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ABSTRACT Multicriteria sorting involves assigning the objects of decisions (actions) into a priori known
ordered classes considering the preferences of a decisionmaker (DM). Two newmulticriteria sortingmethods
were recently proposed by the authors. These methods are based on a novel approach called interval-based
outranking which provides the methods with attractive practical and theoretical characteristics. However,
as is well known, defining parameter values for methods based on the outranking approach is often very
difficult. This difficulty arises not only from the large number of parameters and the DM’s lack of familiarity
with them, but also from imperfectly known (even missing) information. Here, we address: i) how to elicit
the parameter values of the two new methods, and ii) how to incorporate imperfect knowledge during the
elicitation. We follow the preference disaggregation paradigm and use evolutionary algorithms to address
it. Our proposal performs very well in a wide range of computational experiments. Interesting findings are:
i) the method restores the assignment examples with high effectiveness using only three profiles in each
limiting boundary or representative actions per class; and ii) the ability to appropriately assign unknown
actions can be greatly improved by increasing the number of limiting profiles.

INDEX TERMS Evolutionary algorithms, imperfect information, multiple criteria analysis, multiple criteria
ordinal classification, outranking methods.

I. INTRODUCTION
Among the different types of problems addressed by the
multiple-criteria decision analysis (MCDA) approaches, the
multiple-criteria ordinal classification, or sorting problem,
has received a great interest lately given its interesting the-
oretical challenges and its applicability in real scenarios.
In multiple-criteria ordinal classification, a set of decision
alternatives (objects of decision, actions) must be assigned
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to a set of classes. These classes, also called categories
in the related literature, have been predefined and ordered
using the decision maker’s (DM) preferences. In this paper,
we are interested in multi-criteria ordinal classification meth-
ods inspired on the outranking approach. In most cases, the
definition of each class can be made through a reference deci-
sion action (profile) that can be used as a characteristic action
to represent the class as in ELECTRE TRI-C [1] or as a limit-
ing boundary that separates a pair of classes as in ELECTRE
TRI-B [2]. Then, to perform the assignment of new actions,
both the profiles and the actions-to-be-assigned are evaluated
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by the DM based on a set of conflicting criteria. With the
aim to provide a better description of the classes, ELECTRE
TRI-C, (respectively ELECTRE TRI-B), was extended to
ELECTRE TRI-nC, (respectively, ELECTRE TRI-nB), in [3]
(respectively, [4]); these extensions use a set of profiles in
the definition of each class (respectively, boundary). So, it is
possible to consider more pieces of information regarding
the relations between actions to be assigned and reference
profiles to, potentially, provide better decision aid.

In ELECTRE methods, the elicitation of model’s param-
eters is a real concern. When using a direct elicitation
method, the DM, commonly aided by a decision analyst,
must explicitly set the parameter values representing his/her
preferences. Several authors (for example, [5], [6], [7]) have
argued against the direct elicitation since: i) the DM may
not be able to completely understand the meaning of the
model’s parameters; ii) the DM may not be accessible to
involve in a long and complex process of providing appro-
priate numerical values, which usually are very unfamiliar
to her/him; and iii) the DM may be a collective entity with
conflicting values and ill-defined preferences. Alternatively,
when using an indirect elicitation method, (e.g., the so-called
preference disaggregation analysis), the DM typically uses
his/her holistic judgments to provide/accept a set of refer-
ence examples inherently containing the DM’s preferences;
thus, through a regression-inspired procedure, a process of
extraction must be performed in order to infer the parameter
values underlying the preferences contained in the reference
examples. Under some strong simplifications, the extraction
of outranking model parameters using an indirect elicita-
tion method can be addressed through classical mathemati-
cal programming techniques as in [8]. But such an indirect
parameter elicitation becomes a very complex optimization
problem when veto thresholds should be inferred; this is
because inferring all the parameters simultaneously requires
solving non-linear optimization problems with nonconvex
constraints [8]. In such cases, evolutionary algorithms should
be used as in [7], [9], and [10]. These works have found that
the non-linearity of the problem together with complex con-
straints are usually better handled by evolutionary algorithms
than other exhaustive and/or metaheuristic approaches. Less
sophisticated metaheuristic approaches may be used when
the preference model does not include veto, as in [11]. How-
ever, this type of approaches neglects information required to
encompass important features of reality such as the capacity
to identify veto situations when comparing two actions (that
is, when an action is so bad on a given criterion that it cannot
be better than the other action in general terms, regardless of
their evaluation on the other criteria). Fernández et al. [12]
proposed an evolutionary algorithm to infer the whole set
of ELECTRE TRI-nB model parameters. However, only the
so-called pseudo-conjunctive method was used in that work;
and a single decision rule is then used for the optimization
process. As explained below, further pieces of information
can be used to improve the decision process. To our present
knowledge, there is no indirect parameter elicitation method

for ELECTRE TRI-nC. Perhaps this is due to the inference
process being more complicated than in the case of ELEC-
TRE TRI-nB, since the former requires working with two
decision rules that are equivalent by the transposition oper-
ation (consisting of reversing both the order of categories and
the sense of preferences) [1], [13].

As stated in [14], indirect elicitation methods are generally
attractive for the DM, but, to a great extent, their perfor-
mance is degraded when there is scarce information about the
DM’s preferences (a relatively small reference set of decision
examples): in this case, the indirect elicitation methods often
suggest many solutions in the parameter space [15]. All these
distributed solutions satisfy the known preferences of the
DM. This is imprecise information that should be modelled
in an appropriate way.

Thus, imprecise (maybe arbitrary) setting of the outranking
model’s parameters may be a result of either a direct or
indirect elicitation process. For a better model of human
hesitancy, many extensions of outranking methods have been
proposed that use fuzzy-based approaches (e.g., intuitionistic
fuzzy sets, hesitant fuzzy sets, interval-valued fuzzy numbers,
etc.) [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26]. It should be underlined that all these fuzzy-based exten-
sions of outranking methods are devoted to solving choosing
and ranking decision problems. To the best of our knowledge,
there is no fuzzy extension of the ELECTRE TRI-nC and
ELECTRE TRI-nB methods.

To deal with imprecise information in model parameters
and criterion scores, Fernández et al. [27] recently devel-
oped two multi-criteria ordinal classification approaches,
INTERCLASS-nB and INTERCLASS-nC, which extend
ELECTRE TRI-nB and ELECTRE TRI-nC to the interval
framework. As Fernández et al. [27] argue, there are situa-
tions where imperfect knowledge about the parameter values
may be characterized in a natural way by interval numbers,
which are representations of magnitudes of unknown precise
values. Since setting a parameter value as an interval num-
ber is easier than as a precise value, INTERCLASS-nB and
INTERCLASS-nC reduce the difficulty of direct elicitation
of model parameters. However, when the DM is a mythical
entity (e.g., the public opinion), or an inaccessible person
(e.g., the CEO of a multinational enterprise), INTERCLASS-
nB and INTERCLASS-nC should be complemented by an
indirect elicitation procedure, which, learning from decision
examples, allows to define the parameter values of the model
as interval numbers.

The research problem is defined through the following
objective and research questions. Given the difficulty of a
direct elicitation of model parameters, the aim of this paper
is to develop an effective method that allows to identify
the parameter values from some assignment examples in
the context of the INTERCLASS-nB and INTERCLASS-nC
methods. Some parameters may be directly set as interval
numbers, whereas others may be inferred. Thus, this paper
combines two ways to reduce the difficulty of parameter
elicitation. Our approach is extensively assessed, in-sample

VOLUME 11, 2023 3045



E. Fernández et al.: Inferring Preferences for Multi-Criteria Ordinal Classification Methods

and out-of-sample, in its ability to restore the assignment
examples and the capacity to make consistent assignments of
new actions.

We pretend to answer the following research questions:

- Concerning INTERCLASS-nB (respectively
INTERCLASS-nC), which is the appropriate number
of limiting profiles (respectively, characteristic or rep-
resentative actions) to achieve a good characterization
of the limiting boundary between adjacent classes (resp.
the related class)?

- Howmuch is the effectiveness of the inference approach
depending on the number of criteria and classes?

- Howmuch is the effectiveness depending on the number
of assignment examples?

- What is the capacity of the inference approach to, regard-
ing each method, learn from the assignment examples
provided by the DM.

- How does the robustness of the inference approach
behave with respect to many diverse preference models
(DMs)?

The novelty of this proposal rests on the following bases:

• This is the first approach to infer preference model
parameters of a multi-criteria ordinal classification
method in which classes are described by representative
actions, as in ELECTRE TRI-nC;

• Until now, there were two alternative ways of dealing
with the difficulty of eliciting the preference model
parameters: modeling imprecision and inferring param-
eters from decision examples. This paper presents the
first approach in which both forms are combined;

• INTERCLASS-nB and INTERCLASS-nC are here
fully characterized from a preference disaggregation
paradigm, and the effectiveness of both methods are
compared in a wide range of problems; interesting con-
clusions follow from such a comparison.

