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ABSTRACT Robustness analysis of fuzzy cellular neural networks with deviating arguments and stochastic
disturbances is the main topic of discussion in this paper. The issue at hand is what the upper bounds of
the disturbances and deviating intervals for the fuzzy cellular neural network can withstand before losing
its stability. We solve these problems by using Gronwall-Bellman lemma and some inequality techniques.
The theoretical results point that for an exponentially stable fuzzy cellular neural network, the perturbed
fuzzy cellular neural network still keep its globally exponential stability if the upper bound of the length
of deviating intervals or the intensity of stochastic disturbances is less than the upper bound derived in this
paper. A number of numerical cases are offered to support the availability of conjectural values.

INDEX TERMS Fuzzy cellular neural network, robustness analysis, deviating argument, stochastic
disturbances.

I. INTRODUCTION
The appearance of artificial neural network (ANN) aims to
simulate biological neurons. Based on ANN, many exten-
sions of ANN have been proposed and bewidely used [1], [2],
for example, cellular neural network (CNN). In [3] and [4],
CNN as a branch of ANN, was first proposed by Chua
and Yang, it overcomes the drawbacks of ANN well, this
model reduces the numbers of interconnections and keeps the
advantages of parallel processing of ANN. Besides, neurons
in a CNN only connect to other neurons in a specific area.
Based on these properties of CNN, CNN and its extension
are widely used in image encryption technology [5], parallel
signal processing [6] and so on [7], [8], and [9].

Fuzzy cellular neural network (FCNN) as one of the most
important extensions of CNN, was proposed by Yang and
Yang et al. [10], [11] in 1996. Due to the existence of fuzzy
logic, FCNN model can better describe the uncertain behav-
iors in practical applications than CNN, so it is very necessary
to study the various properties of FCNN. Therefore, FCNN
has received extensive attentions in recent decades, there are
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many classic methods to explore the properties of FCNN,
such as Lyapunov theory, Razumikhin-type method, Linear
Matrix Inequality method (LMI), etc. References [12], [13],
[14], [15], [16], [17], [18], [19], [20], and [21]. Furthermore,
in [22], Zhang and Xiang investigated the existence, unique-
ness and global asymptotic stability of delayed FCNN by
using the properties of M-matrix and the topological degree
theory. And in [23], Aravind and Balasubramaniam use the
fractional Barbalat’s lemma and some inequalities to design a
newLyapunov-Krasovskii functional method to discussed the
global asymptotic stability of fractional order complex valued
FCNN with impulsive interference attentively. At the same
time, the available methods and techniques to explore the
robustness of stability of FCNN with disturbances are very
limited.

Deviating argument, as one of the disturbance factors,
which first appeared at the end of the 18 th century, was ini-
tially established to solve geometric problems. In the 1950s,
with the repeated analysis of the theory and the combination
with various applications, the theory of differential equa-
tion system with deviating argument was formed. For this
type system, it is a mixture of continuous and discrete sys-
tems, which has the properties of difference and differential
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systems. Due to these property of system with deviating
argument, it is very interesting to study its dynamic behaviors.
For this kind hybrid equations, the traditional definition of the
solution of differential equation is no longer applicable. For
this problem, Akhmet et al. gave a groundbreaking definition
of the solutions of differential equations or neural networks
with deviating arguments in [24], [25], and [26]. In addition,
stability as a prerequisite for the application of the neural
networks with deviating arguments, it has been widely stud-
ied, see, [24], [25], [26], [27], [28], [29]. Furthermore, the
length of the deviating interval also affects the stability of a
dynamical system, in [30] and [31], Zhang and Si further
studied the robustness of exponential stability of nonlinear
system with deviating argument on the basis of the result of
stability. And they estimate the upper bound of the interval
length of deviating function. This provides a theoretical basis
for the design and application of general neural networks and
differential equations with deviating arguments. However, the
length of deviating interval that can make FCNN with devi-
ating argument (FCNNDA) to be stable is rarely explored.

