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ABSTRACT This paper proposes an evolutionary algorithm with hierarchical clustering based selection
for multi-objective optimization. In the proposed algorithm, a hierarchical clustering is employed to design
the environmental and mating selections, named local coverage selection and local area selection, respec-
tively, for multi-objective evolutionary algorithm. The local coverage selection strategy aims to preserve
well-distributed individuals with good convergence. While, the local area selection strategy is devised to
deliver a balanced evolutionary search. This is achieved by encouraging individuals for exploration or
exploitation according to the Iε+ indicator. In both strategies, a hierarchical clusteringmethod is employed to
discover the population structure. Based on the clustering results, in local coverage selection, the individuals
of different clusters will be retained according to their coverage areas and crowding distances, such that
distributing as evenly as possible in the Pareto front. In local area selection, the individual(s) with the best
value of Iε+ indicator in each cluster will be selected to perform mating, with the purpose of achieving
a balanced exploration and exploitation. The proposed algorithm has been evaluated on 26 bench-mark
problems and compared with related methods. The results clearly show the significance of the proposed
method.

INDEX TERMS Multi-objective evolutionary algorithm, multi-objective optimization problem, hierarchical
clustering.

I. INTRODUCTION
Multi-objective optimization problems (MOPs) refer to the
problems with more than two conflicting objectives. They
are commonly seen in the real world, e.g., electrical engi-
neering [1], scheduling [2], engineering modeling [3] and
transport engineering [4]. The MOPs can be formulated as:{

minimize F(x) = (f1(x), f2(x), . . . , fm(x))
subject to x ∈ X

(1)

where x is the decision vector, X is the decision space and m
is the number of objectives [5]. Due to the conflicting nature
of different objectives in MOPs, there is no single solution
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that can optimize all the objectives simultaneously. Instead,
a set of tradeoff solutions, which cannot be improved in any
objective without degenerating at least one other objective,
can be obtained. These tradeoff solutions are called Pareto
optimal solutions. The collection of all Pareto optimal solu-
tions is called Pareto optimal set (PS), and the image of
projection of PS in the objective space is called Pareto optimal
front (PF).

Over the last decades, a number of multi-objective
evolutionary algorithms (MOEAs) have been proposed,
which have demonstrated good performance in dealing with
MOPs [6]. Generally,MOEAs can be classified into three cat-
egories. The first category is called Pareto-basedMOEAs [7],
which utilizes the non-dominated sorting mechanism along
with a diversity maintenance scheme to select candidates.
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In this approach, when the proportion of non-dominated solu-
tions increases, the Pareto dominance could fail to provide
sufficient selection pressure, resulting in poor population
diversity and convergence. In recent years, a few domination
principles have also been proposed to relax the comparison
criteria, so that feasible solutions can be compared with each
other. Examples methods include ε-domination principle [8]
and fuzzy Pareto dominance [9]. It is worth noting that the
performance of these methods depends on their parameter
settings. Consequently, although the diversity and conver-
gence can be improved, the final non-dominated solutions
provided by these methods may not cover the entire PF
uniformly [10].

The indicator-based MOEAs fall in the second category.
It adopts an indicator (e.g., hypervolume (HV) [11], inverted
generational distance (IGD) [12] and R2 [13]) to measure
both convergence and diversity. These indicators, however,
may prefer some specific regions of PF, causing certain opti-
mal solutions to disappear during evolution. As a result, final
solutions may not be evenly distributed along the PF. For
example, in the HV indicator based MOEAs [14], [15], the
candidate solutions could be biased to distribute in the middle
of a convex/concave PF [16].

The decomposition-based MOEAs tend to decompose the
original MOP into a number of single-objective optimization
problems or simpler MOPs to be solved in a collaborative
manner [17], [18]. In these methods, since the predefined
weight vectors are uniformly sampled on the unit hyperplane,
the distribution of candidate solutions in the middle of con-
vex/concave PFs will be more/less crowded than those on the
border. The situation could become even worse when the PF
has a sharp peak or long tail [19]. Further, as the distribution
of candidate solutions is mostly determined by the prede-
fined weight vectors, the difference between PF shape and
distribution of weight vectors could also lead to a substan-
tial deterioration of the performance of decomposition-based
MOEAs [20].

To alleviate the above issues, a clustering-based envi-
ronmental selection (named local coverage selection) along
with a clustering-based mating selection (named local area
selection) have been proposed and incorporated into an evolu-
tionary algorithm for multi-objective optimization. The main
contributions of this study are two-fold:
• A local coverage selection strategy, which is designed

to preserve a group of well-distributed individuals with
good convergence. In this strategy, a non-dominated
fast sorting is first employed to eliminate individuals,
which are far away from the Pareto front. Then, the
population is divided into clusters by a hierarchical
clustering method. The number of individuals in each
cluster, which will be retained, is determined based on
the coverage area of each cluster. These individuals are
subsequently selected based on the crowding distance,
so that the individuals in the same cluster can be evenly
distributed. Consequently, the local coverage selection

strategy can be used to preserve evenly distributed indi-
viduals in Pareto front.

• A local area selection strategy, which is designed to
deliver a balanced evolutionary search. In this strategy,
the population is divided into clusters by a hierarchi-
cal clustering method. The individuals are selected for
exploration or exploitation according to the Iε+ indica-
tor, with the purpose of achieving a balanced exploration
and exploitation.

The proposed algorithm has been evaluated on widely used
bench-mark problems and compared with related methods.
The experimental results clearly show the significance of our
devised strategies. The results also show that the proposed
algorithm generally outperforms the related methods to be
compared.

The remainder of this paper is structured as follows.
Section II introduces related work. Section III describes the
proposed algorithm including a detailed explanation of the
proposed local coverage selection and local area selec-
tion strategies. The experimental setting and results are
reported and analyzed in Section IV. Section V provides our
conclusion.

