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ABSTRACT Unmanned aerial vehicles have a wide range of applications. An intelligent optimization
algorithm based on the traditional bat algorithm (BA) is investigated in this paper for UAV flight path
planning in a static complex environment. The primary goal of this work is to develop a safer flight path
while considering the feasibility of the UAV and the requirements for safe operation. This research proposes
an improved spherical coordinate and truncated average stable strategy-based bat optimization algorithm
(TMS-SBA). The algorithm uses the UAV’s motion space to encode the operator, and by substituting a
new bat for the worst of the old one after each iteration to increase population diversity, the algorithm
can converge quickly in a complex environment while maintaining stable operation. In addition, the flight
path is smoothly generated by using B-spline curves to make the planned path suitable for UAV. MATLAB
simulation experiments show that, compared with other traditional swarm intelligent algorithms, TMS-SBA
can successfully generate feasible and effective optimal solutions in complex environments and plan shorter,
safer, and more accessible flight paths for UAV.

INDEX TERMS Unmanned aerial vehicle (UAV), path planning, bat algorithm, configuration space,
truncated mean stabilization strategy.

I. INTRODUCTION
With the continued maturity of unmanned aerial vehicle
(UAV) technology, it is now possible to deploy UAV to fulfill
some challenging and hazardous tasks. In fact, UAVs play
an important role in the military and daily lives of many
countries. As a type of contemporary aviation equipment, the
UAV has been extensively employed in several industries,
including search and rescue, mapping, and forestry [1].
Path planning and optimization have always been crucial
components of UAV operation throughout the history of UAV
research. Flight path planning is usually described as an
optimization problem. The UAV needs to find the shortest
path with low cost, strong security, and high computational
efficiency under various constraints, such as environmental
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and human threats. Traditional algorithms such as the A*
algorithm [2], [3], the artificial potential field [4], [5], and
linear programming [6] have been proposed by previous
scholars to solve the problem of path planning. However,
when thesemethods are used in UAVpath planning, problems
such as high computational complexity and easy falls into
local minima will often occur [7]. Similarly, the complexity
and threat of the flight environment also have an impact on
UAV path planning.

It has been established that determining the optimal flight
path can be regarded as an NP-hard problem [8]. In order
to reduce the complexity of the problem, many researchers
use a swarm intelligence algorithm to solve the path planning
problem. Swarm intelligence (SI) technology is derived
from research on the swarm behavior of social insects,
represented by ants and bees [9]. It has good performance
in solving various optimization problems in the real world,
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such as parameter estimation, neural network training, the
knapsack problem, and so on. Various swarm intelligence
algorithms inspired by nature have been developed, such as
Genetic Algorithm (GA) [10], Particle Swarm Optimization
(PSO) [11], [12], [13], [14], [15], Bat Algorithm (BA) [16],
Artificial Bee Colony (ABC) [17], [18], Differential Evo-
lution (DE) [19], and Grey Wolf Optimization Algorithm
(GWO) [20]. These SI-based algorithms performwell in deal-
ing with UAV reconnaissance paths while comprehensively
considering complex terrain and other constraints to achieve
global optimality.

However, these metaheuristic algorithms also have
unavoidable problems. Here is a theorem called ‘‘No Free
Lunch’’ (NFL), which was put forth by David H. Woolpert
and William G. Ready in 1997 [21]. It has been logically
proved that there is no single meta-heuristic algorithm that
can perfectly solve all optimization problems. To put it
another way, a particular swarm intelligence algorithm may
be effective in resolving a particular optimization problem,
but it is ineffective in resolving other optimization problems.
In order to find a more ideal solution, people began to try to
improve different intelligent algorithms to adapt to the UAV
path planning problem. For example, [22] proposed a Voronoi
graph-based vibration genetic algorithm to effectively solve
the shortest path problem; [23] suggested an aging-based ant
colony optimization algorithm (ABACO); and to address the
path planning issue, [24] proposed the spherical vector-based
particle swarm optimization algorithm (SPSO). Therefore,
more and more algorithms have been discovered that can
effectively solve the UAV path planning problem.

Recently, as one of the swarm intelligence algorithms, the
bat algorithm (BA) has attracted scholars’ attention due to
its advantages in dealing with optimization problems. The
Bat Algorithm [25] is an intelligent optimization algorithm
based on the predation behavior and echolocation abilities of
bats, first proposed by Xin-She Yang in 2010. BA can be used
in many scenarios. Reference [26] mentioned the use of BA
to detect brain abnormalities on magnetic resonance images.
Reference [27] apply BA to the operation management of
microgrid (MG). In [28], BA is used to solve the shop
scheduling problem. The BA algorithm has been widely
employed in many engineering procedures because it has
a straightforward structure, fewer parameters, and superior
robustness when compared to other intelligent algorithms.
However, BA also has several drawbacks, such as a simple
propensity to settle for the local optimal solution, which
severely restricts BA’s ability to advance. Therefore, some
improvements to BA can improve the algorithm’s perfor-
mance to a large extent, so that the Bat algorithm can better
adapt to the problem of UAV route planning. Reference [29]
combined BA with the differential evolution algorithm (DE)
to mutate bats using the evolutionary operator of DE.
Reference [30] combined the artificial bee colony algorithm
into BA to get the solution quickly. Reference [31] used the
food search mechanism of the Drosophila algorithm (FOA)
to improve the local search ability of BA. Reference [32]