On the other hand, in practical applications, there are usu-
ally random disturbances that can make the neural networks
lose its stability and convergence, just as Haykin pointed
in [1], thus, the influence of random disturbances on the
system cannot be ignored. In real human neural networks,
random disturbances are usually noisy processes caused by
random fluctuations and other probabilistic when synapses
transmit neurotransmitters. Due to the influence of pertur-
bations, the locus of differential systems will become a
stochastic motion [32]. With the development of the theory
of stochastic analysis, and its increasingly wide applications
in the field of control, many notions are proposed to depict the
stability of stochastic processes, see [32]. In [14], Long et al.
give new conditions to stabilize delayed SFCNN by present-
ing a new L-operator inequality with time-varying delays.
And Zhang et al. applied stochastic theory to fractional-
order SFCNN in [16], and not only the proof of the exis-
tence and uniqueness of solutions of fractional SFCNN is
given, but also a criterion to guarantee the uniform stability
of fractional-order SFCNN. In addition, in [33], Qi et al.
designed a sliding mode control law based on stochastic
fuzzymodel, and proposed a new stochastic stability criterion
related to sojourn time for the corresponding sliding mode
equation using Lyapunov method. Whereas, the maximum
noise intensity that can stabilize SFCNN is rarely estimated.

Based on the above discussions, the purpose of this paper
is to investigate the robustness of the exponential stability
of FCNN with deviating argument and random disturbances.
Roughly speaking, the main works and contributions of this
paper are as follows.
• The robustness of the stability of the SFCNN is investi-
gated, and the upper bound of noise to keep the stability
of the SFCNN is estimated.

• The property of the deviating function is explored, and
the length of the interval of the deviating argument that
can maintain the stability of the FCNNDA is estimated.

• The robustness of the stability of FCNN with both devi-
ating argument and random disturbances (SFCNNDA)
is investigated, and the upper bounds of the two dis-
turbances are estimated. And the mutual restriction
between the two disturbances is pointed out.

• The works of this paper provide a theoretical basis
for the design of FCNNs that meets the performance
requirements via using Gronwall-Bellman Lemma and
inequality techniques.

Finally, we give the rest organizational structures of this
paper. We first consider SFCNN without deviating argument,
and for an exponentially stable FCNN, we estimate the upper
bound of the noise intensity that can make SFCNN remains
globally exponentially stable in Section II. In Section III, the
model we considered and some assumptions we use are given,
concurrently, we explore the impacts of deviating argument
on system stability, and give themaximum length of deviating
argument intervals. Besides, in Section IV, based on the
model given in Section III, we add random perturbations
and discuss the influences of both random perturbations and
deviating argument on the stability of SFCNNDA. At the
same time, we give the upper bound of the noise intensities
and the max length of the intervals of deviating argument
by solving transcendental equations to maintain its stability.
In addition, three instances are given to support our academic
consequences in Section V.
Notation: Denote R = (−∞,+∞), R+ = [0,+∞), N =
{1, 2, · · · }, and Rm denotes the space which is made up of all
m-dimensional vectors. For a vector χ = (χ1, χ2, . . . , χm)T ,
we denote ||χ || =

∑m
ς=1 |χς |, ς ∈ N where χς ∈ R.

(�,F , {Ft }t≥0,P) is a complete filtered probability space,
where {Ft }t≥0 is a right continuous filtration and satisfies the
usual conditions, that means the space embraces all P-null
sets. f(t), a scalar Brownian movement, which is defined
at (�,F , {Ft }t≥0,P). And E stands an operator which is
used to compute the mathematical expectation for the given
probability measure P. Fuzzy AND and fuzzy OR operations
are represented by

∧
and

∨
, respectively.

II. NOISE EFFECT ON STABILITY
We first consider the following FCNN.

Υ̇ρ(t) = −%ρΥρ(t)+
∧m
ς=1 ϕ̆ρς fς (Υς (t))

+
∨m
ς=1 ω̆ρς fς (Υς (t))+

∧m
ς=1 JρςLς

+
∨m
ς=1 IρςLς + Zρ,

Υρ(t0) = Υ 0
ρ ,

(1)

where ρ, ς ∈ N, Υ 0
ρ ∈ R is the initial value of FCNN (1).