II. RELATED WORK
In literature, many MOEAs have been proposed. For exam-
ple, an adaptive reference vector generation approach for
inverse model-based MOEA [21] was developed for prob-
lems with degenerated and disconnected Pareto fronts. In this
method, at the early stage of evolution, a reference vector
in the crowded area is replaced by a randomly generated
vector. Since the vector for replacement is created randomly,
this method may have difficulty to guarantee an even dis-
tribution of the obtained solutions. A variant of MOEA/D
that adjusts weight vectors, termed as MOEA-ABD, was
proposed in [22] for bi-objective optimization problems with
discontinuous Pareto fronts. This method detects the dis-
continuous part of Pareto front by calculating the deviation
between the weight vector and its corresponding normal-
ized objective function vector, and adjusts the number of
weight vectors according to the length of each continuous
part. Some other variants of MOEA/D have also been pro-
posed, such as an improved MOEA/D with a two-phase strat-
egy and a niche-guided scheme, called MOEA/D-TPN [23],
MOEA/D with sorting and selection [24], AMOEA/D [25]
with an auto-switching strategy based on the aggregation
function enhancement, and angle-based adaptive penalty
(AAP) scheme for MOEA/D [26]. These methods, however,
still subject to drawback due to employing a fixedweight vec-
tor set. A fast method for pruning non-dominated solutions
in many-objective problems, known as MOEA/D-AWA, was
introduced in [19]. This method first calculates the sparsity
level of each individual using a vicinity distance. Then, over-
crowded subproblems are deleted while new subproblems
are added into the sparse regions. This method is helpful to
reduce invalid subproblems at the cost of introducing extra
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computation time and cannot guarantee an even distribu-
tion of the solutions. In [27], a reference vector guided
evolutionary algorithm (RVEA) [27] was proposed. In this
method, predefined reference vectors are adjusted at certain
generation using the Hadamard product [28] to adapt the
shape of front. In [27], a variant of RVEA, termed as RVEA*,
was proposed. In this method, if no individual is associated
with a reference vector, it will be replaced by a randomly
generated vector. Consequently, it is difficult to guarantee
an even distribution of the vectors. In [29], an improved
version of A-NSGA-III [30], termed as A2-NSGA-III [29],
was introduced to address several limitations of A-NSGA-III.
As in A-NSGA-III, reference points, which have no individ-
ual to be associated will be deleted and relocated around a
reference point associated with more than two individuals.
This method also requires relocation of reference points,
which may lead to an uneven distribution of the solutions.
In MOEA/D-SCS [31], the evolutionary process is separated
into three stages, where different indicators are utilized to
screen elite and inferior solutions. However, it is difficult to
distinguish early, middle, and late stages with fixed values for
different types of MOPs.

Clustering algorithms have been previously employed
to improved MOEAs [32], [33]. These methods generally
employ clustering to adapt reference vectors or reference
points. For example, the clustering-rankingmethod for many-
objective optimization (termed as crEA) [32] employed a
series of predefined reference lines to cluster individuals into
subregions and the individual nearest to the Pareto front in
each cluster will be selected. Since the reference lines are
fixed, by employing clustering approach, it is difficult to
adapt to MOPs with irregular Pareto fronts. A clustering-
based MOEA (termed as CLUMOEA) [34] tended to adopt
the k-means clustering algorithm o divide individuals of
population into clusters and individuals in the same sub-
problem are allowed to perform crossover, thereby acceler-
ating the convergence. However, the limitations of k-means,
such as sensitivity to initial cluster centers and assuming
spherical data distribution, could reduce the performance
of CLUMOEA. An evolutionary many-objective optimiza-
tion algorithm with clustering-based selection (termed as
EMyO/C) [33] tried to first calculate the sum of Euclidean
distance between the individuals of two clusters and then
merge those clusters, which have the minimum sum value.

III. PROPOSED ALGORITHM
In this section, we propose an evolutionary algorithm with
hierarchical clustering-based selection (HCCA) for multi-
objective optimization. During the process of method, firstly,
two populations,DP andPP, withN individuals are randomly
sampled from the search space to form initial populations.
Then, individuals are randomly selected from the DP to pro-
duce offspring, in which the differential evolution (DE) [35]
and polynomial-based mutation (PM) [36] are adopted. For
PP, in the proposed local area selection (LAS) strategy, sim-
ulated binary crossover (SBX) [37] and polynomial-based

Algorithm 1 Evolutionary Algorithm With Hierarchical
Clustering Based Selection
Input: Population size N , total number of function evalua-

tions maxev, the number of objectives m and the number
of variables D

Output: Final population P
1: [DP,PP,W ,Z ]← initialization(N ,D,m)
2: ev← 0,K ← 0.5N ,M ← {}
3: while ev < maxev do
4: M ← randomly select N − K solutions from DP
5: for i← 1 to |MDP| do
6: Offspring← crossover and mutation (Mi,DP)
7: Q1← Q1∪ Offspring
8: end for
9: [K ,Q2]← local area selection([PP ∪ Q1],K )

10: PP← PP ∪ Q1 ∪ Q2
11: DP← DP ∪ Q1 ∪ Q2
12: [DP,Z ]← environment selection (DP,W ,Z )
13: PP← local coverage selection(PP)
14: end while
15: P← crowding degree strategy(PP,DP)

mutation (PM) are employed to generate offspring. Subse-
quently, a decomposition-based criterion and the proposed
local coverage selection (LCS) strategy are performed to
select N individuals for DP and PP, respectively. It should
be noted that the decompositon-based criterion used in our
method adopts the Tchebycheff method [17]. Finally, at the
end of evolution, the crowding degree strategy, as presented
in [38], will be implemented to select a group of individuals
from DP and PP as the final output P. The main loop of
HCCA is shown in Algorithm 1.

In the following subsections, we shall describe the details
of proposed LAS and LCS strategies in the proposed
algorithm.

A. LOCAL AREA SELECTION STRATEGY
Mating selection aims at selecting a group of parents for
producing offspring. Typically, parents with high-quality per-
formance would have high chances to produce offspring.
The traditional Pareto dominance criterion, which have been
adopted in exiting methods, may fail to discriminate the con-
vergence degrees of individuals. In addition, mating strategies
in existing methods generally emphasize convergence and
ignore population diversity [39]. To improve the situation,
here, a local area selection strategy is proposed.