The first question was kept open in [27]. Since finding formal
theoretical answers to the above questionsmay be impossible,
we perform a simulation experiment in which a wide range
of DM preferences are considered, and the effectiveness of
the inference method is characterized for different instances
of classes, criteria, and number of assignment examples.
We extend accuracy measures from the literature to prop-
erly characterize the effectiveness of the model; however,
these new measures imply complex optimization problems
that must be addressed through metaheuristics. These tech-
niques have been widely used in several contexts (e.g., [28],
[29], [30]). Particularly, we exploit the canonical version of
a genetic algorithm to address the proposed optimization
problems.

The remainder of this document is presented as fol-
lows. In Section II, we give a brief description of the
INTERCLASS-nB and INTERCLASS-nC methods as well
as the interval outranking approach, a fundamental compo-
nent of these methods. Section III presents our main propos-
als on how to infer the parameter values of both methods.

In Section IV, we describe an extensive computational exper-
iment and its results evaluating our elicitation methods.
Finally, Section V concludes this paper.

II. BACKGROUND
A. FUNDAMENTAL NOTIONS ON INTERVAL NUMBERS
The main concept of interval analysis theory [31], [32] is the
so-called interval number. We now present a description of
such a concept.

An interval number describes a quantity not necessarily
defined whose real value lies within a range of real num-
bers, I = [I−, I+]. The limits of this range, I−, I+ ∈ R,
are known. Thus, by definition, a real number r can be
represented by the interval number R =

[
r−, r+

]
, where

r = r− = r+. Furthermore, any real number i ∈ I is
called realization of the interval number I . To state clearer
definitions, in the rest of this document, interval numbers will
be denoted by boldface italic letters.

In order to estimate the credibility degree of an interval
number I = [i−, i+] being greater than or equal to another
interval number J = [j−, j+], the following possibility func-
tion defined in [33] is used by [34]:

p(I ≥ J) =


1 if p{IJ}> 1,
0 if p{IJ}< 0,
p{IJ} otherwise.

(1)

where p{IJ} =
i+−j−

(i+−i−)+(j+−j−)
.

Furthermore, if i+ = i− and j+ = j−, then

p (I ≥ J) =

{
1 if i−≥j−,
0 otherwise.

The possibility function defined in (1) indicates that p(I ≥
J) is the credibility degree of the assertion ‘‘given that both
realizations are established, i ∈ I is not less than j ∈ J’’.
Thus, the possibility function denotes robustness of I ≥ J ,
even when these quantities are undetermined.

B. INTERVAL-BASED OUTRANKING APPROACH
Fernández et al. [34] proposed an extension of the outranking
approach whose main feature is its ability to deal with the
imperfect knowledge involved in the decision maker pref-
erences and the impacts of actions on criteria. These types
of imperfect information can be modeled to such an exten-
sion using both interval numbers and the traditional pseudo-
criteria based on discriminating thresholds (e.g., [35], [36]).

The formal definition of the interval outranking approach
depends on the following notation. Let A be a set of potential
actions. Each x ∈ A is evaluated on a family of N coherent
criteria (as in the sense of [37]) G, which, without loss of
generality, increase with preference. Now, assume that G1 ⊆

G is the set of criteria whose imperfect knowledge can be
modeled using discriminating thresholds as is traditionally
done with later ELECTRE methods. And that G2 ⊆ G is the
set of criteria whose imperfect knowledge can be modeled
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using interval numbers; that is, each gj ∈ G2 is an interval
number of the form gj(x) = [g−j (x), g

+

j (x)]. The interval
outranking approach requires the assignment of appropriate
values to the following parameters to satisfactorily reflect the
DM’s preferences:

• wj =
[
w−j ,w

+

j

]
, the weight of criterion gj;

• vj =
[
v−j , v

+

j

]
, the veto threshold of criterion gj; and

• λ = [λ−, λ+], that reflects a majority threshold.
Where j = 1, · · · ,N . Furthermore, it is a straightforward
work for the DM to assign values to the preference threshold
pj (·), and the indifference threshold, qj (·); pj (·) ≥ qj (·) ≥ 0.
As in the classical outranking approach, the interval outrank-
ing approach estimates a credibility index, η (x, y) ∈ [0, 1],
between pairs of actions of the assertion ‘‘x is at least as
good as y’’, xSy. The detailed procedure used by the interval-
based outranking approach to estimate this credibility index
is described in Appendix C.

The approach assumes that the DM uses a credibility
threshold δ > 0.5 such that if η (x, y) ≥ δ then the assertion
‘‘x is at least as good as y’’ is accepted. Using this threshold,
the following relations are defined.
Definition 1 δ − λ-Relations:
xS (δ,λ) y⇔ η (x, y) ≥ δ is called δ−λ-interval outrank-

ing relation,
xP (δ,λ) y ⇔ η (x, y) ≥ δ and η (y, x) < δ is called

δ − λ-interval preference relation,
xI (δ,λ) y ⇔ η (x, y) ≥ δ and η (y, x) ≥ δ is called

δ − λ-interval indifference relation,
xR (δ,λ) y ⇔ η (x, y) < δ and η (y, x) < δ is called

integrated δ − λ-interval incomparability relation.
The concept of dominance is also extended in [34]. In that

work, dominance is not crisp, but there is a ‘‘degree of credi-
bility’’, α, of the dominance.
Definition 2 Extended Dominance:
Let x 6= y be two actions and α ∈ R; then y is α-dominated

by x, denoted by xD(α)y, if and only if the following condi-
tions are fulfilled:

i gj(x) ≥ gj(y), for all gj ∈ G1,

ii min
gj∈G2

p
(
gj (x) ≥ gj (y)

)
≥ α ≥ 0.5.

C. THE INTERCLASS-NB METHOD
Fernández et al. [34] proposed an extension of the outranking
approach whose main feature is its ability to deal with the
imperfect knowledge involved in the decision maker prefer-
ences and the impacts of actions oncriteria.
Condition 1:
LetC be a finite set of classesC={C1, · · · ,Ck , · · · ,CM },

M ≥ 2, ordered in increasing preference. In INTERCLASS-
nB, the boundaries between categories Ck and Ck+1 are
described by a set of limiting profiles, Bk =

{
bk,j

}
, such that

for given δ > 0.5 and λ > [0.5, 0.5] the following conditions
are fulfilled:

i. Ck is defined through a set of reference upper limit-
ing profiles, Bk , and through a set of reference lower

limiting profiles, Bk−1. It is assumed that all bk,j of Bk
are in Ck+1(that is, all classes are closed from below);

ii. B0 (respectively, BM ) is composed of the anti-ideal
(respectively, the ideal) action;

iii. For all k , there is no pair (bk,j, bk,i) such that
bk,jP (δ,λ) bk,i;

iv. For all k and h such that k < h, there is no pair (bk,j,
bh,i) such that bk,jP (δ,λ) bh,i;

v. For all k and for each limiting action w in Bk , there
exists at least one action z in Bk+1 in such a way that
zD(α)w, α ≥ δ;

vi. For all k and for each limiting action w in Bk+1, there
exists at least one z in Bk in such a way that wD(α)z,
α ≥ δ.

vii. For all k and for each limiting action w in Bk , exists
at least one z in Bk+1 in such a way that zP (δ,λ)w,
α ≥ δ.

The following relations among profiles and decision actions
are defined by INTERCLASS-nB:
• xS (δ,λ)Bk if and only if, for all bk,j ∈ Bk , either
xR (δ,λ) bk,j or xS (δ,λ) bk,j (the latter should hold for
at least one bk,j);

• BkP (δ,λ) x if and only if, for all bk,j ∈ Bk , bk,jR (δ,λ) x
or bk,jI (δ,λ) x or bk,jP (δ,λ) x (the latter should hold
for at least one bk,j).

The assignment procedures constituting the
INTERCLASS-nB method are based on the following two
logics:

Pseudo-conjunctive procedure
i. Compare x to Bk for k = M − 1, . . . , 0 until the first

value, k , such that xS (δ,λ)Bk ;
ii. Assign x to class Ck+1.
Pseudo-disjunctive procedure
i. Compare x to Bk for k = 1, . . . ,M until the first value,
k , such that BkP (δ,λ) x;

ii. Assign x to class Ck .

D. THE INTERCLASS-NB METHOD
We continue using the previous notation to present now a
description of the INTERCLASS-nC method following [34].

In the INTERCLASS-nC method, the set of deci-
sion actions characterizing class Ck , k = 1, . . . ,M ,
is denoted by Rk =

{
rk,j; j = 1, . . . , card (Rk)

}
, where

{R0,R1, . . . ,RM ,RM+1} is the set of all the characterizing
decision alternatives (R0, and RM+1 are composed of the
anti-ideal and ideal actions, respectively). Assume a given
δ > 0.5.
Condition 2:
Each element in Rk must fulfill the following conditions:
i. For all k and for each action w in Rk , there is at least

one action z in Rk+1 such that zD (α)w (α ≥ δ).
ii. For all k and for each action w in Rk+1, there is at least

one action z in Rk such that wD (α) z (α ≥ δ).
iii. For all k and for each action w in Rk+1, there is no

action z in Rk such that zS (0.5,λ)w.
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The credibility index of the outranking relation of action x
over the subset Rk is defined as follows:

η ({x} ,Rk) = max
j=1,··· ,card(RK )

{
η
(
x, rk,j

)}
.

