set of
deformable registration algorithms in ITK includes an imple-
mentation of variants of the Demons algorithm, including the
classic Demons algorithm and an extension to include fast
symmetric forces. This set of algorithms has been used in
many areas, such as head and neck CBCT registration [37]
and registration of CT images of the prostate.

RealTiTracker [38], [39] is another registration toolbox
that implements two types of optical flow based approaches.
For the conservation of intensity term, the L1 and L2 norm
have been implemented. It has been adapted for use in
MR-based registration of the brain between T1 and T2 vol-
umes [40], and for other applications such as for radiotherapy
dosimetry estimation [41]. The software package Elastix [42],
[43] consists of a multitude of transformation models, opti-
mization methods and cost functions. It has been applied by
a variety of researchers and used as a standard benchmark,
such as for capturing the deformation between MR T1 brain
volumes [34]. The wide use of the above algorithms and the
public availability of the methods allows us to compare the
proposed algorithm to the above approaches.

D. PROPOSED METHOD
We propose a semi-automated segmentation algorithm based
on a moving mesh approach [44] to compute the spatial
transformations across a cardiac cycle. The user provides
manual segmentations of the LV for the end-diastolic and
end-systolic frames, and the proposed algorithm produces a
voxel-to-voxel correspondence for each of the frames in the
sequence. After obtaining the segmentation of the LV for each
frame, further analysis can include volumetric, regional, and
strain computations, which are crucial for diagnosis of the
patient [45].

The proposed algorithm has a number of advantages. First,
the method performs a 3D-to-3D registration, as opposed
to previous related methods which have only captured 2D
motion [46], [47], [48]. This is a significant improvement as
3D-to-3D registration is crucial in capturing the true motion
of the heart, as 2D is unable to detect out of plane motion.
This is especially important for cardiac imaging as the motion
of the heart consists of rotational, radial and torsional move-
ment. The ability of the algorithm to represent the defor-
mation field in terms of a single radial and three rotational
components in 3D space makes it appropriate for analyzing
cardiac data.

Similar to other deformable registration algorithms, the
proposed method ensures that topology is preserved and that
grid lines of the same family do not fold over each other.
This is crucial as image registration should be able to capture
realistic and accurate deformations for the cardiac chamber.
The method also allows for the control of the amount of
deformation, by setting explicit constraints on the determi-
nant of the transformation Jacobian. In order to demonstrate
these advantages, an experiment was performed using the
diffeomorphic constraints, which demonstrates how modi-
fying these values influence the presence of mesh folding.
The proposed method also does not require the use of an
explicit regularization term with its associated weight in the
cost function.

The proposed method is evaluated on two datasets, one
containing cardiac MRI sequences, and the other consisting
of US sequences. The first dataset, the Automated Cardiac
Diagnosis Challenge (ACDC) dataset [1], consists of MRI
sequences from 100 patients who suffered from previous
myocardial infarctions, cardiomyopathy, etc. The proposed
algorithm was evaluated on a subset of 521 temporal frames
acquired from 20 patients from the cohort of 100. In the sec-
ond dataset, the algorithm was evaluated over 213 temporal
3D US volumes acquired from 10 patients. The proposed
algorithm was then compared against six publicly available
registration algorithms, the Symmetric Normalization diffeo-
morphic registration package from Dipy [33], two variants
of the Demons algorithm from Insight Toolkit (ITK) [36],
two variants of RealTiTracker [38], [39], and the Elastix
package [42], [43].

The proposed method implements a 3D-to-3D diffeo-
morphic registration method, which requires a number of
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significant changes and improvements from previous work
described by [46], [47], and [48]. 1) The divergence and curl
operations were formulated for use in 3D 2) The Fourier
transform based Poisson equation solver was developed for
the 3D case 3). The div-curl system was significantly aug-
mented by the development of the 3D formulation 4) The
proposed method is evaluated on both MRI and US tem-
poral sequences consisting of patients of varying cardiac
conditions 5) The diffeomorphic registration method was
compared to six other registration methods 6) Experiments
were performed to examine the role of the diffeomorphic
constraints.

II. METHODOLOGY
The proposed registration method is based on a moving mesh
grid generation approach [44]. Instead of using traditional
grid displacements to describe the deformation fields, they
are parameterized using the transformation Jacobian deter-
minant and the curl of end velocity field.

A. THEORETICAL OVERVIEW
The method computes the voxel-to-voxel correspondences
for a series of 3D volumes in a temporal sequence from the
nth image Tn to the Tn+1 image defined over � ⊂ R3. The
general registration problem is stated as an optimization of
a similarity measure [49], where the similarity measure is
defined as the squared L2 norm:

φ̂ = argmin
φ

Es(Tn,Tn+1, φ(ξ )) (1)

where φ :� → � represents the transformation function and
ξ ∈ � represents the voxel locations. This problem does not
have a unique solution and hence requires more constraints,
where the goal is to find a permissible deformation field.
We define this deformation field using the monitor function
µ and the curl of end velocity field γ . We define a continuous
monitor function µ(ξ ): ∫

µ = |�| (2)

The purpose of registration is to obtain a transformation φ
: � → � and ∂ � → ∂ � so that:

Jφ = det∇φ1(ξ ) = µ(ξ ) (3)

where the Jacobian determinant of the transformation φ is
given by Jφ .