proposed a path planning problem using chaos strategy to
improve BA, while [33] used bat algorithm to calculate
multiple UAV. Compared with the traditional BA algorithm,
these algorithms have a great improvement in solving single-
constrained UAV path planning but still need to consider
themaneuverability characteristics and environmental factors
of the UAV. In an environment of high dimensions, it is
often difficult to use oneself to find the global optimal
position. Similarly, the application of the BA algorithm to
three-dimensional path planning is in its infancy, with few
resources available. On this basis, a bat configuration space
algorithm based on the truncated average strategy (TMS-
SBA) is proposed. The algorithm uses the configuration
space of UAV to encode, making it possible to generate the
initial solution in the high-dimensional space quickly. At the
same time, the truncated mean stability strategy was used
to enhance the diversity of the bat population and improve
convergence efficiency. When the algorithm falls into a local
optimum, the expansion coefficient is introduced to expand
the search space. The algorithm is easy to implement, and
the effectiveness and robustness of the algorithm have been
proven by numerical experiments. The main contributions of
this paper are summarized as follows:

1) A spherical vector bat algorithm based on a truncated
mean stability strategy was proposed to solve the
problem of three-dimensional path planning for UAV.
This algorithm can operate stably in the search space
with many path nodes and has good convergence.

2) The precise expression of the objective function is
given in order to address the problem of UAV flight
safety. This function transforms path planning into
an optimization problem and imposes constraints on
the above problems. The B-spline strategy is used to
smooth the path curve.

3) In comparison to other conventional algorithms, the
TMS-SBA approach produces better experimental
results when used to solve the UAV path planning
problem.

The remainder of this essay is organized as follows: the
UAV route planning problem, including route representation,
objective function, and various restrictions in practical
circumstances, is discussed in Section 2. Section 3 explains
the basic principle of the bat algorithm. The detailed
implementation of the proposed TMS-SBA algorithm is
described in Section 4. Section 5 provides a comparison
between the classical algorithm and the experimental results.
Finally, the sixth part summarizes the whole paper and looks
forward to future work.

II. MATHEMATICAL MODEL IN UAV PATH PLANNING
Path planning is a crucial part of UAV safe route planning,
which is utilized to identify the best flying path while keeping
in mind restrictions such as terrain height, radar threat,
smoothing cost, fuel, and the shortest path. The objective
function and mathematical model of it can be explained as
follows:

VOLUME 11, 2023 2397



B. Chen et al.: Improved Spherical Vector and Truncated Mean Stabilization Based BA for UAV Path Planning

A. FLIGHT PATH REPRESENTATION
In the three-dimensional frame Sg − OXYZ , the origin of
coordinate O is placed at a certain point on the ground, and
the X , Y , and Z axes are taken as three orthogonal directions,
with the X and Y axes being on the horizontal plane and
the Z axes being on the vertical direction. The beginning
point and target point are denoted by the points S(xs, ys, zs)T

and T (xt , yt , zt )T , respectively. On the basis of satisfying the
constraints, route planning will then produce a secure path
from S to T . A point set formed of N path nodes except S
and T , that is, L = (S,P1, . . .PN ,T ), can be used to represent
the UAV route. Because the UAV can generate multiple paths,
each path Li corresponds to N waypoints, and each waypoint
has a path node with the coordinates Pij = (xij, yij, zij) on
the search map. So we can have two paths of the Euclidean
distance between nodes as Dij = ‖

−−−−−→
Pi.jPi,j+1‖.

B. OVERALL COST FUNCTION
By taking into account the optimality, efficiency, and safety
criteria connected to a path Li, the overall cost function can
be constructed as follows:

F(Li) =
3∑

k=1

ωkFk (Li), (1)

where ωk is the weight coefficient, and F1(Li) to F3(Li)
are the costs associated with fuel, threat, and flight height,
respectively. The decision variable is Li, which includes a list
of n waypoints Pij = (xij, yij, zij). The following is a detailed
breakdown of how various cost functions are calculated:

1) FUEL COSTS
Considering the constraints of optimal path planning for UAV,
we assume that the fuel cost per unit distance is the same,
so the fuel distance and path length are positively correlated,
and the related cost function F1(Li) can be expressed as (2),
where ρi is fuel consumption per kilometer.