While the credibility index of the outranking relation of sub-
set Rk over an action x is defined as follows:

η (Rk , {x}) = max
j=1,··· ,card(RK )

{
η
(
rk,jx

)}
.

These credibility indices allow to build interval crisp outrank-
ing relations between decision actions and sets of character-
istic actions as follows:

xS (δ,λ)Rk ⇔ η ({x} ,Rk) ≥ δ;

RkS (δ,λ) x ⇔ η (Rk , {x}) ≥ δ.

The selection function is defined as i ({x} ,Rk) =

min {η ({x} ,Rk) , η (Rk , {x})}.
The assignments of alternatives to classes are performed

in INTERCLASS-nC using two conjoint rules, called the
descending rule and the ascending rule, which should be
used conjointly, as in both ELECTRE TRI-C and ELECTRE
TRI-nC. We now describe these rules.

Descending assignment rule
i. Compare x to Rk for k = M , . . . , 0, until the first value,
k , such that xS (δ,λ)Rk ;

ii. For k = M , select CM as a possible class to assign
action x.

iii. For 0 < k < M , if i ({x} ,Rk) ≥ i ({x} ,Rk+1), then
select Ck as a possible class to assign x; otherwise,
select Ck+1.

iv. For k = 0, select C1 as a possible class to assign x.
Ascending assignment rule
i. Compare x to Rk for k = 1, . . . ,M + 1, until the first

value, k , such that RkS (δ,λ) x;
ii. For k = 1, select C1 as a possible category to assign

action x.
For 1 < k < M + 1, if i ({x} ,Rk) ≥ i ({x} ,Rk−1), then
select Ck as a possible class to assign x; otherwise, select
Ck−1.

III. AN INDIRECT ELICITATION FOR THE PARAMETERS OF
THE INTERCLASS-NB AND INTERCLASS-NC METHODS
This section details the main aspects of the approach to infer
the parameters of the two multi-criteria ordinal classification
methods.
The framework of the inference procedure following the

PDA paradigm consists of five stages. Its goal is to find an
INTERCLASS-nB (respectively, INTERCLASS-nC) model
that best reproduces the decision examples provided by the
decision-maker.
- Stage 1 consists of defining the input data for each model:

A coherent family of criteria [37], the sequence of classes,
the set of actions (characterized by their performance on the
criteria).

-Stage 2 is associated with the preference information from
the DM, that is, each action to a class according to the
preferences of the DM. It is important to note that these
assignments could come from past decisions, from a subset
of the actions that the DM originally required to assign to the
classes, or from a set of fictitious actions consisting of actions
that can be easily judged by the DM.
-Stage 3 concerns the definition of an optimization

problem for each method, such that a specific accu-
racy measure is exploited for each of these methods (see
Subsections III.A and III.B).
-Stage 4 uses an evolutionary algorithm to address the

optimization problem(s) of Stage 3. This algorithm intends
to find at least one set of parameter values compatible with
the decision examples provided by the DM. If such a set is
not found, the DM is asked to revisit her/his preference infor-
mation. If the information determined by the decision-maker
is consistent, then at least one compatible set of preference
parameters with such information exists [38].
-Stage 5 assesses the set of parameter values found by the

genetic algorithm. If the DM agrees with the recommenda-
tion, the procedure stops; otherwise, further information from
the DM is required and/or it should be modified.

A. AN OPTIMIZATION-BASED INFERENCE METHOD OF
THE INTERCLASS-NB METHOD
The credibility index of the outranking relation of x
over y, η (x, y) depends on the values assigned to the
parameters of the interval outranking model, =

{w1, · · · ,wn, v1, · · · , vn,λ, δ}; but setting a convenient set
of parameters is not trivial. We present here a procedure in
which, using a set of assignment examples (reference set)
provided by the DM, it is possible to assign appropriate
values to the parameters of the interval outranking model
to satisfactorily represent the DM’s preferences. We use the
notation from Section II to define such a procedure.

Let T be a set of decision actions. We assume that each
x ∈ T is assigned by the DM to a class Ck , C =

{C1, · · · ,Ck , · · · ,CM }, M ≥ 2. Classes in C are ordered in
increasing preference. Assignments of alternatives to classes
are holistic decisions made by the DM; therefore, his/her
multi-criteria preferences are reflected in them. We assume
that these decisions can be represented by an INTERCLASS-
nB model, { ,B0, · · · ,BM }; that is, by the parameters of
the interval outranking model, , and M + 1 sets of limit-
ing profiles. Since B0 and BM are composed, respectively,
of the anti-ideal and the ideal actions, we are interested in
finding only an approximation to the set of actual preference
parameters, nBDM = { ,B1, · · · ,BM−1}. Therefore, the
most appropriate set of inferred preference parameters to fit
the assignments expressed by the DM, nB∗inf , is the one that
minimizes the number of inconsistencies with respect to the
expressed preferences. Let

x −→
nBDM

Ck

3048 VOLUME 11, 2023



E. Fernández et al.: Inferring Preferences for Multi-Criteria Ordinal Classification Methods

FIGURE 1. Chromosome of individual representing nBinf .

FIGURE 2. Chromosome of individual representing nC inf .

denote that the DM has assigned x to class Ck ,

x −→
nBinf

Ck

denote that x is assigned to class Ck using the inferred
decision model nBinf , and ξnB be the set of models fulfilling
Condition 1 and any constraints established by the DM. The
optimization problem of minimizing the number of incon-
sistencies between nBDM and a given nBinf is equivalent to
maximizing the following effectiveness measure:

maximize
nBinf ∈ξnB

1−
NI
(
nBDM , nBinf

)
card(T )

(2)

where
NI
(
nBDM , nBinf

)
=
∑

x∈T NI
(
x, nBDM , nBinf

)
, and

NI
(
x, nBDM , nBinf

)
=

 1 if x −→
nBDM

Ck and x −→
nBinf

Ch with k 6= h,

0 otherwise.

B. AN OPTIMIZATION-BASED INFERENCE METHOD OF
THE INTERCLASS-NC METHOD
In a similar order to the ideas presented in Subsection III.B,
we describe here an inference method to obtain the parameter
values of the INTERCLASS-nC method. Such a method also
uses a set of assignment examples where the DM assigns
actions to preferentially ordered classes. Let D be this set
of actions, where each x ∈ D is assigned by the DM to an
element of the set of classes C = {C1, · · · ,Ck , · · · ,CM }
or to a range of classes when the ascending and descending
assignments are not the same. Therefore, our goal is to find a
model of the DM’s preferences by inferring a configuration of
the INTERCLASS-nC method, nC∗inf =

{
∗,R∗1, · · · ,R

∗
M

}
,

that fulfills Condition 2 and is as consistent as possible with
the assignments made by the DM.

Nevertheless, defining a fitness function here is not as
straightforward as in the previous section. This is because
each x is not necessarily assigned to only one class but a set
of classes. Thus, if χDM is the set of classes to which the DM
has assigned x and χinf is the set of inferred classes, if we
define the accuracy as

Ac
(
x, nCDM , nCinf

)
=

{
1 if χDM = χinf ,
0 otherwise;

then, we might be too pessimistic since only one misclas-
sification (perhaps among many classes) would lead to a total
error. On the other hand, if we define

Ac
(
x, nCDM , nCinf

)
=

{
1 if χDM ∩ χinf 6= ∅,
0 otherwise;

then we might be too optimistic. Therefore, we use here the
so-called F1-score [39], defined through precision, P, and
recall, R, as [40]: F1-score = 2PR/(P + R). We adapt it to
define the following optimization problem (cf. [11]):

maximize
nC inf ∈ξnC

Ac
(
nCDM , nCinf

)
card(D)

, (3)

where

Ac
(
nCDM , nCinf

)
=

∑
x∈D

Ac
(
x, nCDM , nCinf

)
, and

Ac
(
x, nCDM , nCinf

)
=

2
∣∣χDM ∩ χinf ∣∣
|χDM | +

∣∣χinf ∣∣ .
C. AN EVOLUTIONARY ALGORITHM FOR ADDRESSING
PROBLEMS (2) AND (3)
Given the nonlinearity of Problems (2) and (3) and the previ-
ous results published in several related research works (e.g.,
[7], [10], [12], [14]), we implement here a genetic algorithm
to address these issues. Even when the main aspects of such
algorithm are suitable for addressing both problems, there are
some characteristics that are specific of each problem. Thus,
we now describe the specific steps to follow. As in Section II,
we assume that there are N criteria andM classes.
Specific steps to configure nBinf :
Individuals are represented by a real-valued vector com-

posed of K = N (2+ J (M − 1)) + 1 genes as in Figure 1,
where J is the number of profiles used to separate each pair
of classes.
Specific steps to configure nC inf :

For nC inf , individuals are represented by a real-valued
vector composed of N (2+ OM) + 1 genes as in Figure 2,
where O is the number of profiles used to characterize each
class.