In LAS, a convergence fitness Fitness(x) based on a con-
vergence indicator (indicator Iε+ in IBEA [40]) is introduced
to measure the convergence performance of an individual,
which is defined as:

Fitness(x1) =
∑

x2∈PP\{x1}

−eIε+(x2,x1)/0.05 (2)

where x1 and x2 are individuals from the population PP
and m is the number of objectives. The convergence fitness
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Algorithm 2 Local Area Selection Strategy
Input: PopulationPP, number of individuals to be generated

K and the size of population N
Output: Offspring pool OFP
1: Q← ∅,M ← ∅
2: (F1,F2, . . . ,Ft )← non-dominated-sorting(PP)
3: for j← 1 to t do
4: Q← Q ∪ Fj
5: if |Q| ≥ N then
6: break
7: end if
8: end for
9: AF ← calculate the convergence fitness of each individ-

ual in the population PP according to Eq. 2
10: C1,C2, . . . ,CK ← divide individuals in population Q

into K clusters by a hierarchical clustering algorithm
11: OFP← ∅
12: OP← ∅
13: for i← 1 to K do
14: OP← select the individual with the best convergence

fitness from Ci
15: if |Ci| >= 2 then
16: [x1, x2] ← select two individuals with the best

convergence fitness from Ci
17: Offspring← crossover and mutation(x1, x2)
18: OFP← OFP∪ Offspring
19: end if
20: end for
21: if |OFP| < K then
22: for i← 1 to K − |OFP| do
23: [x1, x2]← randomly select two individuals from

OP
24: Offspring← crossover and mutation(x1, x2)
25: OFP← OFP∪ Offspring
26: end for
27: end if

value can reflect the convergence performance of each indi-
vidual. A smaller convergence fitness value implies a better
convergence performance. More importantly, a hierarchical
clustering is used to divide the population into clusters,
and parents are selected from different clusters to maintain
diversity.

A detailed process of the proposed LAS can be summa-
rized as follows. Firstly, the population PP is sorted into
different fronts (F1,F2, . . . ,Ft) based on the principle of
non-dominated sorting [7]. Then, the fronts are moved one
by one into population Q from the lowest level to the highest
level until a front Ft is encountered. Subsequently, assign the
convergence fitness to each individuals in the population PP.
After that, a hierarchical clustering method is employed to
divide the population into K clusters. Here, the parameter K
is dynamically adjusted according to the fitness improvement
value of PP and DP (i.e., FIPP and FIDP) at each generation

as follows:{
FIPP =

∑
1f o1/K ′ o1 ∈ OffPP

FIDP =
∑

1f o2/
(
N − K ′

)
o2 ∈ OffDP

(3)

where OffPP and OffDP denote a group of offspring gener-
ated from PP and DP, respectively. While, o1 and o2 stand
for the offspring in OffPP and OffDP, respectively. N is the
population size and K ′ is the value of K at previous genera-
tion. 1f i(x, y|λi, z∗) is the enhancement brought by the new
offspring y associated to the parent x, which is defined as:

1f i(x, y|λi, z∗) = gtch(x|λi, z∗)− gtch(y|λi, z∗) (4)

where gtch(x|λi, z∗) is the fitness value, which is assigned
using the following TCH decomposition function:

gtch(x|W ,Z∗) = max
1≤j≤m

{
λj ∗

∣∣∣fj(x)− z∗j ∣∣∣} (5)

where W = (λ1, λ2, . . . , λn) is a set of weight vectors, fj(x)
represents the jth objective value. Z∗ = (z∗1, z

∗

2, . . . , z
∗
m) is the

ideal vector for m objectives, which is approximated by the
minimum value of each objective in the current population,
i.e., for all j ∈ {1, . . . ,m}

z∗j = min
1≤j≤m

{
fj(x)|x ∈ DP

}
(6)

The normalized fitness improvement value (FI ′PP and FI ′DP)
can be obtained by:{

FI ′DP = FIDP/ (FIPP + FIDP)
FI ′PP = FIPP/ (FIPP + FIDP)

(7)

where 0 ≤ FI ′PP,FI
′
DP ≤ 1. Based on FI ′PP and FI ′DP, the

parameter K can be finally calculated as:

K = max(min([FI ′PP ∗ N ],N − 3), 3) (8)

where max() and min() return the maximum and minimum
values, respectively. It is worth noting that the minimum K is
set to be 3, which ensures that the population PP has at least
three individuals to be selected into the mating pool.

After obtaining the clusters, the individuals with the best
convergence performance within each cluster will be selected
and added into the mating pool. If the number of individuals
in the cluster is greater than or equal to two, two individuals
with the best convergence fitness value will be selected to
produce offspring. Finally, when the number of individuals in
the offspring pool OFP is less than the number of individuals
that need to be generated, the parent will be randomly selected
from the OP, and K - OFP offspring will be generated and
added to the OFP. The pseudo-code of LAS is shown in
Algorithm 2.

To help understand the LAS strategy further, an example
is given in Fig. 1 to illustrate its process. In the Fig. 1,
eight solutions are allocated to five clusters. For the clusters
C2 andC3, in which the number of solutions is greater than or
equal to two, two solutions with the best convergence fitness
value will be selected, i.e., solutions D and E from C2 and
solutions F and H from C3 will be selected for mating and
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FIGURE 1. Example of illustration of LAS strategy.

the generated offspring will be inserted into offspring pool
OFP. At the same time, the solutionwith the best convergence
fitness value in C1 to C5 will be added into the mating pool.
If the number of generated offspring is less than the number of
offspring to be generated, K -OFP solutions will be selected
from mating pool to generate offspring and added to OFP.

B. LOCAL COVERAGE SELECTION STRATEGY
The main purpose of environment selection is to preserve a
group of individuals from the union of current population and
their offspring to create a new population for the next genera-
tion. These surviving individuals should be well-distributed
and have good convergence. In case that the PF has com-
plicated geometrics, the diversity maintenance mechanism
based on Pareto-based MOEAs could have difficulty to guar-
antee the individuals to be distributed evenly in the entire
PF, thus reducing their performance. To alleviate this issue,
we propose to employ a hierarchical clustering to divide
the population into clusters for discovering population struc-
ture. The number of individuals to be retained is determined
according to the coverage area of each cluster, while the
crowding distance is used to determine the final retained indi-
viduals. This allows individuals to be distributed as evenly as
possible throughout the entire PF, thus maintaining popula-
tion diversity.