F1(Li) =
n−1∑
j=1

ρiDij (2)

2) THREAT COSTS
When discussing UAV path planning, it is unavoidable
to bring up the threat situation. For some complex and
changeable terrain, there are often multiple threats, such as
radar, climate, and missiles. These threats will affect the safe
operation of drones. Assume that all threats are included in
the set K , and that each threat is represented by a cylinder
with a unique radius, the central coordinate of which is Ck
(as shown in Fig.1). Equation (3) represents the likelihood of
different dangers to the UAV:

Pk (dk ) =


0, if dk > dkmax;

1

d4k
, if dkmin ≤ dk ≤ dkmax;

1, if dk < dkmin;

(3)

FIGURE 1. Threat cost and threat area.

where the threat probability posed by the UAV’s kth threat
source is Pk (dk ). The length between the UAV and the threat
source is indicated by dk . Minimum and maximum ranges of
the threat are dkmin and dkmax , respectively. The associated
threat cost for a given path segment is proportional to its
distance, dk , from Ck . Each path is separated into an average
of five segments for convenience of calculation, and the threat
cost is determined separately for each discrete segment of
each path. The hazard cost for this segment is predicated on
the average value of the discrete segments.Wemay determine
the price using the following (4):

F2(Li) =
n−1∑
j=1

lj
5

u∑
k=1

1
5
· (T0,k (j)+ T0.25,k (j)

+T0.5,k (j)+ T0.75,k (j)+ T1,k (j)) (4)

where

Tm,k (j)=


0, if dm,k (j) > dkmax;

‖dkmax − dm,k (j)‖, if dkmin ≤ dk,i(j) ≤ dkmax;

∞, if dm,k (j) < dkmin;
(5)

In the equation above, u stands for the number of
threatening circles, dm,k (j) denotes the distance between the
kth threat center and the mth point on the segment.
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3) ALTITUDE COSTS
Flight height is often restricted to two extremes: minimum
altitude and maximum altitude. This is because in some
military applications, UAVs must hide behind the landscape
and cannot fly too high, but they also run the risk of collapsing
into mountains at low altitudes [24]. The minimum height
depends on the terrain. The likelihood of the UAV being
destroyed is 1 if its flying height is lower than its peak height;
conversely, it is 0. Let the minimum and maximum heights be
hmin and hmax , respectively. AwaypointPij associated altitude
cost is calculated as follows:

Hij =

 |hij −
(hmax + hmin)

2
|, if hmin ≤ hij ≤ hmax;

∞, otherwise;
(6)

where hij is the flight altitude relative to the ground. In this
paper, the altitude is restricted by setting a penalty item so
that it can always maintain a relatively stable state and avoid
the collision caused when the flight altitude is too low. Sum
Hijover all waypoints to get the height cost:

F3(Li) =
n∑
j=1

Hij (7)

Given the need to generate a UAV-safety route, this paper
introduces yaw and pitch angle constraints to constrain the
UAV’s path:

ψk = |arctan(
yk+1 − yk
xk+1 − xk

)| ≤ ψmax (8)

φk = |arctan(
zk+1 − zk
xk+1 − xk

)| ≤ φmax (9)

In this formula, ψmax is the maximum pitch angle, and φmax
is the maximum yaw angle, and ψk and φk are respectively
the pitch angle and yaw angle of the waypoint Pk .

Under the above definition, the cost function F is
completely determined and can be used as input in the path
planning process, which is conducive to the calculation of the
simulation experiment below.

III. CLASSICAL BAT ALGORITHM
The classic bat algorithm is a swarm intelligence algorithm.
The social interactions of bats and their use of echolocation
for hunting and avoiding obstacles served as the basis for their
search approach. In addition, the bat algorithm is a promising
method that, to some extent, combines the benefits of the PSO
and GA algorithms [34].

Some bats in the wild use their sight and smell in addition
to echolocation to locate food and avoid predators. Even the
sounds and frequencies that bats produce are dynamic. The
purpose of this paper is to study and simulate the flight path
of the UAV in three-dimensional space, so this paper idealizes
some of the echoic characteristics of bats for the sake of
simplicity, assuming that their movements are entirely echo-
related and that they can automatically change thewavelength

and frequency of their transmitted pulses when in pursuit of
prey. They fly at position Xi with a speed of Vi. Let a fixed
frequency of fmin, a loudness of A0, and a pulse frequency of
r ∈ [0, 1] that is constantly adjusted according to the distance
from the target. It is important to note that loudness is not
a fixed value, it ranges from the smallest constant, Amin to
A0. The revised formula for the velocity V t

i , frequency fi,
and position X ti of the ith bat in a state with time step t is
as follows:

fi = fmin + (fmax − fmin)× β (10)

V t
i = V t−1

i + (X t−1i − Xw)× fi (11)

X ti = X t−1i + V t
i (12)

The best solution to the current time step is Xw. Where
β ∈ [0, 1] is a random value.Frequency is a random constant.
Regarding the local search section, it uses a random number
randi ∈ [0, 1]. If randi > ri, let a new solution Xnew replace
the original solution X ti .