D. GENERAL STEPS OF THE EVOLUTIONARY ALGORITHM
Each population used in the algorithm contains ps individu-
als. The individuals of the initial population of the algorithm
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FIGURE 3. Possible crossover points for configuring nBmodel .

FIGURE 4. Possible crossover points for configuring nCmodel .

are randomly generated fulfilling the following constraints
(the specific values are established by the DM/analyst pair):

vimin ≤ vi ≤ vimax ,∑
wi = [1, 1] ,

gjmin ≤ gi ≤ gjmax ,

λmin ≤ λ ≤ λmax . (4)

The generation of the weights could be in several ways.
In the experiments below, we use the method presented in
[41], where N − 1 numbers, u1, · · · , uN−1, are uniformly
randomly generated in (0, 1); later, these numbers are ordered
in ascending order to calculate N values as ω1 = u1 − 0,
ωi = ui − ui−1(i = 2, · · ·N − 1) and ωN = 1 − uN−1.
Such a method ensures

∑N
i=1 ωi = 1. Finally, the weights

used in the integrated outranking approach could be defined
as wi = [(1 −

^
wi)ωi, (1 +

^
wi)ωi]; where

^
wi is a value that

copes with the imperfect knowledge in the DM’s mind about
the actual weight of the ith criterion.

In our algorithm, the selection of the parents is by binary
tournament, and we adopt one-point crossover. To maintain
consistency in the weights, we assume that all the genes cor-
responding to theweights form an indivisible unit. Thus, there
areK−N possible crossover points as shown in Figure 3 to set
nBinf and NOM + 1 to set nC inf as shown in Figure 4. Once
the two selected parents are crossed in a randomly selected
crossover point, one offspring individual is generated; such
individual is then mutated with a given probability. The
mutation of an individual consists of the random generation
of each gene unity fulfilling the constraints set (4). At each
generation of the algorithm, ps (population size) offspring
individuals are generated and (possibly) mutated. All the
offspring and parent individuals are entered into within a
pool from which ps− 1 individuals are randomly selected to
form the population in the next generation of the algorithm.
We perform elitism in one individual per generation. The
fitness of each individual is assessed based on the objec-
tives of Problem (2) or Problem (3), as corresponds. After
a given number of generations, the algorithm returns the
chromosome that represents the feasible solutions with the

best fitness values in the population; let these solutions form a
set called bestknown. The chromosome representing bestknown
is obtained as the centroid (average of the parameters) of
the individuals within bestknown. If the centroid reaches the
best-known fitness value, it is considered as the best solution.
If not, then the solution in bestknown closest to the centroid is
considered as the best solution from the preliminary run. Such
distance is calculated as the normalized Euclidean distance of
the central values of the parameters. To reduce the effects of
randomness, we performed twenty consecutive preliminary
runs. Starting with the second run, we include the best solu-
tion from the previous run in the initial population.

As one of the classic algorithm setters from the related
literature, we use ParamILS [42] to set the main parameters
of our own algorithm; that is, the size of the population, the
number of generations, the probability of crossover, and the
probability of mutation. The values found by such configura-
tor are, respectively, 200, 200, 60% and 2%. Therefore, these
values are used in this work.

This procedure is formalized in Algorithm 1.

IV. NUMERICAL EXPERIMENTS
In this section, we present the procedure used to assess our
inference approach. Such assessment intends to demonstrate
the ability of our approach to infer the parameter values
of the INTERCLASS-nB and INTERCLASS-nC models by
establishing its effectiveness in i) reproducing the reference
examples of the DM, and ii) appropriately making new
assignments.

The procedure to assess our approach is, first, to simulate
a decision maker that is compatible with the pseudo-
conjunctive INTERCLASS-nB (respectively INTERCLASS-
nC), and whose preference model parameters are known;
second, using the known preference model, to assign a set of
reference actions to ordered classes; third, to exploit the evo-
lutionary algorithm of Subsection III.C by addressing Prob-
lems (2) or (3) in order to infer the parameter values of the
pseudo-conjunctive INTERCLAS-nB or the INTERCLAS-
nC methods; fourth, to obtain an in-sample effectiveness
firstly using the inferred parameters to assign the reference

3050 VOLUME 11, 2023



E. Fernández et al.: Inferring Preferences for Multi-Criteria Ordinal Classification Methods

Algorithm 1 Genetic Algorithm Proposed to Address Prob-
lems (2) and (3)
Require:A set of reference examples, T
Ensure:ρfinal , individual representing the population with the
best fitness values
1: i← 1
2: ρ ← null
3: g← 0
4: Pg← create-Initial-Population ()
{Evolving the solutions for 1000 generations}
5: for g < 1000 do
6: Hg ← create-Offspring (Pg, selection, crossover,
mutation)
7: Pg+1← generate-Population (Pg ∪ Hg)
8: g← g+ 1
9: end for
10: bestknown← find-Best (Pg)
11: ρ ← find-Centroid (bestknown)
12: if ρ is-best (bestknown)
13: ρfinal ← ρ

14: else
15: ρfinal ← find-closest (ρ)

actions to the classes and, later, measuring the proportion of
coincidences; fifth, to obtain an out-of-sample effectiveness
by generating new actions and assigning them to classes
using the known parameters of the model and the inferred
parameters, finally measuring the proportion of coincidences.

A. EXPERIMENTAL INSTANCES
We created a set of experimental instances that would allow
us to obtain sound conclusions. Each instance i used in the
experiments below is constituted of a) an INTERCLASS-nB
or INTERCLASS-nC model, b) a reference set Ti con-
taining mi assignment examples. So, each instance repre-
sents different preferences of the decision maker. We use
20 instances (i = 1, . . . , 20) to determine the results shown
below.

Furthermore, we defined a wide variety of values in the
experiment setup as shown in Table 1.

In our experiment setup, the values of the model param-
eters, shown in the set of Equations (4), were randomly
generated fulfilling:

[2, 2] ≤ vi ≤ [4, 4] ,

ωi ≤ wi ≤ ωi,

[0.5, 0.5] ≤ gj ≤ [7.5, 7.5] ,

[0.51, 0.51] ≤ λ ≤ [0.66, 0.66] . (5)

where ωi =
[
1
N −

(
1
N · 02

)
, 1
N −

(
1
N · 02

)]
and ω̄i =[

1
N +

(
1
N · 02

)
, 1
N −

(
1
N · 02

)]
.

The definition of limiting profiles (respectively character-
istic actions) must fulfill Condition 1 (resp. Condition 2).

TABLE 1. Configurations of the experiments.

B. ASSESSMENT PROCEDURE
We use the following assessment procedure:

1. Use a different number of criteria (N ), classes (M),
assignment examples per class (nclass) and limiting
profiles per boundary (for the INTERCLASS-nB,
card (Bk)) or characterizing actions per class (for the
INTERCLASS-nC, card (Rk)); namely, N = 3, 5, 7;
M = 2, 3, 5; nclass = 3, 5, 9, 12; card (Bk) = 1, 3, 5;
and card (Rk) = 1, 3, 5. For each of these, follow the
steps below.

2. Use 20 instances and, for each instance, randomly
generate an INTERCLASS-nB simulated DM model,
nBDM , with five limiting profiles in each boundary
(except B0 and BM ) or an INTERCLASS-nC simulated
DM model, nCDM , with ten characterizing profiles per
class (excepting R0 and RM+1). There will be a total of
2,160 instances for each method.

3. Create reference decision alternatives x by randomly
generating the values gi, i = 2, · · · ,N . Each gj is
randomly generated in [0.5, 7.5].

4. Use the set of model parameters of the DM (nBDM or
nCDM ) to create the set of assignment examples (T or
D) by assigning the reference actions to the classes.
The assignment policy used by the nBDM model is the
pseudo-conjunctive procedure.

5. Obtain, using the approach of Section III, a set of
parameters nB∗inf or nC

∗
inf as consistent as possible with

the assignments made by the corresponding simulated
DM model. The maximum consistency is identified
with the optimal solution to Problem (2) or Problem (3)
and the optimization is performed using Algorithm 1.

6. Assign the actions in T to classes according to nB∗inf
(using the pseudo-conjunctive procedure) or the actions
in D to classes according to nC∗inf . Determine the
in-sample effectiveness of nB∗inf using the accuracy
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TABLE 2. Average effectiveness in dependence of the number of criteria.

TABLE 3. Average effectiveness in dependence of the number of classes.

measure presented in Problem (2). Similarly, the
in-sample effectiveness of nC∗inf is determined through
Problem (3).

7. Create a new set of potential actions and assign them
to classes using nBDM and nCDM , and then determine
the approach’s out-of-sample effectiveness similarly to
step 6.

C. RESULTS
Results are presented per method (INTERCLASS-nB and
INTERCLASS-nC) and per type of experiment (in-sample
and out-of-sample). Since out-of-sample results can be con-
sidered as more illustrative of the effectiveness of the
approach, we present some graphs of these results in the
main text; the graphs for in-sample results are shown in
the appendices.