The proposed local coverage selection works as follows.
Firstly, the efficient non-dominated-sorting method is used to
maintain the convergence of population. Then, the crowding
distance is applied to reflect the crowding degree among
individuals. The crowding distance dis(X ) can be defined as:

dis(X ) =
m∑
k=1

f k (Xn+1)− f k (Xn−1)

f kmax − f
k
min

(9)

where m is the number of objectives, f kmax and f
k
min denote the

maximum and minimum, respectively, of the k th objective
value. f k (Xn+1) and f k (Xn−1) are two nearest solutions on
either side of the member along the k th objective. Xn−1 and
Xn+1 are two closest solutions toXn on both sides of themem-
bership of the k th objective. For the non-dominated members,
which have maximum or minimum value for any objective,
the crowding distance will be assigned with an infinite value.

Algorithm 3 Local Coverage Selection Strategy
Input: Population PP and the size of population N
Output: Final population Q
1: Q← ∅
2: (F1,F2, . . . ,Ft )← non-dominated-sorting(PP)
3: while |Q ∪ Fi| < N do
4: Q← Q ∪ Fi
5: i← i+ 1
6: end while
7: if |Q| > N then
8: AD← calculate the crowding distance of each indi-

viduals in population Q according to Eq. 9
9: Normalize objective values of individuals in popula-

tion Q according to Eq. 10
10: C1,C2, . . . ,CN ← divide individuals in population

Q into N clusters by a hierarchical clustering algorithm
11: U ← ∅, j← 1
12: for i← 1 to |Q| do
13: if the individual in xi is not in U then
14: C ′← the cluster to which xi belongs
15: Uj← C ′

16: if |Uj| = 1 then
17: while xi’s nearest individual X is a scat-

tered individual do
18: Uj← Uj ∪ X
19: end while
20: end if
21: U ← U ∪ Uj
22: j← j+ 1
23: end if
24: end for
25: CA ← calculate the size of coverage area according

to Eq.11
26: for i← 1 to |U | do
27: keep Num(C) individuals with the best crowding

distance
28: end for
29: Q← U
30: end if

A bigger crowding distance value for the individual implies a
better diversity performance.

Since Euclidean distance is used in hierarchical clustering,
objective values will be normalized to the range of [0, 1] for
robust clustering. The objective values of each individual in
population Q are scaled as:

f k
′

(X ) =
f k (X ) − f kmin
f kmax − f

k
min

(10)

Based on the normalized values, a hierarchical clustering is
then used to divide population into N clusters. As too many
singular clusters are not helpful in recovering the population
structure, the following steps have been employed to reduce
the number of singular clusters. First, identify the nearest
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neighbor, X ′i , of the individual Xi from a singular cluster.
If X ′i is also a singular cluster, individuals Xi and X ′i will be
merged to form a new cluster. This process, termed as cluster
recombination, will be repeated until the nearest neighbor
X ′i is not a singular cluster. After obtaining the clusters, the
coverage area of each cluster is subsequently calculated and
the number of individuals that need to be retained in each
cluster is determined according to:

area(C) =
m∏
k=1

f kmax(C) − f
k
min(C) (11)

Num(C) = min(1,floor(
area(C)∑T
1 area(Ci)

∗ (N − sN ))) (12)

where C represents a cluster, f kmax(C) and f
k
min(C) denote the

maximum and minimum, respectively, of the k th objective
value in the cluster C . T and sN is the number of clusters
and the number of singular clusters, respectively. The func-
tion, floor(), returns the nearest integer in the direction of
negative infinity, and function, min(), returns the minimum
value. Finally, each cluster retains Num(C) individuals with
the best crowding distance to form a new population, so that
the distribution of individuals within each cluster to be as
uniformly as possible over the entire PF. The pseudo-code
of the proposed LCS strategy is shown in Algorithm 3.

In order to facilitate the understanding, a simple example of
implementing the LCS has been illustrated in Fig. 2. In Fig. 2,
suppose the individuals A, B, C , D, E , F , G and H to be
partitioned into four clusters C1, C2, C3 and C4 according
to a hierarchical clustering method. The number of retained
individuals Num(C) will then be calculated based on the
coverage area of clusters C1, C2, C3 and C4, respectively.
Assuming the calculated values of Num(C) for clusters C1 to
C4 to be 1, 2, 2 and 1, respectively. Also, assuming the
crowding distance to be B > D > C , E > F and G > H .
Then, for cluster C1, the individual A will be retained. For
cluster C2, two individuals with the best crowding distance
(i.e., B and D) will be preserved. Similarly, the individuals E ,
F and G will also be kept. Finally, based on the procedure of
LCS, a set of solutions containing A, B, D, E , F and G will
be obtained for evolution of next generation.

IV. EXPERIMENTS
In this section, we first evaluate the significance of LAS and
LCS strategies in the proposed algorithm. Then, we compare
the proposed method with state-of-the-art multi-objective
evolutionary algorithms. Unless otherwise stated, the median
and corresponding interquartile range (IQR) over 30 inde-
pendent trials of each algorithm are reported and formatted
as (median ± IQR). For each row in the table, we highlight
the best value in bold. To obtain a statistically sound conclu-
sion, Wilcoxon rank sum test is performed at a significance
level α = 0.05. In the tables, the symbols ‘‘+’’, ‘‘–’’, and
‘‘≈’’ indicate that the results of methods to be compared are
significantly better, worse and similar, respectively, to our
method. The experiments are carried out on a machine with

FIGURE 2. Example of illustration of LCS strategy.

TABLE 1. Characteristics of test problems and parameter settings.

Microsoft Window 10 Pro, Intel Core i5-5200 2.40 GHz and
16GB RAM.

A. TEST PROBLEMS AND PARAMETER SETTINGS
The MOPs to be tested include WFG [41], DTLZ [42] and
UF [43] problems. The characteristics and parameter settings
of these problems are shown in Table 1. These parameter
settings are the same as recommended in [44].