Xnew = Xw + εAt (13)

where At is the average loudness of all bats at time step t
and the random number ε ∈ [−1, 1]. Equations (14) and (15)
are used to update when the fitness f (X ti ) is smaller than the
fitness of the current optimal solution f (Xw):

At+1i = αAti (14)

r t+1i = r0[1− exp(−ιt)] (15)

where α, ι, r0 are constants. Based on the analysis above,
Fig.2 and Algorithm 1 describe the main portion of the
traditional bat algorithm.

IV. IMPORVED BAT ALGORITHM
The standard BA algorithm is enhanced in order to find the
global optimal solution of the BAmore quickly and precisely,
and a spherical coordinate system is constructed to solve
the flight path based on the maneuvering characteristics of
the UAV configuration space, thus significantly reducing the
search space. On the other hand, considering that the BA
algorithm is still unable to overcome the problem of falling
into local optimality when solving optimization problems,
the truncated mean problem strategy is adopted in this paper
to replace bats with the worst fitness values to increase the
diversity of the population.

A. CONFIGURATION SPACE CODING
When determining the three-dimensional path of a UAV,
the swarm intelligence algorithm frequently searches in the
cartesian coordinate system, which is inefficient and difficult
to solve the constraint conditions. The configuration space
of the UAV can be regarded as a spherical space; therefore,
the main function of using the spherical vector in the BA
algorithm is to represent the attitude of the camera. The
amplitude, elevation, and azimuth components of the UAV in
the configuration space are used to limit the speed, yaw angle,
and pitch angle of the UAV, and the relationship between path
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FIGURE 2. Flow chart of BA algorithm.

points is used to reduce the search space and accelerate the
convergence.

The complexity of UAV flying is decreased, and the
convergence rate is accelerated by addressing the problem
in configuration space and mapping it to cartesian space.
We encode each path Li for the UAV flight path L =
(S, p1, . . . , pN ,T ) stated in Part 2.1, where Pij = (xij, yij, zij)
is the number of waypoints on the path Li, and N trajectory
segments make up the path. A spherical coordinate system is
constructed for Pij, including amplitude r , elevation ψ , and
yaw angle φ.

The formula for the conventional spherical coordinate
transformation is given in (16), where dij stands for the
sphere’s radius. On the basis of this, spherical coordinates are
created for each path node, turning it into a distinct entity.

xij = dijsinψijcosφij
yij = dijsinψijsinφij
zij = dijcosψij (16)

As shown in Fig.3, a sphere is constructed on each path
node, where r is the amplitude of the UAV, which is related
to both the sphere radius of the path node and the path length.
The three elements of each waypoint Pij = (rij, φij, ψij) are

Algorithm 1 Classical BA Algorithm
Require:
Ensure:

Initialization. Set the generate counter t = 1, the amount of
bat populations np, initialize A0, V0, r , and the maximum
number of iterations Tmax .
Get the fitness of each bat f (X0

i ).
for t = 1 : Tmax do

for i = 1 : np do
Update frequency by (10);
Update bat speed by (11);
Update bat locations by (12);
if rand1 > r ti then

Produce a new solution Xnew instead of Xt ;
Xnew = Xw + εAt

end if
Get the new solution’s fitness f (X ti )
if f (X ti ) < f (Xw) then

Accept the fresh solutions, then update r ti , A
t
i

end if
end for
Update the present optimal solution Xw.

end for
Output
End

FIGURE 3. Configuration space coding.

bound in the following ways to adhere to the prior limitations:

ri ∈ (0, pathlength)

φij ∈ (φmax − φi,j−1, φmax + φi,j−1)

ψij ∈ (ψmax − ψi,j−1, ψmax + ψi,j−1) (17)

where φmax and ψmax are the maximum angles of yaw and
elevation, respectively. Then, for a complete path L, it is
expressed in the form of a spherical coordinate sequence as
shown in (18).

Linew = (S, (ri1, φi1, ψi1), . . . , (riN , φiN , ψiN ),T ) (18)

Since the UAV is in configuration space, its velocity
also has three components related to spherical coordinates.
To limit the bat speed at each path node, we can similarly set
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upper and lower bounds on the UAV speed, as shown in (19):

Vri ∈ (−α(rmax − rmin), α(rmax − rmin))

Vφij ∈ (−α(φmax − φmin), α(φmax − φmin))

Vψi ∈ (−α(ψmax − ψmin), α(ψmax − ψmin)) (19)

where α is a random number on [0,1].We denote the spherical
vector of the waypoint on Li as xS and the velocity update as
vS, then the iterative equation of a bat’s velocity and position
at time step t can be updated as follows:

vS ti = vS t−1i + (xS t−1i − xSw)fi (20)

xS ti = xS t−1i + vS ti (21)