1) INTERCLASS-nB
It is important to note that the main goal of eliciting pref-
erence parameters is not to find the exact values of those
parameters (if they even exist), but to determine those (not
necessarily unique) values that reproduce the expressed pref-
erences of the DM as well as possible.

We provide the results in terms of in-sample and out-of-
sample effectiveness in reproducing the assignments from the
set of simulated decision-maker preferences.

a: IN-SAMPLE EFFECTIVENESS
The results are shown in Figures 13 and 14 of Appendix
A, where the error bars are equivalent to twice the standard
deviation of the corresponding averages. More concentrated
results are given in Tables 2-5.

Given the large number of experiments, mean effective-
ness values should be normally distributed. In the following,
we use the 2-sample t-test with a significance level of 0.05
and with the null hypothesis ‘‘(H0:) The means of the results
of two rows in the table are equal’’. The null hypothesis was
not rejected when comparing any pair of rows in Table 2,

TABLE 4. Average effectiveness vs the number of assignment examples.

TABLE 5. Average effectiveness vs card(Bk).

TABLE 6. Out-of-sample effectiveness vs number of criteria.

providing evidence on the robustness of the approach regard-
ing the number of criteria.

The effectiveness in dependence of the number of classes
is provided by Table 3. The difference between each pair
of these effectiveness was significant. These results provide
little evidence indicating that increasing the number of classes
has a negative effect on the effectiveness of the approach.

The effectiveness in dependence of the number of assign-
ment examples per class is shown in Table 4. There is a
statistical difference among all the effectiveness values in this
table, showing that the effectiveness is a decreasing function
of the number of objects per class.

The effectiveness of the approach in dependence of the
number of limiting profiles is shown in Table 5. There is
something interesting with the effectiveness values shown in
this table. Statistical analysis shows that there is significant
improvement in effectiveness when going from one to three
profiles or when going from one to five. However, there is no
evidence that increasing from three to five profiles improves
effectiveness; therefore, the decision analyst should consider
that it may be not worth increasing the cognitive effort of the
DM.

b: OUT-OF-SAMPLE EFFECTIVENESS
Table 6 exhibits the effectiveness in dependence of the num-
ber of criteria. Statistical analyses to the values in this table
show that the effectiveness of the approach is a decreasing
function of the number of criteria, which is intuitive since
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FIGURE 5. Effectiveness vs. number of profiles in the context of number of criteria.

TABLE 7. Out-of-sample effectiveness vs number of classes.

TABLE 8. Out-of-sample effectiveness vs number of assignment
examples per class.

higher numbers of criteria imply higher complexities of the
problem.

Table 7 analyzes the effectiveness based on the number of
classes. There is a statistical difference between each pair of
values in this table. Here, it is quite interesting how the effec-
tiveness increases with increasing from two to three classes
but decreases with increasing from three to five classes. This
behavior is maintained regardless of the number of profiles
or the number of assignment examples (see Figures 5 and 6).
Thus, one might wonder if going from two to three classes
increases the reference information providing more learning
capacity to the approach without considerably increasing the
complexity of the problem, but the new reference information
does not compensate for the increase in complexity when
going from three to five classes. This hypothesis will be
evaluated in future works.

The effectiveness of the approach based on the number
of assignment examples per class is provided in Table 8.
According to the statistical analysis, the hypothesis ‘‘the
means of the results of two rows in the table are equal’’ is
rejected for all pairs of rows, except when the first two rows
are compared. Therefore, there is clear evidence indicating
that the effectiveness increases as the number of objects per
class also increases.

TABLE 9. Out-of-sample effectiveness vs card(Bk).

Table 9 shows the effectiveness in dependence of the num-
ber of limiting profiles per boundary. There is no statisti-
cally significant difference between the average values in
Table 9. To a great extent, this is a surprising result since
an INTERCLASS-nB model with 5 profiles, although more
complex, should ‘‘learn’’ better the decision policy that is
implicit in the training set.

Figures 5-8 present the previous results with more detail
addressing questions like ‘‘given a number of criteria, what
is the effectiveness of the approach in dependence on the
number of profiles?’’.

c: DISCUSSION OF THE RESULTS ON INTERCLASS-nB
The average in-sample effectiveness reaches values very
close to 1. This proves that the evolutionary algorithm used
by the inference procedure behaves quite satisfactorily. The
effectiveness is statistically independent of the number of cri-
teria and is a decreasing function with the number of classes.
It is also a decreasing function with the number of assignment
examples per class, perhaps because increasing this number
increases the difficulty of the optimization problem related
to the parameter inference. Three limiting profiles in each
boundary gives better results than a single profile, but no
further increment is necessary.

Since the inferredmodel will be used to assign new actions,
the analysis of the out-of-sample effectiveness is perhaps
more relevant. We can establish the following concluding
remarks:

- The values of the effectiveness are slightly higher than
the results reported by [12] for ELECTRE TRI-nB.

- The effectiveness is an increasing function of the num-
ber of assignment examples per class; this is consistent
with the hypothesis of ‘‘having more training examples
allows a better learning process’’.
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FIGURE 6. Effectiveness vs. number of objects per class in the context of number of criteria.

FIGURE 7. Effectiveness vs. number of profiles in the context of the number of classes.

FIGURE 8. Effectiveness vs. number of objects per class in the context of number of classes.

- The effectiveness is degraded by the increase in the
number of criteria; this could be a consequence of the
greater number of model parameters and the difficulty
of ‘‘learning’’ such a more complex model.

- The dependence on the number of classes does not have
a clear explanation, since it is not monotonic; more
classes imply more complex assignment problems, so it
is reasonable that the effectiveness withM = 5would be
less than with M = 3. However, the effectiveness with
M = 3 is greater than with M = 2. This effect may
be related to the total number of assignment examples,
because withM = 3, there are more training examples.

- The out-of-sample effectiveness does not improve
with the number of limiting profiles; this result differs
from the one obtained in [9] for ELECTRE TRI-nB.
It seems that a single ‘‘well-designed’’ limiting profile
is enough to reach acceptable effectiveness, and more
profiles do not increase the learnability of the model,

at least within the analyzed range of training examples.
More research is needed to arrive at a comprehensive
understanding of this result.

2) INTERCLASS-nC
This section focuses on the effectiveness of
INTERCLASS-nC.

a: IN-SAMPLE EFFECTIVENESS
Table 10 shows the effectiveness of the approach given dif-
ferent numbers of criteria. The null hypothesis was rejected
when comparing all the pairs of rows in Table 10. So, the
effectiveness does not vary monotonically with the number
of criteria. It is degraded from N = 3 to N = 5 and improved
from N = 5 to N = 7.
Table 11 shows the in-sample effectiveness depending on

the number of classes. Again, a statistically significant differ-
ence was found in the comparison of all the pair of rows in

3054 VOLUME 11, 2023



E. Fernández et al.: Inferring Preferences for Multi-Criteria Ordinal Classification Methods

TABLE 10. In-sample average effectiveness vs number of criteria.

TABLE 11. In-sample average effectiveness vs number of classes.

TABLE 12. Effectiveness vs number of assignment examples per class.

TABLE 13. Effectiveness vs number of characteristic actions per class.

Table 11. The in-sample effectiveness is degraded when the
number of classes increases.

The effectiveness of the approach with respect to the num-
ber of assignment examples per class is presented in Table 12.
Again, the null hypothesis was rejected when comparing all
the pair of rows in Table 12.

Table 13 shows the effectiveness based on the number of
characterizing profiles per class. There is difference between
the average values that is statistically significant except when
card(Rk ) = 3 and card(Rk ) = 5. Therefore, the decision
analyst could ask the DM to provide three characteristic
actions per class, but there is no evidence that increasing this
number will provide higher effectiveness.

b: OUT-OF-SAMPLE EFFECTIVENESS
The out-of-sample effectiveness of the approach in the con-
text of the number of criteria is shown in Table 14. The
statistical analyses to the values in this table show that there
is only difference regarding seven criteria. The increment in
effectiveness when going to seven criteria is counterintuitive,
although consistent with the in-sample effectiveness provided

TABLE 14. Out-of-sample average effectiveness vs number of criteria.

TABLE 15. Out-of-sample average effectiveness vs number of classes.

TABLE 16. Out-of-sample effectiveness vs number of assignment
examples per class.

by Table 10. This effect is also seen when the effectiveness is
broken down in dependence on different numbers of profiles
and characterizing objects (see Figures 9 and 10). A more in-
depth analysis is deferred for future work.

Table 15 presents the effectiveness of the approach regard-
ing the number of classes. The statistical tests found a statis-
tically significant difference between all the pair of rows in
Table 16. Thus, here, as in the case of INTERCLASS-nB, the
effectiveness of the approach is a decreasing function of the
number of classes.

Table 16 shows the effectiveness based on the num-
ber of assignment examples per class. The only pairs
for which the difference is not significant are when
nclass = 3 and nclass = 5, and when nclass = 9 and
nclass = 12. Therefore, the decision analyst can consider
requiring for the DM to assign up to nine examples per class.