We compare our proposed method HCCA with seven
related algorithms including MOEA/D-PaS [45], EAG-
MOEA/D [46], CA-MOEA [47], SPEA/R [48], DEAGNG
[49], A-NSGA-III [30] and EMyO/C [33]. The parameters
of these algorithm are listed in Table 2, which are specified
or chosen according to the original setting with the best
performance. Here, Pc is the crossover probability, Pm is the
mutation probability, ηc and ηm are the distribution indexes
of SBX and PM, respectively. For the DE operator, CR and
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TABLE 2. Parameter settings of the methods to be compared.

TABLE 3. Comparing HCCA with HCCA-RAND in terms of IGD and HV
metrics.

F are the crossover rate and scaling factor, respectively, T
denotes the size of neighborhood for weight vectors, δ is the
probability to select the parents from T neighbors, and nr is
the maximum number of parent solutions to be updated by
each offspring solution. |AS | andHPmax are the signal archive

TABLE 4. Comparing HCCA with HCCA-CRWOD in terms of IGD and HV
metrics.

and maximum, respectively, of Hit point of node. agemax
is the maximum cluster age and λ represents the cycle for
topology reconstruction. εa stands for learning coefficient
and εnb denotes learning coefficient of neighbor. α indicates
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TABLE 5. Comparing the performance of HCCA with different initial values of parameter K in terms of IGD and HV metrics.

nodes r1max and r2max error reduction constant, while β is
error reduction coefficient.

B. PERFORMANCE METRICS
Two widely employed performance metrics, inverted gener-
ational distance (IGD) [12] and HV [11], have been adopted
for evaluation. IGD can reflect both convergence and diver-
sity. Let P∗ denote a subset of PS that is distributed evenly
along the PF and P indicate the approximate set obtained by
an algorithm. The IGD value of P to P∗ is calculated as:

IGD(P∗,P) =

∑
x∈P∗ d(x,P)
|P∗|

(13)

where d(x,P) is the minimum Euclidean distance from the
point x to P and |P∗| returns the size of P∗. Generally,
a smaller IGD value means that the approximate set is closer
to the PF and distributed more evenly.

The HV [11] is also believed to be able to account for both
convergence and diversity. To calculate the value of HV for

the final solution set, a reference point which is dominated
by all Pareto optimal solutions should be predefined. Here,
as suggested by [44], the reference points for computing HV
are set to be 1.1 times the nadir point of true PF, i.e., 1.1 ×
(0.5, 0.5, 0.5) for DTLZ1, 1.1 × (1.0, . . . ,1.0) for DTLZ2-
DTLZ6 and UF problems, 1.1 × (1.0, 1.0, 2.0 × m) for
DTLZ7, 1.1 × (2.0, 2.0 × m) for WFG1-WFG9 (where m
is the number of objectives). Note that a larger HV value
indicates a better performance.

C. RESULTS
We first examine the merit of LAS strategy by com-
paring HCCA and its variant (i.e., HCCA-RAND).
In HCCA-RAND, rather than the proposed local area selec-
tion strategy, the random selection is employed as mating
selection. Table 3 shows the comparison results of HCCA
and HCCA-RAND on the test problems. The results show
that HCCA could deliver significantly better performance
on the problems based on both metrics. Using IGD metric,
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TABLE 6. Comparing HCCA with related methods in term of IGD metric.

FIGURE 3. Final populations obtained by a typical run of various methods on WFG1 test problem.

HCCA outperforms HCCA-RAND on 20 out of 26 cases.
Similar results can also be found in term of HV metric.
Based on the results, we can conclude that the proposed

LAS strategy can help select a suitable group of individuals
for reproduction, thereby improving the performance of the
algorithm.
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TABLE 7. Comparing HCCA with related methods in term of HV metric.

FIGURE 4. Final populations obtained by a typical run of various methods on DTLZ6 test problem.

Then, the effectiveness of proposed LCS strategy in HCCA
is accessed. For this purpose, we compare the HCCA with its
variant HCCA-CROWD, in which the proposed LCS strategy

is replaced by a crowding distance as the environmental
selection. The results are reported in Table 4. From the
results, we can see that HCCA can deliver better results on
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most problem cases in terms of both HV and IGD metrics.
This is mainly due to the proposed LCS strategy can effec-
tively retain a set of individuals with good convergence and
diversity during evolution, thus leading to the performance
improvement.

Subsequently, the sensitivity of parameter K in LAS strat-
egy is evaluated. Five different initial values of K (i.e., K =
0, 0.25N, 0.5N, 0.75N, N) have been used for evaluation.
The results are reported in Table 5. The results show that,
by setting the parameter K with different initial values, the
HCCA could deliver comparable performance. The results
thus indicate the HCCA could be robust to initial values of
parameter K . This is mainly due to the value of K is set to be
dynamically adjusted during the evolution.

Finally, we compare the performance of HCCA with
related methods. The results are shown in Tables 6 and 7. The
final populations obtained by our algorithm and related meth-
ods on two representative problems have also been plotted in
Figs. 3 and 4. From the table 6, we can find that our method
delivers the best solutions on 13 out of 26 test problems in
term of IGD metric. While, MOEA/D-PaS, EAG-MOEA/D,
CA-MOEA, SPEA/R, DEAGNG, A-NSGA-III and EMyO/C
give the best solutions on 1, 1, 2, 2, 3, 1 and 3 out of 26,
respectively. By examining the results of our algorithm with
each of the methods to be compared, the Wilcoxon rank-sum
test results show our method can achieve better or com-
parable performance than MOEA/D-PaS, EAG-MOEA/D,
CA-MOEA, SPEA/R, DEAGNG, A-NSGA-III and EMyO/C
on 23, 25, 23, 22, 22, 23 and 22, respectively, out of 26 test
problems. Similar results can also be found in term of HV
metric. From Fig. 3, we can find that the final solutions
obtained by HCCA could well approximate the PF on WFG1
problem, while MOEA/D-PaS, EAG-MOEA/D, CA-MOEA,
SPEA/R, DEAGNG, A-NSGA-III and EMyO/C show rel-
atively poor distribution of the final population in certain
region of PF. Fig. 4 shows the final populations obtained by
HCCA, DEAGNG and EMyO/C could be more evenly dis-
tributed along the PF than those obtained by the rest methods.
Based on the results, clearly, our method is the best alternative
and could significantly outperform the related algorithms to
be compared.