In order to compute the transformation φ, the following
steps are used.
Step 1: A vector field ρ(ξ ) is defined such that:

div ρ(ξ ) = µ(ξ )− 1 (4)

Step 2: From the vector field ρ(ξ ), a velocity vector field is
generated. t is artificially introduced time and is in the range
[0,1]:

ν(t) =
ρ(ξ )

t + (1− t)µ(ξ )
(5)

To obtain φ the transformation, the ordinary differential
equation below is solved, where t is again within the range
[0,1] and ψ(ξ,t = 0) = ξ :

ψ(ξ, t)
dt

= νt (ψ(ξ, t)) (6)

If φ equal to ψ and is evaluated at t = 1 results in φ(ξ ) =
ψ(ξ, t = 1).

As the problem abovemight havemultiple solutions, a con-
straint is added to the curl of the vector field ρ(ξ ). The
Dirichlet boundary condition is used, and an intermediate
vector field ρ(ξ ) is solved from the div-curl system given
below. By formulating it in such a manner, a unique solution
can be formed. {

∇ · ρ(ξ ) = µ(ξ )− 1
∇ × ρ(ξ ) = γ (ξ )

(7)

The radial and rotational components of the transformation
field are represented byµ and γ respectively. In order to have
a unique solution, constraints need to be added to the vector
field µ(ξ ). The problem can thus be reformulated as:

∫
�

µ(ξ )dξ = |�|

τub > µ(ξ ) > τlb

(8)

which is a constrained optimization problem using the
parameterization from (1). τlb and τub represent the lower and
upper bounds for the allowable deformation, where τlb > 0.
This ensures that φ is a diffeomorphism. The first constraint
enforces the fact that the domains before and after the trans-
formation are equal while the second constraint ensures that
the amount of compressibility is limited.

A step-then-correct optimization can be used to solve
the above problem efficiently. Figure 1 displays a flowchart
of the proposed registration method and Algorithm 1 displays
the detailed steps. Given two 3D volumes to register, an itera-
tive approach is taken to calculate the deformation field. First
the gradients of both µ and γ are calculated. If the iteration
number is not less than the maximum and the step size is
not below a specified threshold, the optimization continues.
The gradients are first updated and constraints are imposed
for each voxel location to make sure the transformation is
diffeomorphic. The vector field is then computed and the
deformation field formed. The cost is then computed by using
the resulting deformation field to warp the moving volume,
which is then compared to the template volume by means
of the similarity metric. If the current cost is less than the
previous cost value, optimization continues by recomputing
the gradients and the iteration number increases. If not, the
step size is first decreased before continuing with the opti-
mization, hence the name step-then-correct optimization.

B. NUMERICAL IMPLEMENTATION
The div-curl system given in Equation (7) can bewritten in the
following manner, where Equation (9) provides the div-curl
system in 3D. The divergence represents the radial motion,

VOLUME 11, 2023 3147



D. Krishnaswamy et al.: Novel 3D-to-3D Diffeomorphic Registration Algorithm With Applications to LV Segmentation

FIGURE 1. Flowchart displaying the components of the proposed 3D-to-3D
diffeomorphic image registration algorithm.

and the curl, comprised of three terms along each of the x, y,
and z axes represent the rotational motion.

divρ =
dρx
dx
+
dρy
dy
+
dρz
dz
= f 1

curlxρ =
dρz
dy
−
dρy
dz
= f 2

curlyρ =
dρx
dz
−
dρz
dx
= f 3

curlzρ =
dρy
dx
−
dρx
dy
= f 4

(9)

The derivatives for each of the f 1, f 2, f 3, and f 4 terms are
computed with respect to x, y, and z. Three Poisson equations
of the form are given below, where the relevant derivative

terms have been combined from (9), where f ik =
df i

dk
, with

i = 1,2,. . . ,4 and k = x,y,z:

1ρx =
∂2ρx

∂x2
+
∂2ρx

∂y2
+
∂2ρx

∂z2
= f 1x + f

3
z − f

4
y

1ρy =
∂2ρy

∂x2
+
∂2ρy

∂y2
+
∂2ρy

∂z2
= f 1y + f

4
x − f

2
z

1ρz =
∂2ρz

∂x2
+
∂2ρz

∂y2
+
∂2ρz

∂z2
= f 1z + f

2
y − f

3
x

(10)

Under the null boundary condition, these Poisson equa-
tions can be efficiently solved by using the fast Fourier trans-
form (FFT) based Poisson solver.