Table 17 shows how going from one to three profiles sig-
nificatively improves the effectiveness but going from three
to five profiles does not.

Figures 9-12 present the previous results with further
details and comparisons.

c: DISCUSSION OF THE RESULTS ON INTERCLASS-nC
Regarding the in-sample effectiveness, we detected several
similar characteristics as the INTERCLASS-nB method. The
average effectiveness reaches values very close to 1 and is
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FIGURE 9. Effectiveness vs. number of profiles in the context of number of criteria.

FIGURE 10. Effectiveness vs. number of objects per class in the context of number of criteria.

FIGURE 11. Effectiveness vs. number of profiles in the context of number of classes.

FIGURE 12. Effectiveness vs. number of objects per class in the context of number of classes.

a decreasing function with the number of classes. It is also a
decreasing function with the number of assignment examples
per class, perhaps because having more examples increases
the complexity of the optimization problem through which
the model parameters are inferred. To use three characteristic

actions per class is better than a single action but having more
than three actions does not seem to be necessary.

The out-of-sample effectiveness reaches values greater
than 0.9, clearly greater than INTERCLASS-nB. Its most
interesting features are:

3056 VOLUME 11, 2023



E. Fernández et al.: Inferring Preferences for Multi-Criteria Ordinal Classification Methods

TABLE 17. Effectiveness vs the number of characteristic actions per class.

1. It shows an increasing dependency on the number of
assignment examples per class. This means that the learnabil-
ity of the methods does not reach a plateau within the range
of assignment examples that were tested in our experiments.

2. The effectiveness improves significantly when the num-
ber of characteristic actions increases from one to three. From
three to five, there is no significant improvement.

3. It is a decreasing function with the number of classes,
which is a consequence of a greater difficulty of the assign-
ment problem.

4. The effectiveness seems to increase slightly the number
of criteria. This behavior is the opposite to the that observed
using the INTERCLASS-nB method. The explanation may
be related to the way of defining the measure of effectiveness
(see Equation 3). As the number of criteria increases, there
could be more incomparability among actions and character-
istic subsets Rk ; therefore,

∣∣χDM ∩ χinf ∣∣ could be increased,
thus producing an improvement of the effectiveness measure
in Equation 3.

V. CONCLUSION
This work presents a novel approach to infer the entire
set of parameters required to operationalize two recently
published multi-criteria sorting methods, INTERCLASS-nB
and INTERCLASS-nC. Given a set of assignment exam-
ples, a regression-inspired optimization problem is solved by
an evolutionary algorithm, which can handle the nonlinear
complexity of the interval outranking model; additionally,
evolutionary optimization tools are more robust than conven-
tional non-linear programming techniques when the number
of parameters, criteria and classes increase. In this way, the
cognitive effort required to the DM in the parameter elicita-
tion process is greatly reduced.

Two basic issues should be considered for an appropriate
setting of the parameters of a multi-criteria classification
model through preference disaggregation analysis:

a) The ability to restore the known assignment examples
(in-sample effectiveness)

b) The ability to suggest new assignments that the DM
considers appropriate (out-of sample effectiveness).

Most of the related papers focus on point a). Using evo-
lutionary algorithms and assignment examples from simu-
lated decision models, high values of in-sample effectiveness
demonstrate that the algorithm finds solutions that are close
to optimal. Perhaps the analysis of the out-of-sample effec-
tiveness is even more important; it measures the ability of

the method ‘‘to learn’’ which assignments the DM considers
appropriate, thus being able to suggest appropriate decisions
about new actions, that is its real application.

In this paper, the quality of the solutions is characterized
by measures of both effectiveness measures. Its dependence
on the number of limiting profiles (in INTERCLASS-nB),
the number of characteristic actions (in INTERCLASS-nC),
the number of assignment examples per class, the number of
classes, and the number of criteria, have been described.

Some common features of both methods and the parame-
ters of their inferred model are:

A) The in-sample effectiveness reaches very high values
using three limiting profiles and the same number of
characteristic actions;

B) The in-sample effectiveness decreases with the number
of classes and the number of assignment examples per
class;

C) The out-of-sample effectiveness is improved by the
increment of the number of assignment examples per
class.

Point A) coincides with the results reported for ELECTRE
TRI-nB by [12]. Point B) is a consequence of an increas-
ing complexity of the optimization problem from which the
model’s parameters are inferred and an increasing difficulty
of the assignment problem. Point C) confirms the premise that
more information is usually better than less.

Several different behaviors follow:
1. The INTERCLASS-nC out-of-sample effectiveness

seems to be higher than that of the INTERCLASS-nB
method; however, this comparison is not fair because the def-
inition of effectiveness differs from Equation 2 to Equation
3. The definition in Equation 2 requires an exact coincidence
between the DM assignment and the inferred model assign-
ment, whereas the measure in Equation 3 is laxer.

2. Asmight be expected, the out-of-sample effectiveness of
INTERCLASS-nB deteriorates when the number of criteria
increases, contrary to INTERCLASS-nC;

3. As expected, the out-of-sample effectiveness of
INTERCLASS-nC tends to improve with the number of
characteristic actions; on the contrary, this measure seems
to be independent of the number of limiting actions in
INTERCLASS-nB.

Regarding Point 2, the surprising performance of
INTERCLASS-nC could be explained by the increase in
incomparability between actions and representative subsets
of classes, as was discussed in Section IV, last paragraph.

Convincing quantitative explanations of the above different
characteristics should be found by future research works.

The question about which method preforms better
in a preference disaggregation context is kept open as
another avenue of future research. We should remark
that INTERCLASS-nC uses more information than the
pseudo-conjunctive INTERCLASS-nB; this comes from two
different outranking relations (we mean ‘‘x outranks the
representative set Rk ’’ and ‘‘Rk outranks x’’), whereas the
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FIGURE 13. Effectiveness vs. number of profiles in the context of number of criteria.

FIGURE 14. Effectiveness vs. number of profiles in the context of number of classes.

FIGURE 15. Effectiveness vs. number of profiles in the context of number of criteria.

FIGURE 16. Effectiveness vs. number of profiles in the context of number of classes.

pseudo-conjunctive INTERCLASS-nB uses only ‘‘x out-
ranks the limiting boundary’’. Handling more information
could bring a higher learning capacity. A fair comparison
should deal with a limiting boundary-based method similar
to INTERCLASS-nB, but handling ‘‘x outranks the limiting
boundary Bk ’’, and ‘‘Bk outranks x’’, perhaps with the use
of a co-joint assignment rule coming from descending and
ascending procedures.

APPENDIX
A. IN-SAMPLE EFFECTIVENESS OF INTERCLASS-NB
Results about the effectiveness of the approach regarding the
in-sample effectiveness of INTERCLASS-nB are shown in
Figures 13 and 14.

B. IN-SAMPLE EFFECTIVENESS OF INTERCLASS-NC
Results about the effectiveness of the approach regarding the
in-sample effectiveness of INTERCLASS-nC are shown in
Figures 15 and 16.

C. PROCEDURE FOLLOWED BY THE INTERVAL-BASED
OUTRANKING APPROACH
Let us assume the notation described in Subsection II.2.

Themarginal credibility index of x being at least as good as
action y on the jth criterion, αj (x, y), depends on the strength
of the arguments provided by such criterion to state that ‘‘x
outranks y on this criterion’’. On the one hand, if gj ∈ G1,
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then αj (x, y) is defined as:

αj (x, y) =


0 if gj ∈ C (yPx) ,
gj (x)− gj (y)+ pj (·)

pj (·)− qj (·)
if gj ∈ C (yQx) ,

1 if gj ∈ C (xSy) .

The discordance coalition is defined as C (yPx) ={
gj ∈ G1 : gj (y)− gj (x) ≥ pj (·)

}
;

C (yQx) =
{
gj ∈ G1 : gj (y)− pj (·) ≤ gj (x)

≤ gj (y)− qj (·)
}
;

and

C (xSy) =
{
gj ∈ G1 : gj (x)− gj (y) ≥ −qj (·)

}
.

On the other hand, if gj ∈ G2, then αj (x, y) is defined as:

αj (x, y) = p
(
gj (x) ≥ gj (y)

)
.

If we now consider a given credibility threshold γ , then the
set of all the criteria for which αj (x, y) ≥ γ is true is
called γ -possible concordance coalition and is denoted as
C
(
xSγ y

)
. Conversely, all criteria in G/C

(
xSγ y

)
compose

the γ -possible discordance coalition, which is denoted as
D
(
xSγ y

)
. In order to ensure that there are some realizations

of the criteria weights for which
∑N

j=1 wj = [1, 1] is true, the
following constraints are imposed:

N∑
j=1

w−j ≤ 1,

N∑
j=1

w+j ≥ 1.