V. CONCLUSION
This paper proposes and implements a multi-objective evo-
lutionary algorithm with hierarchical clustering based selec-
tion. In the proposed method, the hierarchical clustering
method is employed to design both environmental selection
(termed as local coverage selection) and mating selection
(termed as local area selection). The local coverage selection
strategy is employed to preserve a group of well-distributed
with good convergence during evolution, thus appropriately
searching the PF.While, the local area selection strategy tends
to deliver a balanced evolutionary. The significance of the two
proposed strategies has been clearly shown in the results. The
results also show that our algorithm could greatly outperform
related methods to be compared.

The proposed method can be extended in several direc-
tions. Firstly, it is interesting to employ region partitioning
technique such as zoning search [50] to design the LAS and
LCS. In this regard, their performance can be compared.
Secondly, it is desirable to employ clustering with crowding
degree to extract the solutions from multiple populations
as the final output. Additionally, employing the proposed
algorithm to address problems including image segmenta-
tion [51], parameter estimation [52], [53] and nonlinear sys-
tem control [54], [55], [56], [57] can also be investigated.

ACKNOWLEDGMENT
(Shenghao Zhou and Ze Chen contributed equally to this
work.)

REFERENCES
[1] F. Rivas-Dávalos and M. R. Irving, ‘‘An approach based on the strength

Pareto evolutionary algorithm 2 for power distribution system planning,’’
inProc. Int. Conf. Evol. Multi-CriterionOptim.Berlin, Germany: Springer,
2005, pp. 707–720.

[2] Q. Fan, W. Wang, and X. Yan, ‘‘Multi-objective differential evolution with
performance-metric-based self-adaptive mutation operator for chemical
and biochemical dynamic optimization problems,’’ Appl. Soft Comput.,
vol. 59, pp. 33–44, Oct. 2017.

[3] B. R. Campomanes-Álvarez, O. Cordón, and S. Damas, ‘‘Evolutionary
multi-objective optimization for mesh simplification of 3D open models,’’
Integr. Comput.-Aided Eng., vol. 20, no. 4, pp. 375–390, Aug. 2013.

[4] Q. Fan, Y. Zhang, and N. Li, ‘‘An autoselection strategy of multiobjective
evolutionary algorithms based on performance indicator and its appli-
cation,’’ IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 2422–2436,
Jul. 2022.

[5] C. A. C. Coello, ‘‘Evolutionary multi-objective optimization: A historical
view of the field,’’ IEEE Comput. Intell. Mag., vol. 1, no. 1, pp. 28–36,
Feb. 2006.

[6] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
‘‘Multiobjective evolutionary algorithms: A survey of the state of the art,’’
Swarm Evol. Comput., vol. 1, no. 1, pp. 32–49, 2011.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2000.

[8] K. Deb, M. Mohan, and S. Mishra, ‘‘Evaluating the ε-domination based
multi-objective evolutionary algorithm for a quick computation of Pareto-
optimal solutions,’’ Evol. Comput., vol. 13, no. 4, pp. 501–525, 2005.

[9] Z. He, G. G. Yen, and J. Zhang, ‘‘Fuzzy-based Pareto optimality for many-
objective evolutionary algorithms,’’ IEEE Trans. Evol. Comput., vol. 18,
no. 2, pp. 269–285, Apr. 2014.

[10] W. Huang, Y. Zhang, and L. Li, ‘‘Survey on multi-objective evolu-
tionary algorithms,’’ J. Phys., Conf. Ser., vol. 1288, no. 1, Aug. 2019,
Art. no. 012057.

[11] L. While, P. Hingston, L. Barone, and S. Huband, ‘‘A faster algorithm
for calculating hypervolume,’’ IEEE Trans. Evol. Comput., vol. 10, no. 1,
pp. 29–38, Feb. 2006.

[12] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, ‘‘Combining
model-based and genetics-based offspring generation for multi-objective
optimization using a convergence criterion,’’ in Proc. IEEE Int. Conf. Evol.
Comput., Jul. 2006, pp. 892–899.

[13] H. Trautmann, T. Wagner, and D. Brockhoff, ‘‘R2-EMOA: Focused mul-
tiobjective search using R2-indicator-based selection,’’ in Proc. Int. Conf.
Learn. Intell. Optim. Cham, Switzerland: Springer, 2013, pp. 70–74.

[14] J. Bader and E. Zitzler, ‘‘HypE: An algorithm for fast hypervolume-based
many-objective optimization,’’ Evol. Comput., vol. 19, no. 1, pp. 45–76,
Mar. 2011.

[15] N. Beume, B. Naujoks, and M. Emmerich, ‘‘SMS-EMOA: Multiobjective
selection based on dominated hypervolume,’’ Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653–1669, 2007.

[16] Y. Tian, X. Zhang, R. Cheng, C. He, and Y. Jin, ‘‘Guiding evolutionary
multiobjective optimization with generic front modeling,’’ IEEE Trans.
Cybern., vol. 50, no. 3, pp. 1106–1119, Mar. 2020.

VOLUME 11, 2023 2567



S. Zhou et al.: Multi-Objective Evolutionary Algorithm With Hierarchical Clustering-Based Selection

[17] Q. Zhang and H. Li, ‘‘MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[18] K. Deb and H. Jain, ‘‘An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, Part
I: Solving problems with box constraints,’’ IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Apr. 2013.

[19] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, ‘‘MOEA/D with adaptive
weight adjustment,’’ Evol. Comput., vol. 22, no. 2, pp. 231–264, Jun. 2014.

[20] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, ‘‘Performance
of decomposition-based many-objective algorithms strongly depends
on Pareto front shapes,’’ IEEE Trans. Evol. Comput., vol. 21, no. 2,
pp. 169–190, Apr. 2016.