1ρx = f 1x + f
3
z − f

4
y = F1

1ρy = f 1y + f
4
x − f

2
z = F2

1ρz = f 1z + f
2
y − f

3
x = F3

(11)

C. REGISTRATION FOR A SEQUENCE OF VOLUMES
The formulation previously detailed describes the registration
between two volumes. In order to obtain the displacement
fields over the entire sequence, registration is performed
sequentially over the cardiac cycle. Since registration is per-
formed sequentially over the temporal sequence in a pairwise
manner, it may be prone to errors that can accumulate over

Algorithm 1 Step-Then-Correct Optimization
Given two 3D volumes, comprised of the fixed volume Tn and
the moving volume Tn+1, the following steps are computed in
order to calculate the deformation field φ:
Step 1: Compute the gradients of µ and γ , which are given
by ∇µ(Tn,Tn+1,φ) and ∇γ (Tn,Tn+1,φ)
while δ > δth and i < max_iter do

Step 2: Update gradients:

µi+1 = µi + δ
∇µEs

max|∇µEs|
, γi+1 = γi + δ

∇γEs
max|∇γEs|

Step 3: Impose constraints from (8) for each voxel loca-
tion ξ ∈ �:
µi+1← max(µi+1(ξ ), τlb), µi+1← min(µi+1(ξ ), τub)

µi+1(ξ )←
|�|∑

ξ⊂� µi+1(ξ )
γi+1← max(γi+1(ξ ), τlb), γi+1← min(γi+1(ξ ), τub)

γi+1(ξ )←
|�|∑

ξ⊂� γi+1(ξ )

Step 4: Compute a vector field ρ(ξ ) that satisfies (7) and
compute the deformation field φ.
Step 5: Compute the cost Es.
if current Es < previous Es then

i← i+ 1
Start from Step 1 of recomputing the gradients

else
Decrease step size δ
Start from Step 2 of updating the gradients

end if
end while

time. A strategy was therefore devised to overcome these
tracking errors, where registration is performed in both the
forward and reverse directions and the displacement fields are
combined using a weighting function:{

w = (n− 1)/(N − 1)

DMn,n+1 = (1− w) · DM f
n,n+1 + w · DM

b
n,n+1

(12)
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where DM f
n,n+1 represents the forward displacement vectors

and DMb
n,n+1 the reverse displacement vectors between the

n and n + 1th frames, and N represents the total number of
frames in the sequence. This formulation assigns a higher
weight to the displacement field computed using forward
registration and less to the displacement field computed using
reverse registration if the frame number is closer to the begin-
ning of the sequence.

D. IMPLEMENTATION NOTES
The proposed algorithm was implemented using Python
3.6.2 with PyTorch version 1.7.1 using a NVIDIA Tesla
P100 GPU. The other registration algorithms were run using
Python 3.6.2 on a NVIDIA Tesla C2075 graphics card. Visu-
alization Toolkit (VTK) version 8.1.2 was used for creation
of the meshes and Paraview 5.7.0 was used to create the
figures displaying the difference in the meshes between the
ground truth and the registration methods. The average time
to perform registration for a single frame was 0.59 seconds
for the ACDC dataset, and 2.69 seconds for theMazankowski
dataset.

III. METHODOLOGY FOR EXPERIMENTAL RESULTS
The proposed registration method was evaluated on two
patient groups, 20 patients from the Automated Cardiac
Diagnosis Competition (ACDC) dataset consisting of MR
scans [1], and ten patients who underwent US scans at the
Mazankowski Alberta Heart Institute. Registration was per-
formed temporally across the cardiac cycle in the forward and
reverse directions. In order to compute the segmentation of
the LV for each frame of the cardiac cycle, the ground truth
ED and ESmeshes representing the LV endocardium are used
as input. Using the forward and reverse displacement fields,
and the ground truth ED and ES meshes, a weighted average
was computed and applied to form a single mesh for each of
the remaining frames in the cardiac cycle.

A. PARAMETER SELECTION
To reduce the amount of time spent during the registration
process, a bounding box was defined around the ED segmen-
tation with a margin of 10 voxels. The maximum number of
iterations was set to 20, and to allow for large deformations in
the cardiac tissue, the values of the transformation Jacobian
determinant τlb and τub were set to 0.25 and 6.0 respectively.
The other parameters include the step size h for the Runge-
Kutta method was set to 0.05 (20 steps). For the step-then-
correct optimization method, the initial value of the step
size δ was set to 0.5, and the factor to reduce δ was set
to 0.66. The minimum δ threshold δth was set to 0.0001.
The values for the parameters were chosen based on the
previous publication for the 2D-to-2D diffeomorphic registra-
tion algorithm development [47]. Slight modifications were
made to the Jacobian determinant τlb and τub values, which
were modified from 0.1 to 0.25 and 4.0 to 6.0 respectively,
where τub was increased in order to allow for larger tissue
deformations.

B. ALGORITHMS USED FOR COMPARISON
The proposed registration method was compared to six stan-
dard registration methods, Dipy’s Symmetric Normalization
(SyN) algorithm [33], two variants of the Demons algorithm
from ITK [36], two versions of RealTiTracker [38], [39],
and Elastix [42], [43]. These algorithms were chosen for
their ease of use and public availability. The Symmetric Nor-
malization (SyN) algorithm from Dipy [33] ensures that the
transformation is diffeomorphic, where the function and the
inverse are both smooth. The algorithm extends the formula-
tion described in [50], which used a Lagrangian diffeomor-
phic registration method. Symmetry between the two images
is guaranteed in this method, where the invertibility con-
straints are used directly during the optimization process. The
sum of squared differences (SSD) was used as the similarity
metric. The method performs multi-resolution registration,
using a Gaussian pyramid of three levels. The three levels of
the Gaussian pyramid used 10, 10, and 5 iterations for each
level respectively. For the Demons algorithm, two variants
were employed from ITK to compare against the proposed
method, first the classical Demons algorithm, and secondly a
variant that incorporates fast symmetric forces. For both, his-
togrammatching was first used to ensure that the 3D volumes
to register were similar. 50 iterations were used for the first
implementation, and 200 for the second approach. A Gaus-
sian kernel was used to smooth the displacement field, with
a value of 1.0 for the standard deviation for both approaches.
Parameters were chosen placed on example codes provided
in the documentation.