The concordance index of xSy, c(x, y) = [c−(x, y), c+(x, y)],
is then defined as follows:

c− (x, y) =
∑

gj∈C(xSγ y)

w−j ,

if ∑
gj∈C(xSγ y)

w−j +
∑

gj∈D(xSγ y)

w−j ≤ 1, and

∑
gj∈C(xSγ y)

w−j +
∑

gj∈D(xSγ y)

w+j ≥ 1.

Otherwise, c− (x, y) is defined as

1−
∑

gj∈D(xSγ y)

w+j .

Similarly,

c+ (x, y) =
∑

gj∈C(xSγ y)

w+j

only if ∑
gj∈C(xSγ y)

w+j +
∑

gj∈D(xSγ y)

w−j ≤ 1, and

∑
gj∈C(xSγ y)

w+j +
∑

gj∈D(xSγ y)

w+j ≥ 1.

Otherwise, c+ (x, y) is

1−
∑

gj∈D(xSγ y)

w−j .

As in the classical outranking approach, its interval-based
extension also considers the arguments against the outranking
relation through a credibility index of the statement ‘‘the jth
criterion vetoes the assertion x outranks y’’, which is denoted
as dj (x, y) and is defined as follows. For each gj ∈ G2,
dj (x, y) = p

(
gj (y) ≥ gj (x)+ vj

)
, where vj is the interval

number representing the veto power of criterion gj.For each
gj ∈ G1, dj (x, y) can be calculated by one of two ways,
depending on the information available about thresholds.
First, if the veto power of the jth criterion is precise, that
is vj is a real number, and there is a discordance (pre-veto)
threshold, uj ≤ vj, then dj (x, y) is (cf. Mousseau and Dias,
2004; Roy and Słowiński, 2008):

dj (x, y)

=


1 if gj (y)− gj (x)≥vj,
gj (y)− gj (x)− uj

vj − uj
if uj < gj (y)− gj (x) < vj,

0 if gj (y)− gj (x)≤uj.

Second, if the veto power of the jth criterion is imperfectly
known, that is, vj is an interval number, then dj(x, y) =
p(gj(y) ≥ gj(x)+ vj).
Let 0 be the set {αj (x, y) ∈ R : p

(
gj (x) ≥ gj (y)

)
=

αj (x, y) , j = 1, · · · ,N }. For each γ ∈ 0, x outranks y
with marginal credibility index ηγ , and majority strength
λ > [0.5, 0.5], (with λ− ≥0.5) if and only if

ηγ = min

{
γ, p (c (x, y) ≥ λ) ,

(
1− max

gj∈D(xSγ y)
dj (x, y)

)}
.

Each ηγ is the credibility degree of the conjunction between
i) ‘‘the γ -possible concordance coalition is strong enough’’
and ii) ‘‘the γ -possible discordance coalition does not exert
veto’’. ηγ is interpreted in [34] as a marginal outranking
credibility index. Therefore, x outranks y with credibility
index η (x, y) ∈ [0, 1] = max

{
ηγ
}
(γ ∈ 0). η (x, y) is the

interval outranking credibility index. If0 is an empty set, then
η (x, y) is zero.

REFERENCES
[1] J. Almeida-Dias, J. R. Figueira, and B. Roy, ‘‘ELECTRE TRI-C: A multi-

ple criteria sorting method based on characteristic reference actions,’’ Eur.
J. Oper. Res., vol. 204, no. 3, pp. 565–580, Aug. 2010.

[2] B. Roy and D. Bouyssou, Aide Multicritère à la Décision: Méthodes et
Cas. Paris, France: Economica Paris, 1993.

[3] J. Almeida-Dias, J. R. Figueira, and B. Roy, ‘‘A multiple criteria sorting
method where each category is characterized by several reference actions:
The ELECTRE TRI-nC method,’’ Eur. J. Oper. Res., vol. 217, no. 3,
pp. 567–579, Mar. 2012.

[4] E. Fernández, J. R. Figueira, J. Navarro, and B. Roy, ‘‘ELECTRE TRI-nB:
A new multiple criteria ordinal classification method,’’ Eur. J. Oper. Res.,
vol. 263, no. 1, pp. 214–224, Nov. 2017.

VOLUME 11, 2023 3059



E. Fernández et al.: Inferring Preferences for Multi-Criteria Ordinal Classification Methods

[5] D. Bouyssou, T. Marchant, M. Pirlot, A. Tsoukias, and P. Vincke, Evalua-
tion and Decision Models With Multiple Criteria: Stepping Stones for the
Analyst, vol. 86. New York, NY, USA: Springer, 2006.

[6] L. C. Dias and V. Mousseau, ‘‘Inferring Electre’s veto-related param-
eters from outranking examples,’’ Eur. J. Oper. Res., vol. 170, no. 1,
pp. 172–191, Apr. 2006.

[7] M. Doumpos, Y. Marinakis, M. Marinaki, and C. Zopounidis, ‘‘An evo-
lutionary approach to construction of outranking models for multicriteria
classification: The case of the ELECTRE TRI method,’’ Eur. J. Oper. Res.,
vol. 199, no. 2, pp. 496–505, Dec. 2009.

[8] V. Mousseau and R. Slowinski, ‘‘Inferring an ELECTRE TRI model from
assignment examples,’’ J. Global Optim., vol. 12, no. 2, pp. 157–174, 1998.

[9] E. Covantes, E. Fernández, and J. Navarro, ‘‘Handling the multiplicity
of solutions in a MOEA based PDA-THESEUS framework for multi-
criteria sorting,’’ Found. Comput. Decis. Sci., vol. 41, no. 4, pp. 213–235,
Nov. 2016.

[10] L. Cruz-Reyes, E. Fernandez, and N. Rangel-Valdez, ‘‘A metaheuristic
optimization-based indirect elicitation of preference parameters for solving
many-objective problems,’’ Int. J. Comput. Intell. Syst., vol. 10, no. 1, p. 56,
2017.

[11] P. Meyer and A.-L. Olteanu, ‘‘Handling imprecise and missing evaluations
in multi-criteria majority-rule sorting,’’ Comput. Oper. Res., vol. 110,
pp. 135–147, Oct. 2019.

[12] E. Fernández, J. R. Figueira, and J. Navarro, ‘‘An indirect elicitation
method for the parameters of the ELECTRE TRI-nB model using genetic
algorithms,’’ Appl. Soft Comput., vol. 77, pp. 723–733, Apr. 2019.

[13] B. Roy, ‘‘Présentation et interprétation de la méthode ELECTRE TRI pour
affecter des zones dans des catégories de risque,’’ Univ. Paris-Dauphine,
Paris, France, Numéro dans la collection 124, 2002.

[14] E. Fernandez, N. Rangel-Valdez, L. Cruz-Reyes, C. Gomez-Santillan, G.
Rivera-Zarate, and P. Sanchez-Solis, ‘‘Inferring parameters of a relational
system of preferences from assignment examples using an evolutionary
algorithm,’’ Tech. Econ. Develop. Econ., vol. 25, no. 4, pp. 693–715, 2019,
doi: 10.3846/tede.2019.9475.

[15] R. Vetschera, Y. Chen, K. W. Hipel, and D. M. Kilgour, ‘‘Robustness and
information levels in case-based multiple criteria sorting,’’ Eur. J. Oper.
Res., vol. 202, no. 3, pp. 841–852, May 2010.

[16] M.-C.Wu and T.-Y. Chen, ‘‘The ELECTREmulticriteria analysis approach
based on Atanassov’s intuitionistic fuzzy sets,’’ Expert Syst. Appl., vol. 38,
no. 10, pp. 12318–12327, 2011.

[17] B. Vahdani and H. Hadipour, ‘‘Extension of the ELECTRE method based
on interval-valued fuzzy sets,’’ Soft Comput., vol. 15, no. 3, pp. 569–579,
Mar. 2011.

[18] B. Vahdani, S. M. Mousavi, R. Tavakkoli-Moghaddam, and H. Hashemi,
‘‘A new design of the elimination and choice translating reality method
for multi-criteria group decision-making in an intuitionistic fuzzy environ-
ment,’’ Appl. Math. Model., vol. 37, no. 4, pp. 1781–1799, 2013.

[19] W.-X. Li and B.-Y. Li, ‘‘An extension of the Promethee II method
based on generalized fuzzy numbers,’’ Expert Syst. Appl., vol. 37, no. 7,
pp. 5314–5319, Jul. 2010.

[20] T.-Y. Chen, ‘‘Multiple criteria decision analysis using a likelihood-based
outranking method based on interval-valued intuitionistic fuzzy sets,’’ Inf.
Sci., vol. 286, pp. 188–208, Dec. 2014.

[21] T.-Y. Chen, ‘‘An ELECTRE-based outranking method for multiple criteria
group decision making using interval type-2 fuzzy sets,’’ Inf. Sci., vol. 263,
pp. 1–21, Apr. 2014.

[22] T.-Y. Chen, ‘‘A PROMETHEE-based outrankingmethod for multiple crite-
ria decision analysis with interval type-2 fuzzy sets,’’ Soft Comput., vol. 18,
no. 5, pp. 923–940, May 2014.