Calculating the fitness value, which is the corresponding
cost function of each path, is important when determining the
individual and global optimum of the bat population. At this
point, the flight route computed above must be remapped to
cartesian space. Due to the interdependence of path nodes,
the following formula can be used to determine the decoding
mode of each path node coordinate:

xij = xi,j−1 + rijsinψijcosφij
yij = yi,j−1 + rijsinψijsinφij
zij = zi,j−1 + rijcosψij (22)

Based on this, we obtained the basic principle of the SBA
algorithm, which is more conducive to dealing with angle
and velocity constraints between adjacent path nodes. This
algorithm enables individual bats to converge to the optimal
position faster but also faces the problem of falling into local
optimality. In view of this situation, the algorithm was further
improved in this paper.

B. STRATEGY FOR TRUNCATED MEAN STABILIZATION
The SBA algorithm is produced in the analysis above by
solving the BA algorithm in a spherical coordinate system.
To address the issue of bat populations being prone to falling
into local optimum, a population stabilization strategy was
proposed to increase population diversity while avoiding
falling into local optimum. The purpose of the truncated
mean stabilization strategy is to compute the sample average
by removing the same number of extreme values from
both ends of the sample. Without reducing the number of
samples, this method can replace the worst sample value. The
number of samples to be eliminated is usually a percentage
of the sample or a fixed number. Reference [35] pro-
posed a multi-scale quantum harmonic oscillator algorithm
based on a truncated average stabilization strategy. The
algorithm demonstrated that it is possible to broaden the
diversity of particles by employing the truncated average
strategy. Therefore, this paper used it to develop a new
algorithm (TMS-SBA).

First of all, the SBA algorithm is used to obtain the
location, speed, and other specific information of the bat
population, then the fitness value of each bat is sorted,
a certain proportion of bat individuals are selected to obtain

FIGURE 4. Truncated mean stabilization strategy.

the average value of their positions, and the bat individuals
with the highest fitness, namely the so-called worst bats, are
replaced. As the number of iterations increased, the bats with
the worst fitness scores were replaced each time, increasing
the diversity of the population. The fitness value here can be
replaced by the cost function:

f (Li) = F(Li) (23)

Let X = (X1,X2, . . . ,XTmax ), where Xi is the set of bat
population position vectors after the ith iteration, then the
specific strategy to truncate the average stability is as follows:

Mark the location of the bat population as b1, b2, . . . , bnp
after one iteration X . Each bat’s fitness value is determined;
sort it from smallest to largest, and the one with the highest
value is designated as bworst , and we get b1, b2, . . . , bworst .
After selecting a random value β ∈ (0, 1), the number of bats
we choose to intercept can be set to k . Here is the formula for
calculating k:

k = [np×
β

2
] (24)

where np is the number of bat populations, then the position
of the truncated particle is going to be bk , bk+1, . . . , bnp−k .
So the truncated average vector of the bat’s position can be
obtained by:

breplace =
1

np− 2k

np−k∑
i=k

bi (25)

We replace bworst with breplace, and the new bat position
vector obtained can be written as b1, b2, . . . , breplace.
Figure 4 shows the flow of truncating the mean stability

policy. Through iteration after iteration, a new bat is gener-
ated each time without regard to locally optimal information.
The bats with the worst fitness in the bat population are
replaced each time, so as to increase the bat population,
improve the convergence performance of the algorithm, and
reduce the possibility of the algorithm falling into the local
optimal to a certain extent.

Similarly, considering an extreme case where the algo-
rithm’s fitness value does not change over multiple iterations,
it means that the algorithm is falling into local optimality and
all bat individuals have the same fitness value. In this case,
this paper adopts a strategy of expanding the search space.
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Algorithm 2 TMS-SBA Algorithm in UAV Path Planning
Require:
Ensure:

Initialization. Set np, Tmax , A0, V0, r , the generate counter
t = 1, and constant blimit = 0. Get coordinate information
for the search map.
for i = 1 : np do

Create an initial path L0inew in a spherical coordinate
system, where the number of path nodes is the search space
dimension D.

The cost function f for each bat is calculated in
Cartesian space and set to the fitness value. Initializes the
global optimal location.
end for
for t = 1 : Tmax do

for i = 1 : np do
The speed and position of each bat are calculated

on the UAV configuration space.
Update the velocity and position by (20) and (21)
if rand1 > r ti then

Get a new solution Xnew;
end if
The position information is mapped to the Carte-

sian coordinate system using (22), and then calculate the
new solution’s fitness f (Xi).

if f (X ti ) < f (Xw) then
Accept the new solutions and update r ti , A

t
i

end if
end for
Update the current optimal solution X∗.
The position information bt1, b

t
2, . . . , b

t
np(of course this

position information is in spherical coordinates) of each bat
is obtained by sorting f (Xi) from small to large.