The RealTiTracker software package consists of a set of
algorithms based on optical flow methods [51]. One term
in optical flow ensures that the relative movement between
the two frames is small, while another constraint enforces
that the intensity difference between subsequent frames is
conserved. For the conservation of intensity term, there are
two forms that differ in how the spatial and temporal deriva-
tives are employed. For the L2L1 functional the L1 norm
is used, and for the L2L2 functional the L2 norm is used.
One parameter, the weighting term alpha, determines how
sensitive to gray level intensity variation the motion is. The
value was set to 0.4 for the L2L1 functional, and to 0.1 for
L2L2. These were adapted from example codes and found to
be reasonable values in terms of compromising for precision
versus accuracy. Elastix [42], [43] is a software package
that is comprised of a set of transformation models, cost
functions and various optimization methods. The parameters
used consisted of the following: B-spline transformation with
a multi-resolution approach of five levels, advanced Mattes
mutual information [52] for the similarity metric and adaptive
stochastic gradient descent for the optimizer. The parameters
were chosen based on the default values suggested for multi-
resolution B-spline registration.

C. METRICS
The proposed algorithm computes the displacements over
the cardiac cycle using both forward and reverse registration
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and combined using a weighting function. Therefore, the
same approach was used for each of the six other registration
methods. For the validation of the methods, a set of standard
distance and overlap measures were employed. The metrics
were calculated for all frames except for the ED and ES
frames, as these were used as input to the algorithm. The
mean absolute distance (MAD) is the mean distance between
each point in the ground truth mesh S and the closest point in
the mesh from the proposed algorithm T , where the result is
given in mm [53]. The Hausdorff distance (HD) measures the
localmaximumdistance between the ground truthmesh S and
the mesh from the proposed algorithm T , where the result is
reported in mm [54]. The HD is defined in (13), where d(s, t)
is the Euclidean distance between two points of each of the
meshes.

dH (S,T ) = max
{
sup
s∈S

inf
t∈T

d(s, t), sup
t∈T

inf
s∈S

d(s, t)
}

(13)

The Dice metric (14) is a measure for overlap between two
binary volumesVs andVt , with 1 indicating complete overlap,
and 0 indicating no overlap between the regions [55].

Dice =
2(Vs ∩ Vt )
(Vs + Vt )

(14)

The determinant of the Jacobian provides information
about the local transformation at a point. Therefore in order
to determine if mesh folding occurs, the percentage of voxels
with a determinant of Jacobian less than zero is reported,
given by J<0%.

IV. EXPERIMENTAL RESULTS
A. ACDC DATASET
The ACDC public dataset consists of 100 patients that under-
went cine MR imaging at the University Hospital of Dijon,
France [1]. A selection of 20 patients was chosen from the
dataset for evaluation of the proposed algorithm. Scans were
acquired using a 1.5T scanner (Siemens Arena, Siemens
Medical Solutions, Germany) and a 3T scanner (Siemens Trio
Tim, Siemens Medical Solutions, Germany). The volumes
ranged from 184 × 216 × 8 to 256 × 256 × 11 voxels.
The resolutions of the voxels ranged from 1.367 × 1.367 ×
10.0 mm to 1.875×1.875×10.0 mm. The number of frames
spanned from 13 to 35 frames within the cardiac cycle, with
a total of 521 frames over the 20 patients. One clinical expert
delineated the ground truth for the ED and ES frames. The set
of patients consisted of normal subjects, those with a previous
myocardial infarction, myopathy, and those with an abnormal
right ventricle.

The ACDC dataset only includes the ground truth for the
ED and ES frames, but the proposed method is designed to
be evaluated over a sequence of frames in the cardiac cycle.
In order to reduce the amount of time it would take an expert
to manually annotate each short-axis slice for each frame and
patient, an automated method was used. For each short-axis
slice sequence, the method of [48] was used to obtain a set of
ground truth contours using the provided ED and ES phases.

The contours were reviewed and edited when necessary by
an expert radiologist. A subset of 20 out of the 100 patients
were used for the validation of the proposed algorithm. This
number was chosen as the contour assessment performed
by the radiologist was a time consuming process. The first
20 patients were chosen from the ACDC dataset of 100.

In order to compare the ground truth contour points to the
other registration methods, the 3D points were converted to a
mesh. For each frame, spline interpolation was used to ensure
each contour (for each short axis slice) had N = 241 points.
Contours for each short axis slice were then aligned to ensure
the start points were the same. Faces for the mesh were
created by automatically creating triangular faces between
adjacent pairs of short axis slice contours. The mesh for
each frame was then used for computing metrics for the
quantitative performance evaluation. In order to calculate the
volume of the mesh for each frame, the method of [56] was
implemented.