[21] R. Cheng, Y. Jin, and K. Narukawa, ‘‘Adaptive reference vector generation
for inverse model based evolutionary multiobjective optimization with
degenerate and disconnected Pareto fronts,’’ inProc. Int. Conf. Evol. Multi-
Criterion Optim. Cham, Switzerland: Springer, 2015, pp. 127–140.

[22] C. Zhang, K. C. Tan, L. H. Lee, and L. Gao, ‘‘Adjust weight vectors
in MOEA/D for bi-objective optimization problems with discontinuous
Pareto fronts,’’ Soft Comput., vol. 22, no. 12, pp. 3997–4012, Jun. 2018.

[23] S. Jiang and S. Yang, ‘‘An improvedmultiobjective optimization evolution-
ary algorithm based on decomposition for complex Pareto fronts,’’ IEEE
Trans. Cybern., vol. 46, no. 2, pp. 421–437, Feb. 2016.

[24] X. Cai, Z. Yang, Z. Fan, and Q. Zhang, ‘‘Decomposition-based-sorting and
angle-based-selection for evolutionary multiobjective and many-objective
optimization,’’ IEEE Trans. Cybern., vol. 47, no. 9, pp. 2824–2837,
Sep. 2017.

[25] H. Zhou and J. Qiao, ‘‘Multiobjective optimal control for wastewater
treatment process using adaptive MOEA/D,’’ Appl. Intell., vol. 49, no. 3,
pp. 1098–1126, Mar 2019.

[26] J. Qiao, H. Zhou, C. Yang, and S. Yang, ‘‘A decomposition-based multiob-
jective evolutionary algorithm with angle-based adaptive penalty,’’ Appl.
Soft Comput., vol. 74, pp. 190–205, Jan. 2019.

[27] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, ‘‘A reference vector guided
evolutionary algorithm for many-objective optimization,’’ IEEE Trans.
Evol. Comput., vol. 20, no. 5, pp. 773–791, Oct. 2016.

[28] T. Ando, ‘‘Majorization relations for Hadamard products,’’ Linear Algebra
Appl., vols. 223–224, pp. 57–64, Jul. 1995.

[29] H. Jain and K. Deb, ‘‘An improved adaptive approach for elitist non-
dominated sorting genetic algorithm for many-objective optimization,’’ in
Proc. Int. Conf. Evol. Multi-CriterionOptim.Cham, Switzerland: Springer,
2013, pp. 307–321.

[30] H. Jain and K. Deb, ‘‘An evolutionary many-objective optimization algo-
rithm using reference-point based nondominated sorting approach, Part II:
Handling constraints and extending to an adaptive approach,’’ IEEE Trans.
Evol. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014.

[31] Y. Zhu, Y. Qin, D. Yang, H. Xu, and H. Zhou, ‘‘An enhanced
decomposition-based multi-objective evolutionary algorithm with a self-
organizing collaborative scheme,’’ Expert Syst. Appl., vol. 213, Mar. 2023,
Art. no. 118915.

[32] L. Cai, S. Qu, Y. Yuan, and X. Yao, ‘‘A clustering-ranking method for
many-objective optimization,’’ Appl. Soft Comput., vol. 35, pp. 681–694,
Oct. 2015.

[33] R. Denysiuk, L. Costa, and I. E. Santo, ‘‘Clustering-based selection for
evolutionary many-objective optimization,’’ in Proc. Int. Conf. Parallel
Problem Solving Nature. Cham, Switzerland: Springer, 2014, pp. 538–547.

[34] H. Zhang, S. Song, A. Zhou, and X.-Z. Gao, ‘‘A clustering based multi-
objective evolutionary algorithm,’’ in Proc. IEEE Congr. Evol. Comput.
(CEC), Jul. 2014, pp. 723–730.

[35] S. Das and P. N. Suganthan, ‘‘Differential evolution: A survey of the state-
of-the-art,’’ IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, Feb. 2011.

[36] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems. New York, NY, USA:
Springer, 2007, vol. 5.

[37] K. Deb and R. B. Agrawal, ‘‘Simulated binary crossover for continuous
search space,’’ Complex Syst., vol. 9, p. 115–148, Apr. 1995.

[38] M. Li, S. Yang, and X. Liu, ‘‘Pareto or non-Pareto: Bi-criterion evolution
in multiobjective optimization,’’ IEEE Trans. Evol. Comput., vol. 20, no. 5,
pp. 645–665, Oct. 2016.

[39] S. Wang, H. Zhang, Y. Zhang, A. Zhou, and P. Wu, ‘‘A spectral
clustering-based multi-source mating selection strategy in evolutionary
multi-objective optimization,’’ IEEE Access, vol. 7, pp. 131851–131864,
2019.

[40] E. Zitzler and S. Künzli, ‘‘Indicator-based selection in multiobjective
search,’’ in Proc. Int. Conf. Parallel Problem Solving Nature. Berlin,
Germany: Springer, 2004, pp. 832–842.

[41] S. Huband, L. Barone, L. While, and P. Hingston, ‘‘A scalable multi-
objective test problem toolkit,’’ in Proc. Int. Conf. Evol. Multi-Criterion
Optim. Berlin, Germany: Springer, 2005, pp. 280–295.

[42] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, ‘‘Scalable multi-objective
optimization test problems,’’ in Proc. Congr. Evol. Comput. (CEC), vol. 1,
May 2002, pp. 825–830.

[43] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari,
‘‘Multiobjective optimization test instances for the CEC 2009 special
session and competition,’’ Univ. Essex, Colchester, U.K. Nanyang Technol.
Univ., Singapore, Tech. Rep., 264, 2008, pp. 1–30.

[44] W. Wang, S. Yang, Q. Lin, Q. Zhang, K.-C. Wong, C. A. C. Coello, and
J. Chen, ‘‘An effective ensemble framework for multiobjective optimiza-
tion,’’ IEEE Trans. Evol. Comput., vol. 23, no. 4, pp. 645–659, Aug. 2019.