Select the number of bats to be intercepted k by (24):
Identify replacement bats btreplace by (25)
Checks whether btworst and b

t
replace are equal, if they’re

equal, bl imit = 1
btworst = btreplace
if bl imit = 1, expand the search space and re-initialize

the bat population
The path cost is calculated by greedy criterion and the

original path is replaced by the optimal path.
Update the optimal solution

end for
Choose the optimal solution as the final result.
Save the best path associated with the global optimal
solution Lnew
End

The detection is performed after each iteration of the algo-
rithm. If breplace = bworst , expanding the search space with
the aid of the expansion coefficientw [35] may aid in the pop-
ulation’s departure from the local optimal. The primary com-
ponent of TMS-SBA is described in Fig.5 and Algorithm 2.

FIGURE 5. Flow chart of path planning for TMS-BA algorithm.

V. RESULT
A. PATH SMOOTHING
When the TMS-SBA method is used to address the UAV
route planning problem, considering that the generated path
is usually difficult to fly accurately, the B-spline curve
smoothing strategy is adopted to dynamically smooth the
flight path. B-spline is a generalization of Bessel curves,
allowing us to build accurate models for more general
geometry. The B-spline curve has many excellent properties,
such as geometric invariance and convexity preservation.
Similarly, it only needs a few variables to define the complex
curve path.

2402 VOLUME 11, 2023



B. Chen et al.: Improved Spherical Vector and Truncated Mean Stabilization Based BA for UAV Path Planning

FIGURE 6. B-spline curve.

Suppose there are n + 1 control points ci(i = 0, 1 . . . , n)
and a node vector u, b-spline curve can be defined as:

B(u) =
n∑
i=0

ciMi,k (u) (26)

where Mi,k (u) is B-spline basis function of degree k , also
called harmonic function, its recursive formula can be
expressed as follows:

Mi,0(u) =

{
1, if ui ≤ u ≤ ui+1
0, otherwise

Mi,k (u) =
u− ui

ui+k − ui
Ni,k−1(u)+

ui+k+1 − u
ui+k+1 − ui+1

(27)

The smoothing of the path using the B-spline approach is
shown in Fig.6. Because the degree of the polynomial cannot
be raised nomatter howmany points are added, the B-spline is
better suited to dealing with three-dimensional path problems
than the Bezier curve.

B. UAV PATH PLANNING PROBLEM
In this section, the TMS-SBA algorithm is simulated in a
three-dimensional environment. Not only the parameters of
the algorithm are compared and analyzed, but also the TMS-
SBA algorithm is compared with other traditional evolution-
ary algorithms to verify the feasibility and effectiveness of
the algorithm in UAV path planning. In addition, the software
used in this paper is MATLAB R2018a, and the experimental
simulation is carried out under the computer processor
Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz,.80GHZ,
64-bit Windows 10 operating system.

This work constructs four three-dimensional flight scenes,
namely three simple flat terrain scenes and one relatively
complex scene, in an effort to simulate the real flight envi-
ronment as closely as possible. Data clusters are employed
in complex situations to replicate the altitudes of mountains
and establish the range and quantity of threats depending
on geographic information. This paper first discusses the
algorithm’s performance in a simple environment. Setting the
start node S(200, 100, 0) and target node T (800, 800, 150)
of all paths. For comparison, set the maximum number of

TABLE 1. The information of threat areas.

iterations to 200. We conducted 50 simulation tests on each
algorithm to ensure the accuracy of the experiment.

Table 1 shows the threat center and radius of the three threat
areas in a simple environment, according to the hypothesis.
The threat area is set as a cylinder, which the UAV cannot
circumnavigate. Because the terrain is relatively flat, the
flight parameters are set as hmin = 0, hmax = 200. The drone
mission area is 1,000 kilometers long and 1,000 kilometers
wide. Table 2 shows the comparison results between the
TMS-SBA algorithm and the BA, PSO, and ABC algorithms
in the simple environment. Where n is the number of control
path nodes. Mean, std , worst , and optimal represent the
average fitness value (average cost function value), standard
deviation, worst fitness value, and optimal fitness value,
respectively.

Fig.7-Fig.9 shows the optimal UAV route generated by the
above four algorithms in scenarios 1, 2 and 3, respectively,
in n = 10 and 50 independent operations. Part (a) shows
a three-dimensional view of the drone route in the digital
terrain, where the cylinder represents the threat area.
Part (b) is a two-dimensional top view of (a) in the contour
map. As can be seen, all algorithms can generate viable
paths that meet the path length, threat, height requirements,
and constraint requirements. However, their optimality varies
from scenario to scenario. It can be observed that scenario 1
has good convergence for the four algorithms due to the small
number of threat areas, with slightly different fitness values.
The average of the total running time of each algorithm on
all functions is regarded as the average running time, due
to the existence of truncated mean strategy and spherical
coordinate transformation, the CPU running time of TMS-
SBA is slightly slower than that of the other three algo-
rithms. The PSO algorithm has the best performance when
generating a simple path, and the average cost function value
is 480.2139.