1) QUANTITATIVE PERFORMANCE EVALUATION
a: DISTANCE METRICS AND DETERMINANT OF JACOBIAN
ANALYSIS
Table 1 displays the evaluation of the proposed method and
the six other registration algorithms using the mean absolute
distance dm, Hausdorff distance dH , the Dice score Dice, and
the percentage of voxels with a determinant of Jacobian less
than zero, J<0%. The robust performance can be seen for
the proposed registration method, as it performs better than
the others in terms of the dm and the dH metrics. Elastix
performs slightly better than the proposed method in terms of
only theDice score, with values of 98.21 versus 98.10 respec-
tively. The J<0% value for the proposed algorithm is equal to
zero, indicating that no mesh folding has occurred. It can be
observed that for Elastix, the J<0% is above zero, therefore
displaying somemesh folding. Kruskal-Wallis H significance
tests were performed for the dm, dH and Dice metrics (for
each frame) in order to determine if there is a significant
difference among the proposed method and the other registra-
tion methods. It can be seen from the table that the p values
calculated are less than 0.0001, indicating that there exists
a significant difference among the registration methods. The
average time to perform the registration for a single frame
was 0.59 seconds for the ACDC dataset.

b: VOLUME ANALYSIS
Examining the volume of the left ventricle over the car-
diac cycle is a crucial part of diagnosing the patient. One
method of analyzing the difference in the volumes between
the ground truth and the proposed method, along with the
other registration methods is to use a Bland-Altman plot.
The Bland-Altman plot provides information about the bias,
or the mean of the differences between the ground truth and
the registrationmethod. Limits of agreement, set to 1.96 times
the standard deviation of the differences provides informa-
tion about the span of the differences. Figure 2 provides
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TABLE 1. Quantitative evaluation results: The mean absolute difference dm in mm, Hausdorff distance dH in mm, Dice score Dice, and the percentage of
voxels with a determinant of Jacobian less than zero, J<0%, are provided for quantitative evaluation of the accuracy between the ground truth
segmentation and the proposed segmentation method, Dipy SyN, ITK Demons (classic and fast symmetric forces), RealTiTracker (L2L1 and L2L2) and
Elastix over 521 temporal frames acquired from 20 subjects from the ACDC dataset. The lower the values of dm, dH , and the higher the Dice, the more
accurate the segmentation. Values above zero for J<0% indicate the presence of mesh folding. The average of the time it takes to perform registration of
one frame is provided in seconds. Kruskal-Wallis H significance tests were performed for the dm, dH and the Dice metrics to determine if there exists a
significant difference among the proposed method and the other registration methods. Standard deviation values for all metrics are provided in
parentheses. Values highlighted in bold indicate the metric with the best performance.

FIGURE 2. Bland-Altman plot for the proposed method versus the ground
truth, where red line indicates the bias, the two yellow lines the limits of
agreement, and the black line for the reference at zero.

the Bland-Altman plot for the proposed registration method
compared to the ground truth volumes. The red line indicates
the bias, while the two yellow lines indicate the limits of
agreement. The black line is the zero reference line, indicat-
ing that the volumes from the two methods match. It can be
seen that the points are well clustered around the reference
line, with few outliers beyond the two limits of agreement.

The bias and limits of agreement were also calculated
for the six other registration methods in Table 2. It can be
observed that the bias for Demons, 0.35 mL, and Elastix,
0.92 mL are both slightly smaller than the bias for the pro-
posed method at 1.77 mL, indicating they are more accurate
in terms of only volume estimation. The values for the bias
for all methods is positive, indicating a slight underestimation
of the volume.

The volume curves can also be analyzed, as they provide
the clinician with information about the systolic and diastolic
function of the heart. Figure 3 displays an example of volume
curves for one patient from the ACDC MRI dataset. The
ground truth is shown in red-filled circles while the proposed
method is displayed in neon green squares. For both cases,
it can be seen that the proposed method closely follows the

TABLE 2. Bland-Altman analysis for the proposed method and six
registration methods compared to the ground truth. The bias (in mL) and
two limits of agreement are given for each algorithm. Positive values of
the bias indicate an underestimation of the volume compared to the
ground truth.

FIGURE 3. Example volume curves from a patient from the ACDC dataset,
where the ground truth is displayed in red-filled circles and the proposed
method in neon green squares.

ground truth over the entire cardiac cycle. It can be observed
that the Elastix method also closely follows the ground truth,
but that towards the end of the diastolic phase, the proposed
method has a higher accuracy.