[23] J.-Q. Wang, J.-J. Kuang, J. Wang, and H.-Y. Zhang, ‘‘An extended out-
ranking approach to rough stochastic multi-criteria decision-making prob-
lems,’’ Cogn. Comput., vol. 8, no. 6, pp. 1144–1160, Dec. 2016.

[24] J.-Q. Wang, J.-J. Peng, H.-Y. Zhang, and X.-H. Chen, ‘‘Outrank-
ing approach for multi-criteria decision-making problems with hesitant
interval-valued fuzzy sets,’’ Soft Comput., vol. 23, no. 2, pp. 419–430,
Jan. 2019.

[25] J. Li and J.-Q. Wang, ‘‘Multi-criteria outranking methods with hesitant
probabilistic fuzzy sets,’’ Cogn. Comput., vol. 9, no. 5, pp. 611–625,
Oct. 2017.

[26] H.-Y. Zhang, H.-G. Peng, J. Wang, and J.-Q.Wang, ‘‘An extended outrank-
ing approach for multi-criteria decision-making problems with linguistic
intuitionistic fuzzy numbers,’’ Appl. Soft Comput., vol. 59, pp. 462–474,
Oct. 2017.

[27] E. Fernández, J. R. Figueira, and J. Navarro, ‘‘Interval-based extensions of
two outranking methods for multi-criteria ordinal classification,’’ Omega,
vol. 95, Sep. 2020, Art. no. 102065.

[28] J. Zhang, C. Zhu, L. Zheng, and K. Xu, ‘‘ROSEFusion: Random opti-
mization for online dense reconstruction under fast camera motion,’’ ACM
Trans. Graph., vol. 40, no. 4, pp. 1–17, Aug. 2021.

[29] B. Cao, J. Zhao, X. Liu, J. Arabas, M. Tanveer, A. K. Singh, and Z. Lv,
‘‘Multiobjective evolution of the explainable fuzzy rough neural network
with gene expression programming,’’ IEEE Trans. Fuzzy Syst., vol. 30,
no. 10, pp. 4190–4200, Oct. 2022.

[30] B. Cao, W. Zhang, X. Wang, J. Zhao, Y. Gu, and Y. Zhang, ‘‘A memetic
algorithm based on two_Arch2 for multi-depot heterogeneous-vehicle
capacitated arc routing problem,’’ Swarm Evol. Comput., vol. 63,
Jun. 2021, Art. no. 100864.

[31] T. Sunaga, ‘‘Theory of an interval algebra and its application to numerical
analysis,’’ RAAG Memoirs, vol. 2, no. 2, pp. 29–46, 1958.

[32] R. E. Moore and I. Arithmetic, ‘‘Automatic error analysis in digital com-
puting,’’ Ph.D. thesis, Stanford Univ., Stanford, CA, USA, 1962.

[33] J. R. Shi, ‘‘A new solution for interval number linear programming,’’ Syst.
Eng., Theory Pract., vol. 2, no. 25, pp. 101–106, 2005.

[34] E. Fernández, J. R. Figueira, and J. Navarro, ‘‘An interval extension of
the outranking approach and its application to multiple-criteria ordinal
classification,’’ Omega, vol. 84, pp. 189–198, Apr. 2019.

[35] B. Roy, ‘‘The outranking approach and the foundations of ELECTRE
methods,’’ in Readings in Multiple Criteria Decision Aid. Berlin, Ger-
many: Springer-Verlag, 1990, pp. 155–183.

[36] B. Roy, J. R. Figueira, and J. Almeida-Dias, ‘‘Discriminating thresholds
as a tool to cope with imperfect knowledge in multiple criteria decision
aiding: Theoretical results and practical issues,’’Omega, vol. 43, pp. 9–20,
Mar. 2014.

[37] D. Bouyssou, ‘‘Building criteria: A prerequisite for MCDA,’’ in Read-
ings in Multiple Criteria Decision Aid. Berlin, Germany: Springer-Verlag,
1990, pp. 58–80.

[38] J. C. L. López, E. Solares, and J. R. Figueira, ‘‘An evolutionary approach
for inferring the model parameters of the hierarchical ELECTRE III
method,’’ Inf. Sci., vol. 607, pp. 705–726, Aug. 2022.

[39] C. van Rijsbergen, Information Retrieval: Theory and Practice. Callaghan,
NSW, Australia: Univ. of Newcastle, vol. 79, 1979.

[40] Y. Sasaki, ‘‘The truth of the F-measure,’’ Teach Tutor Mater, vol. 1, no. 5,
pp. 1–5, 2007.

[41] J. Butler, J. Jia, and J. Dyer, ‘‘Simulation techniques for the sensitivity
analysis of multi-criteria decision models,’’ Eur. J. Oper. Res., vol. 103,
no. 3, pp. 531–546, Dec. 1997.

[42] F. Hutter, H. H. Hoos, L. B. Kevin, and T. Stützle, ‘‘ParamILS: An auto-
matic algorithm configuration framework,’’ J. Artif. Intell. Res., vol. 36,
no. 1, pp. 267–306, 2009.

EDUARDO FERNÁNDEZ was born in Pinar
del Río, Cuba, in 1951. He received the B.S.
degree in physics from the University of Havana,
in 1974, the M.S. degree in microelectronics from
the Higher Technological Institute ‘‘José Antonio
Echeverría,’’ in 1980, and the Ph.D. degree in elec-
trical engineering from the Poznan University of
Technology, in 1987.

He was a Full Professor with the Higher Tech-
nological Institute ‘‘José Antonio Echeverría,’’ and

the Autonomous University of Sinaloa. Currently, he is a Full Professor
at the Autonomous University of Coahuila. His research interests include
multi-criteria decision, project portfolio optimization, and incorporation
of preferences in multi-objective metaheuristics. He was nominated three
times to the IFORS ‘‘OR for Development’’ Prize (1996, 2005, and 2011).
He was awarded with the highest level of the Mexican National System of
Researchers, in 2010, and as an Emeritus National Researcher, in 2022. He is
a member of the European Working Group on Multiple Criteria Decision
Aiding.

3060 VOLUME 11, 2023

http://dx.doi.org/10.3846/tede.2019.9475


E. Fernández et al.: Inferring Preferences for Multi-Criteria Ordinal Classification Methods

JORGE NAVARRO was born in Culiacán, Sinaloa,
Mexico, in 1963. He received the B.S. degree in
mathematics, in 1989, and the M.S. and Ph.D.
degrees in computer science from the Universi-
dad Autónoma de Sinaloa, in 1997 and 2004,
respectively.

EFRAIN SOLARES was born in Culiacán,
Sinaloa, Mexico, in 1988. He received the B.S.
degree in computational systems engineering from
the Instituto Tecnológico de México, Culiacán,
in 2011, and the M.S. and Ph.D. degrees in infor-
mation science from the UniversidadAutónoma de
Sinaloa, Culiacán, in 2014 and 2019, respectively.

He has been a full-time Professor at the Univer-
sidad Autónoma de Coahuila, Mexico, since 2020.
His research interests include the mathematical

modeling of multicriteria decision problems, evolutionary multiobjective
optimization, and project and stock portfolio construction.

CARLOS A. COELLO COELLO (Fellow, IEEE)
received the Ph.D. degree in computer science
from Tulane University, New Orleans, LA, USA,
in 1996.

He is currently a Professor (CINVESTAV-3F
Researcher) with theDepartment of Computer Sci-
ence, CINVESTAV- IPN, Mexico City, Mexico.
He has authored or coauthored over 550 technical
papers and book chapters. He has also coauthored
the book Evolutionary Algorithms for Solving

Multi- Objective Problems (Second Edition, Springer, 2007). His publica-
tions currently report over 63 300 citations in Google Scholar (his H-index is
96). His research interests include evolutionary multiobjective optimization
and constraint-handling techniques for evolutionary algorithms.

Prof. Coello Coello is a member of the Association for Computing
Machinery and the Mexican Academy of Science. He was a recipient of
the 2007 National Research Award from the Mexican Academy of Sciences
in the area of Exact Sciences, the 2013 IEEE Kiyo Tomiyasu Award, and
the 2012 National Medal of Science and Arts in the Area of Physical,
Mathematical, and Natural Sciences. He is currently the Editor-in-Chief of
the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION.

RAYMUNDO DÍAZ was born in Jalisco, Mexico,
in 1977. He received the B.S. degree in economía
from the Instituto Politécnico Nacional, in 2000,
and the M.S. degree in regional economics and
the Ph.D. degree in administration and senior
management from the Universidad Autónoma de
Coahuila, in 2004 and 2017, respectively.

Since 2021, he has been a full-time Professor
with the School of Finance and Administration,
Tecnológico de Monterrey. He is the author of six

articles and one book. His research interests include portfolio management,
stock markets, and times series.

ABRIL FLORES was born in Torreón, Coahuila,
Mexico, in 1979. She received the B.S. degree in
accounting and informatics from the Autonomous
University of Coahuila, in 2001, the M.S. degree
in economy focused on finance, in 2010, and the
Ph.D. degree in strategic management, in 2016.

VOLUME 11, 2023 3061