In scenario 2, we slightly increased the number of
threat areas in the space, making the whole search space
complicated. As can be seen fromFig.8, TMS-SBAgenerated
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TABLE 2. Comparison results of three threat regions with other algorithms in simple scenario (n = 10).

FIGURE 7. Comparison results in Scenario 1.

FIGURE 8. Comparison results in Scenario 2.

a feasible path with the minimum cost function, the average
fitness value was 487.7242, and the standard deviation of
the algorithm was 8.093, showing good performance. While
the results of BA, PSO, and ABC can better meet the path
planning requirements, PSO is more likely to fall into the

local optimal value during an iteration, which will result
in additional threat costs; the ABC algorithm’s convergence
speed is sluggish. At the same time, in 50 experiments,
BA is easy to fall into the local optimal solution and
cannot jump out, so the worst fitness value is 1023.137. The
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FIGURE 9. Comparison results in Scenario 3.

TABLE 3. Comparison the cost value of the comparison algorithm
changes with the number of iterations in simple scenario 2 (n = 10).

standard deviation of the BA algorithm is the largest, and its
performance is not stable.

In Scenario 3, we set up nine threat areas, which made
it much more challenging to search the region. It can be
seen that TMS-SBA can develop the initial solution quickly
and can approach the ideal solution with an average fitness
value of 489.6649. However, as the threat area grows, PSO
and BA’s ability to find the best solution suffers, and they
become more vulnerable to the impact of extreme values in
their own populations. The ABC algorithm tends to generate
more average pathways as a result of the compromise
between various bee types; hence, the performance is decent.
Meanwhile, in scenario 3, the time to initialize the path
increases due to the complexity of the environment. Since
TMS-SBA is generated in the spherical coordinate system of
the UAV, and the coordinates of each path node are related to
each other, the time to generate the initial solution is much
shorter than the other three algorithms. The results show that
TMS-SBA can reach the optimal value in most cases.

In order to make it easier for us to observe the behavior
of the variables more precisely, Fig.10 displays the change
curves of the fitness values of the four algorithms with each
iteration. It is clear that the four algorithms function well
in scenario 1’s comparatively straightforward context. The

TABLE 4. The influence of different population size on the algorithm in
Scenario 2(n = 10).

quality of the solution, however, degrades as the scene’s
complexity rises due to PSO’s shortcomings in global search.
The population of BA is also vulnerable to early convergence
because of the existence of super bats. Although ABC can
find the average path, the convergence happens slowly.
Finally, the TMS-SBA algorithm has more advantages in the
search space since it is stored in a spherical coordinate system
and is directly bound by the turning angle in the cost function.
Additionally, TMS-SBA avoids the scenario of premature
convergence to the precocity solution like BA and increases
the diversity of the population by truncating the mean
stability strategy, making it perform well in most situations.
Fig.11 shows the box diagram of the four algorithms in
50 experiments. It can be seen that TMS-SBA produces the
fewest outliers, is more stable overall, and performs well in
most cases.

The effects of each variable on the functionality of the
TMS-SBA algorithm should be discussed. The algorithm
proposed in this paper is based onmultiple variables, in which
the spatial dimension, the number of iterations, and the
number of populations all have an impact on the optimal path
of the algorithm. Therefore, we carried out experiments to
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FIGURE 10. The convergence curves of the four algorithms.

FIGURE 11. Boxplot with 50 iterations of four algorithms.

analyze the influence of each parameter on the algorithm.
We chose BA for comparative analysis in the comparison
experiment because TMS-SBA is an improvement over BA,
and we let the two algorithms choose the same parameters
and other algorithms for auxiliary comparison. Scenario 2,
of moderate complexity, is used as an example for clarity.

1) NUMBER OF ITERATIONS
Table 3 shows the impact of different iterations on the
overall change. As can be seen from the data in Fig.10
and table, TMS-SBA can find a better solution after about
50 iterations, while BA and PSO perform generally, because
they are easy to fall into local optimals and not easy to get
rid of, and the convergence speed of the ABC algorithm is
slow. In summary, the TMS-SBA algorithm has a significant
advantage in convergence speed.

2) NUMBER OF POPULATION
Table 4 shows the influence of different population numbers
on the algorithm, and the number of iterations is set to 200.
It can be seen that with the increase in population, the ability
of TMS-SBA and BA to find the optimal solution becomes
stronger, but the required iteration time also increases. For
BA, with a population size of 50, it is easy to fall into
the limitation of local search solutions, resulting in the
illegal finding of appropriate paths. For TMS-SBA, the phase
strategy can make it jump out of the influence of a larger

TABLE 5. Influence of path node n on cost value in scenario 2.