2) VISUAL INSPECTION
a: DISTANCE MESH VISUALIZATION
Figure 4 gives a visual representation of the difference
between the ground truth mesh and the proposed method and
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the other registrationmethods for a frame in the systolic phase
in the first row, and a frame in the diastolic phase in the second
row. The areas highlighted in red indicate a larger difference
between the ground truth (in mm), and the areas in blue
indicate an almost complete overlap with the ground truth.
The ground truth mesh is shown in gray. For the proposed
method, it can be seen that the mesh closely follows the true
ground truth mesh.

b: BINARY MASK COMPARISON
An alternate method of comparing the ground truth to the
proposed segmentation is to view the overlap of the binary
masks. Figure 5 displays the underlying MRI image overlaid
with the ground truth segmentation in green and the mask
from the proposed segmentation in red. Results are displayed
for slices at the apex, mid-cavity and the base of the left
ventricle for a frame in the systolic phase and a frame in the
diastolic phase. It can be seen that overall there is a large
overlap between the proposed segmentation and the ground
truth.

B. ULTRASOUND DATASET
Subjects were approved to be scanned by the human research
ethics committee at the University of Alberta. Using an
X5-1 transducer, subjects were scanned at the Mazankowski
Alberta Heart Institute (Edmonton, Alberta, Canada) by an
expert sonographer on a Philips iE33 US machine (Philips
Healthcare, Best, Netherlands). To achieve a volume rate of
greater than 20 volumes per second, a 3D sector angle of
70 × 80 degrees was used. The set of subjects underwent
US scans to assess and diagnose LV function. The dataset
consists of subjects with the number of frames ranging from
16 to 26 for a total of 213 frames, with volumes ranging from
224× 176× 208 to 256× 176× 208 voxels. The resolutions
of the voxels ranged from 0.617 × 0.787 × 0.533 mm to
0.810 × 1.005 × 0.681 mm. The TomTec Arena software
(TomTec Imaging Systems, Unterschleissheim, Germany)
was used by an expert cardiologist to provide the ground
truth segmentation meshes and volume information for the
left ventricle. In order to calculate the volume of the mesh for
each frame, the method of [56] was implemented.

1) QUANTITATIVE PERFORMANCE EVALUATION
a: DISTANCE METRICS AND DETERMINANT OF JACOBIAN
Table 3 reports the evaluation using the dm, dH , Dice, and the
J<0% metric for the proposed method and the other registra-
tion algorithms. The proposed method performs better than
the other registration methods in terms of the dm and theDice
metric, where for the dH metric, Elastix performs slightly
better. Kruskal-Wallis H significance tests were performed
for the dm, dH and Dice metrics (for each frame) in order
to determine if there is a significant difference among the
proposed method and the other registration methods. It can be
seen from the table that the p values calculated are less than
0.0001, indicating that there exists a significant difference

among the registration methods. The average time to per-
form registration for a single frame was 2.69 seconds for the
Mazankowski dataset.

b: VOLUME ANALYSIS
A Bland-Atlman analysis was performed for the US dataset
from the Mazankowski as seen in Figure 6. The red line
indicates the bias, while the two yellow lines indicate the
limits of agreement. The black line is the 0 reference line,
indicating that the volumes from the two methods match.
From the plot it can be seen that many of the points are
clustered around the reference line, but that some outliers do
exist beyond the two limits of agreement.

The Bland-Altman analysis was also performed for the
other registration methods, with results concerning the bias
and limits of agreement given in Table 4. It can be observed
that the proposed method yields the smallest bias of 0.73 mL,
indicating robust performance in terms of volume compared
to the ground truth. The positive values indicate the under-
estimation of the volume, while negative values indicate the
overestimation.

Figure 7 displays an example of volume curves for one
patient from the US dataset. The ground truth is shown in
red-filled circles while the proposed method is displayed in
neon green squares. It can be seen that the proposed method
closely follows the ground truth over the entire cardiac cycle.
In the volume curve for the patient from theMazankowski, all
of the methods perform well during systole, but it can be seen
that for diastole there is high agreement between the proposed
method and the ground truth.

2) VISUAL INSPECTION
a: DISTANCE MESH VISUALIZATION
Figure 8 gives a visual representation of the difference
between the ground truth mesh and the proposed method and
the other software packages for registration for the systolic
phase in the first row, and for the diastolic phase in the second
row. The areas shown in red indicate a larger difference
between the ground truth (in mm), and the areas highlighted
in blue indicate an almost complete overlap. The ground
truth mesh is shown in gray. For the proposed method, it can
be seen that the mesh closely follow the true ground truth
mesh.

b: BINARY MASK COMPARISON
An alternate method of comparing the ground truth to the
proposed segmentation is to view the overlap of the binary
masks. Figure 9 displays the underlying MRI image overlaid
with the ground truth segmentation in green and the mask
from the proposed segmentation in red. Results are displayed
for slices at the apex, mid-cavity and the base of the left
ventricle for a frame in the systolic phase and a frame in the
diastolic phase. It can be seen that overall there is a large
overlap between the proposed segmentation and the ground
truth.
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FIGURE 4. Difference in the mesh between the ground truth and the proposed method in the ACDC dataset for a frame in the systolic phase:
(a) Proposed method (b) Dipy (c) Demons (d) Demons fast symmetric forces (e) RealTiTracker - L2L2 (f) RealTiTracker - L2L1 (g) Elastix (h) Colorbar,
for a frame in the diastolic phase: (i) Proposed method (j) Dipy (k) Demons (l) Demons fast symmetric forces (m) RealTiTracker - L2L2
(n) RealTiTracker - L2L1 (o) Elastix (p) Colorbar.