[45] R. Wang, Q. Zhang, and T. Zhang, ‘‘Decomposition-based algorithms
using Pareto adaptive scalarizing methods,’’ IEEE Trans. Evol. Comput.,
vol. 20, no. 6, pp. 821–837, Dec. 2016.

[46] X. Cai, Y. Li, Z. Fan, and Q. Zhang, ‘‘An external archive guided multiob-
jective evolutionary algorithm based on decomposition for combinatorial
optimization,’’ IEEE Trans. Evol. Comput., vol. 19, no. 4, pp. 508–523,
Aug. 2015.

[47] Y. Hua, Y. Jin, and K. Hao, ‘‘A clustering-based adaptive evolutionary
algorithm for multiobjective optimization with irregular Pareto fronts,’’
IEEE Trans. Cybern., vol. 49, no. 7, pp. 2758–2770, Jul. 2019.

[48] S. Jiang and S. Yang, ‘‘A strength Pareto evolutionary algorithm based on
reference direction for multiobjective and many-objective optimization,’’
IEEE Trans. Evol. Comput., vol. 21, no. 3, pp. 329–346, Jun. 2017.

[49] Y. Liu, H. Ishibuchi, N. Masuyama, and Y. Nojima, ‘‘Adapting reference
vectors and scalarizing functions by growing neural gas to handle irregular
Pareto fronts,’’ IEEE Trans. Evol. Comput., vol. 24, no. 3, pp. 439–453,
Jun. 2020.

[50] Q. Fan and X. Yan, ‘‘Solving multimodal multiobjective problems through
zoning search,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 8,
pp. 4836–4847, Aug. 2021.

[51] N. Zeng, H. Li, Z. Wang, W. Liu, S. Liu, F. E. Alsaadi, and X. Liu, ‘‘Deep-
reinforcement-learning-based images segmentation for quantitative anal-
ysis of gold immunochromatographic strip,’’ Neurocomputing, vol. 425,
pp. 173–180, Feb. 2021.

[52] B. Shen, Z. Wang, and H. Qiao, ‘‘Event-triggered state estimation for
discrete-time multidelayed neural networks with stochastic parameters
and incomplete measurements,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 5, pp. 1152–1163, May 2017.

[53] X. Ge, Q.-L. Han, and Z. Wang, ‘‘A dynamic event-triggered transmission
scheme for distributed set-membership estimation over wireless sensor
networks,’’ IEEE Trans. Cybern., vol. 49, no. 1, pp. 171–183, Jan. 2019.

[54] Y. Yuan, H. Yuan, Z. Wang, L. Guo, and H. Yang, ‘‘Optimal control for
networked control systems with disturbances: A delta operator approach,’’
IET Control Theory Appl., vol. 11, no. 9, pp. 1325–1332, Jun. 2017.

[55] E. Tian, Z.Wang, L. Zou, andD. Yue, ‘‘Chance-constrainedH∞ control for
a class of time-varying systems with stochastic nonlinearities: The finite-
horizon case,’’ Automatica, vol. 107, pp. 296–305, Jan. 2019.

[56] Q. Li, B. Shen, Z. Wang, T. Huang, and J. Luo, ‘‘Synchronization
control for a class of discrete time-delay complex dynamical networks:
A dynamic event-triggered approach,’’ IEEE Trans. Cybern., vol. 49, no. 5,
pp. 1979–1986, May 2019.

[57] M. Wang, Z. Wang, H. Dong, and Q.-L. Han, ‘‘A novel framework for
backstepping-based control of discrete-time strict-feedback nonlinear sys-
tems with multiplicative noises,’’ IEEE Trans. Autom. Control, vol. 66,
no. 4, pp. 1484–1496, Apr. 2021.

SHENGHAO ZHOU received the B.Sc. degree
in computer science from the Jiaxing Univer-
sity Nanhu College. He is currently pursuing
the M.Sc. degree in computer science with
Hangzhou Normal University. His research inter-
ests include evolutionary computation, optimiza-
tion, and machine learning.

2568 VOLUME 11, 2023



S. Zhou et al.: Multi-Objective Evolutionary Algorithm With Hierarchical Clustering-Based Selection

ZE CHEN received the master’s degree in project
management from the University of Quebec,
Canada, in 2015. He is currently working as
an Experimenter with Hangzhou Normal Univer-
sity. His research interests include data mining,
machine learning, and intelligent health.

QI LI received the B.Eng. degree in electrical
engineering and automation from the Jiangsu Uni-
versity of Technology, Changzhou, China, in 2013,
and the Ph.D. degree in control science and
engineering from Donghua University, Shanghai,
China, in 2018. From June 2016 to July 2016,
she was a Research Assistant with the Department
of Mathematics, Texas A&M University at Qatar,
Qatar. From November 2016 to November 2017,
she was a Visiting Ph.D. Student with the Depart-

ment of Computer Science, Brunel University London, U.K. She is currently
anAssociate Professor withHangzhouNormal University, Hangzhou, China.
Her current research interests include network communication, complex
networks, and sensor networks. She is a very active reviewer for many
international journals.

MENGJUN GU received the B.Sc. degree in
information technology from Zhejiang Sci-Tech
University, in 2006, and the M.B.A. degree from
the Zhejiang University of Technology, in 2009.
He is currently working with China Telecom
Zhejiang Branch. His research interests include
neural networks and digital system construction.

ZHOUCHENG BAO is currently pursuing the
M.Sc. degree in electronic information with
Hangzhou Normal University. His research inter-
ests include meta-heuristic algorithms and data
mining.

WENDA HE is currently pursuing the M.Sc.
degree in electronic information with Hangzhou
Normal University. His research interests include
machine learning and semi-supervised algorithms.

WEIGUO SHENG (Member, IEEE) received
the M.Sc. degree in information technol-
ogy from the University of Nottingham, U.K.,
in 2002, and the Ph.D. degree in computer science
from Brunel University, U.K., in 2005. Then,
he worked as a Researcher with the University
of Kent, U.K., and Royal Holloway, University
of London, U.K. He is currently a Professor
with Hangzhou Normal University. His research
interests include evolutionary computation, data

mining/clustering, pattern recognition, and machine learning.

VOLUME 11, 2023 2569