TABLE 6. The information of complex environment.

fitness value and make the search for solutions more stable.
In this paper, if the impact of time cost is taken into account,
better results can be obtained faster if the population is set at
around 200, and 200 to 500 is more appropriate if a solution
of higher quality is to be obtained stably.
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TABLE 7. Comparison results of four algorithms in complex environment (n = 10).

FIGURE 12. Results of the 3D view comparison in complex environment.

FIGURE 13. Results of the overlooking view comparison in complex
environment.

3) NUMBER OF PATH NODES
Table 5 shows the effect of different path nodes n on the
algorithm. What you need to know is that the dimension of
the search space depends on n, which is d = 3n. From
table 5, as you can see, the four algorithms have basically
the same search ability in low-dimensional space. Because
BA, PSO, and ABC have weak searching abilities in high-
dimensional space, with the increase of path nodes, the
optimal path is often unable to be generated or only a poor
path can be generated. On the other hand, due to its own
coding characteristics, the convergence rate of TMS-SBA is
almost not affected, and it performs well in high-dimensional
space.

Similarly, this paper analyzes algorithm performance in
complex environments. The data cluster is employed in the
search space to imitate the height of amountain, and the threat

FIGURE 14. Convergence curves of the four algorithms.

area is set in accordance with the topography. Table 6 displays
the related values. The range of height constraints for UAVs
expands as the complexity of the terrain does. Table 7 shows
the results after 50 independent runs of the four algorithms,
in which the number of iterations is set to 200, the population
is set to 500, N = 10, the start node S = (200, 200, 0),
and the target node T = (800, 800, 150). The flight height
at this time is hmin = 100 and hmax = 300. As you can
see, TMS-SBA can generate a good flight path while avoiding
the impact of threat areas and mountain heights. Due to the
limitation of the flight height, it is more difficult for PSO,
BA, and ABC to generate the optimal path, and the path
cannot be generated, which can also be seen from the data
of the standard deviation. Fig.12 and Fig.13 show the three-
dimensional image and top view of the UAV route generated
by four algorithms in a complex environment. It can be seen
that the path of TMS-SBA ismore stable and smooth than that
of other traditional evolutionary algorithms. Fig.14 shows the
convergence curves of the four functions. The convergence
rate of TMS-SBA is fast enough.

Finally, it is necessary to discuss the influence of the
truncated mean stability strategy on the algorithm. We run
TMS-SBA and SBA without a truncated mean stability
strategy in parallel in the same environment. The conditions
of other parameter variables are unchanged, and the initial-
ization paths of the two algorithms are the same. Fig.15
shows the convergence curves of the two algorithms in the
same environment. It can be seen that, compared with SBA
algorithm, TMS-SBA algorithm can generate optimal fitness
value path in most cases, while SBA algorithm is easy to fall
into local optimal value, resulting in unstable results. TMS-
SBA may occasionally be affected by local solutions, but in
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FIGURE 15. The convergence curves of the two algorithms.

the process of iteration, bats with the worst fitness values
are replaced by bats with an average fitness value, which
increases the diversity of the population and thus can avoid
falling into a local optimal state in most cases.

VI. CONCLUSION
In this study, we propose an improved TMS-SBA algorithm
to solve the path planning problem of UAV, so that the
UAV can obtain a safe and non-collision optimal path.
The algorithm is based on a combination of the UAV’s
own motion space and search space. Meanwhile, a new
truncated mean stability strategy is designed in this paper,
which maintains the diversity of the population in the
iterative process, improves the convergence performance,
and prevents the algorithm from falling into the local
optimal solution. This paper tested the performance of
the algorithm in different threat areas and flight altitudes
through four different scenarios and compared it with the
performance of the classical evolutionary algorithms such
as PSO, BA, and ABC. Experiments show that TMS-SBA
can find the best flight path location information in most
cases, and the performance is significantly better than the
traditional evolutionary algorithm when there are more path
nodes.

The algorithm parameters are compared and analyzed in
this paper. As the population size grows, the algorithm’s
iteration time inevitably grows, and as the number of
path nodes rises, the algorithm’s stability also declines.
TMS-SBA can perform stable and efficient computation in
high-dimensional space. In terms of function optimization,
TMS-SBA can produce better results with a lower standard
deviation when compared to ABC, BA, and PSO. The flight
scenario set forth in this paper can effectively make the
UAV avoid the threat area. However, because the design
in this paper cannot go over the top of the threat area in
the face of a dense mountain and jungle environment, the
path cost must be generated. At the same time, in contrast
to other methods, the algorithm’s general applicability isn’t
as great because it was created to take into account the
features of the UAV configuration space. Therefore, further
improvement is needed in the future work. In the following
work, we will also extend our research to the problem of
multi-UAV collaborative route planning.
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