FIGURE 5. Difference in the binary masks between the ground truth and the proposed method in the ACDC
dataset for a frame in the systolic phase: (a) Apex, (b) Mid-cavity, (c) Base, and for a frame in the diastolic
phase: (d) Apex, (e) Mid-cavity, (f) Base. The ground truth segmentation is displayed in green with the
segmentation from the proposed method in red.

C. DIFFEOMORPHIC CONSTRAINTS EXPERIMENT
One of the main advantages of the proposed registration algo-
rithm is that it forces the transformation to be diffeomorphic.
This in turn enables the generation of anatomically plausible
deformation within the cardiac tissue. An experiment was
therefore performed using the ACDCMRI andMazankowski
US datasets in order to test the effect of the diffeomorphic
constraints on the presence of mesh folding. Table 5 displays
the values of the percentage of voxels with a determinant

of Jacobian less than 0. It can be seen that including the
diffeomorphic constraints results in no voxels with a deter-
minant less than 0, indicating no mesh folding. When the
constraints are removed, a small percentage of voxels exhibit
mesh folding.

Figure 10 displays the determinant of the Jacobianwith and
without the diffeomorphic constraints for the two datasets.
The first rows displays figures from the MRI dataset, while
the second row displays figures from the US dataset. The
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TABLE 3. Quantitative evaluation results: The mean absolute difference dm in mm, Hausdorff distance dH in mm, Dice score Dice, and the percentage of
voxels with a determinant of Jacobian less than zero, J<0%, are provided for quantitative evaluation of the accuracy between the ground truth
segmentation and the proposed segmentation method, Dipy SyN, ITK Demons (classic and fast symmetric forces), RealTiTracker (L2L1 and L2L2) and
Elastix over 10 subjects using US data from the Mazankowski Alberta Heart Institute. The lower the values of dm, dH , and the higher the Dice, the more
accurate the segmentation. Values above zero for J<0% indicate the presence of mesh folding. Kruskal-Wallis H significance tests were performed for the
dm, dH and the Dice metrics to determine if there exists a significant difference among the proposed method and the other registration methods. The
average of the time it takes to perform registration of one frame is provided in seconds. Standard deviation values for all metrics are provided in
parentheses. Values highlighted in bold indicate the metric with the best performance.

FIGURE 6. Bland-Altman plot for the proposed method versus the ground
truth, where red line indicates the bias, the two yellow lines the limits of
agreement, and the black line for the reference at zero.

TABLE 4. Bland-Altman analysis for the proposed method and six
registration methods compared to the ground truth. The bias (in mL) and
two limits of agreement are given for each algorithm. Positive values of
the bias indicate an underestimation of the volume compared to the
ground truth.

first column indicates the warped image, the middle column
displays the determinant of Jacobian with the diffeomorphic
constraints, and the last column displays the determinant of
the Jacobian with no diffeomorphic constraints. Areas of
interest are annotated with an arrow pointing to a circle.
In these areas, it can be seen for the cases without the con-
straints, some discontinuities exist. This is evident by the
black pixels (pixels with a determinant of Jacobian less than
or equal to zero).

FIGURE 7. Example volume curves from an example patient from the
Mazankowski US dataset, where the ground truth is displayed in
red-filled circles and the proposed method in neon green squares.

V. DISCUSSION
In this study, we have demonstrated the development of a
3D-to-3D registration algorithm using a moving mesh cor-
respondence method [44]. Previous methods were developed
only for 2D-to-2D image registration [46], [47], [48]. Appli-
cations of the algorithm include the delineation of the endo-
cardial borders for the left ventricle in MRI and US datasets,
where the algorithm was validated on a subset of publicly
available data from the ACDC Challenge [1], and a set of
US sequences from patients scanned at the Mazankowski
Alberta Heart Institute. The algorithm was compared to six
other available registration algorithms, Symmetric Normal-
ization diffeomorphic registration package from Dipy [33],
two variants of the Demons algorithm from ITK [36], two
versions of RealTiTracker [38], [39], and the Elastix software
package [42], [43].

The proposed registration algorithm is diffeomorphic,
which does not allow for folding of the mesh. This is
especially crucial when describing the actual tissue move-
ment of the heart. Comparing the percentage of voxels with
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FIGURE 8. Difference in the mesh between the ground truth and the proposed method in the Maz dataset for a frame in the systolic phase:
(a) Proposed method (b) Dipy (c) Demons (d) Demons fast symmetric forces (e) RealTiTracker - L2L2 (f) RealTiTracker - L2L1 (g) Elastix (h) Colorbar,
for a frame in the diastolic phase: (i) Proposed method (j) Dipy (k) Demons (l) Demons fast symmetric forces (m) RealTiTracker - L2L2
(n) RealTiTracker - L2L1 (o) Elastix (p) Colorbar.

FIGURE 9. Difference in the binary masks between the ground truth and the proposed method in the
Mazankowski dataset for a frame in the systolic phase: (a) Apex, (b) Mid-cavity, (c) Base, and for a frame in the
diastolic phase: (d) Apex, (e) Mid-cavity, (f) Base. The ground truth segmentation is displayed in green with the
segmentation from the proposed method in red.

a Jacobian determinant less than zero, it can be seen that all
of the methods produced a value greater than zero for either
the MRI or US datasets. Therefore, these methods may not
be able to capture the true cardiac deformation of the tissue.
The diffeomorphic algorithm is also unique in the fact that
the optimization of the deformation field is performed on

the radial and rotational representation, making it suitable for
cardiac analysis.

There are several additional advantages of the proposed
method compared to other algorithms for LV segmentation.
One advantage is that the method does not require the use
of a manually created training set, which could be difficult
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TABLE 5. Diffeomorphic constraint experiment results: For the proposed registration method, the diffeomorphic constraints were removed in order to
see the effect on the determinant of the Jacobian. The percentage of voxels with a determinant of the Jacobian less than zero are reported J<0%,
indicating mesh folding. The mean absolute difference dm in mm, Hausdorff distance dH in mm, Dice score Dice are provided.

FIGURE 10. Examples from a patient from the MRI dataset (first row) and a patient from the US data (second row). The first column
shows the warped image, the second column displays the determinant of Jacobian map from using the diffeomorphic constraints, and
the third column displays the determinant of Jacobian map without using the constraints. Areas of interest are annotated by an arrow
pointing towards a black circle, where discontinuities exist in the case where no diffeomorphic constraints are used. Pixels with a
determinant of Jacobian less than zero are black.

to obtain depending on the type of patients analyzed. A sec-
ond advantage is that the proposed algorithm does not make
geometric assumptions about the shape of the chamber; this
is crucial if the algorithm is to capture markedly different
anatomical differences compared to a normal patient, for
instance in the case of patients that have cardiomyopathy,
myocardial infarction or congenital heart disease. The algo-
rithm has also been tested on MRI as well as US sequences,
making it robust to the imaging modality.

There are a number of potential issues concerning the pro-
posed algorithm. The voxel-to-voxel correspondence map-
ping may be affected by the presence of large abnormalities,
artifacts, and other sources of noise. A second drawback is the
method of obtaining the gold standard for both the MRI and
US datasets. For the US dataset, a single expert cardiologist
provided the ground truth annotations using the TomTec

software. For the MRI dataset from the ACDC challenge, the
ground truth was only provided at the end diastolic and end
systolic frames. To generate the gold standard for the other
frames in the cardiac cycle, the method of [48] was used for
each 2D slice from apex to base, to propagate the contours
temporally across the cardiac cycle. An expert radiologist
modified the sets of contours to account for any possible
issues. Another drawback of the proposed approach is the use
of manual segmentations for both the end-diastolic and end-
systolic frames.

VI. CONCLUSION
A diffeomorphic 3D-to-3D registration has been developed
by the authors for use in MRI and US temporal sequences.
The algorithm models the deformation field by use of the
radial and rotational components, making it suitable for
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modeling plausible cardiac motion. We have demonstrated
the use of the registration algorithm for segmentation of
the endocardium in the left ventricle. As input the method
requires two meshes delineating the left ventricle at end-
diastole and end-systole. The image registration algorithm
is applied in a sequential manner for a temporal sequence,
where both forward and reverse deformation fields are com-
puted and weighted to compute the final deformation field.
Applying the deformation fields to the meshes results in a
segmentation for each frame of the cardiac cycle.

The algorithm has been validated on two modalities, the
publicly available ACDCMRI dataset and a set of US patients
acquired from the Mazankowski Alberta Heart Institute. The
proposed method was compared to a set of standard medical
image registration software packages, the proposed algorithm
yielded Dice scores of 98.10 (0.90)% and 92.90 (2.42)% on
the MRI and US datasets respectively. These results demon-
strate the robustness of the algorithm on a variety of datasets
and patients.

A number of additions could be included to further increase
the viability of the proposed algorithm. Preprocessing could
be performed to reduce the influence of speckle noise and
improve tracking. The ground truth segmentations could also
be improved, as they could be created by manual contouring
instead. Additionally, it would be beneficial in the future
to obtain annotations of the endocardium by more than one
clinical expert in order to perform inter-observer and intra-
observer studies. In the future, the algorithmwill be improved
to only use the end-diastolic frame. In order to assess strain of
the myocardium, some clinicians may prefer to annotate the
myocardium instead of the endocardium and the epicardium.
It would be useful to test this approach for obtaining the
myocardial segmentation.

The sum of square differences as the distance metric was
chosen as the registration is performed over a sequence of
images obtained from the same modality. In the future, other
similarity metrics can be used, such as mutual information
if multi-modal registration is required. A variable incom-
pressibility constraint could also be incorporated into the
registration framework. This would avoid both the mesh
folding issue and would allow for anatomically plausible
myocardium deformations. In particular, the values of Jlb and
Jub can be set to [1-eps,1 + eps], respectively within the
myocardium, and a wider range outside of the myocardium.

Future applications of the registration algorithm include
the segmentation of other chambers of the heart, regional
and strain analysis, as well as computed tomography or
multi-modality registration. In addition to the endocardium,
it would be useful to validate the algorithm on the epicardial
and myocardial borders.
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