Υρ(t), Υς (t), Lς and Zρ denote the states of FCNN (1) and
external inputs, respectively. ϕ̆ρς and Jρς are the elements
of fuzzy feedback MIN template and fuzzy feed-forward
MIN template, respectively. ω̆ρς , Iρς are the elements of
fuzzy feedbackMAX template and fuzzy feed-forwardMAX
template, respectively. fς (·) is the activation function.
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Assume Υ ? is the equilibrium point of FCNN (1), where
Υ ? = {Υ ?1 , · · · , Υ

?
m}

T , then let Λ̃(t) = Υ (t) − Υ ? and
Γς (Λ̃ς (t)) = f (Λ̃ς (t)+Υ ?ς )− f (Υ

?), Λ̃0
ρ = Υ

0
ρ −Υ

?
ρ , then,

FCNN (1) can be rewritten as
˙̃
Λρ(t)=−%ρΛ̃ρ(t)

+
∧m
ς=1 ϕ̆ρςΓς (Λ̃ς (t))+

∨m
ς=1 ω̆ρςΓς (Λ̃ς (t)),

Λ̃ρ(t0)=Λ̃0
ρ .

(2)

Here are the assumptions the activation function Γς (·) and
deviating function need to satisfy.
III(1). Assume activation function Γς (t) satisfies the fol-

lowing inequality,

|Γς (u)− Γς (v)| ≤ µς |u− v|, ς = 1, 2, · · ·

and Γς (0) = 0.
Remark 1:AssumptionIII(1)means that the function Γς (·)

is forced up and down by a linear function. The slope of
the linear function does not exceed the lipschitz constant µς .
This assumption holds for activation functions of most neural
networks, such as tanh(·), sin(·) and so on. Furthermore, if
assumption III(1) holds, then, the following lemma we need
to point.
Lemma 1 [16]: If assumption III(1) holds, the solution

Λ̃(t) = (Λ̃1(t), . . . , Λ̃m)T of FCNN (2) meets the initial
condition is unique.

Proof: We can think of FCNN (2) as a particular case of
the system in [16], thus, the proof of this lemma is similar to
the Theorem 1 in [16]. So we omit it here. �
For simplicity, we call globally exponentially stable, mean

square exponentially stable and almost surely globally expo-
nentially stable as GES, MSES and ASGES respectively.
Then, we give the definition of GES of FCNN (2).
Definition 1: FCNN (2) is said to be GES if there exist

ν > 0, ϑ > 0 such that

||Λ̃(t)|| ≤ ν||Λ̃0
|| exp(−ϑ(t − t0)) (3)

holds, where Λ̃(t) = {Λ̃1(t), . . . , Λ̃m(t)}T and Λ̃0
=

{Λ̃1(t0), · · · , Λ̃m(t0)}T are the state and initial value of
FCNN (2) respectively.

Then, based on FCNN (2), we consider the effect of distur-
bances on FCNN. We consider the following SFCNN.

dΛρ(t) =
[
−%ρΛρ(t)+

∧m
ς=1 ϕ̆ρςΓς (Λς (t))

+
∨m
ς=1 ω̆ρςΓς (Λς (t))

]
dt

+
∑m
ς=1 σρςΛς (t)df(t),

Λρ(t0) = Λ0
ρ = Λ̃

0
ρ,

(4)

where ρ, σ ∈ N, Λ0
ρ is the initial value of SFCNN (4). Γς (·)

is the ς th activation function.

Then, we can get the following two definitions
from [14].
Definition 2 [14]: SFCNN (4) is said to be MSES if ∀t ≥

t0 ≥ 0, Λ0
∈ Rn, the Lyapunov exponent

lim sup
t→∞

1
t
lnE||Λ(t; t0,Λ0)||2 < 0 (5)

or exist ζ > 0,$ > 0 such that

E||Λ̃(t; t0, Λ̃0)||2 ≤ ζE||Λ̃0
||
2 exp(−$ (t − t0)). (6)

Definition 3 [14]: SFCNN (4) is said to be ASGES, if for
all t ≥ t0 ≥ 0, Λ0

∈ Rn, the Lyapunov exponent

lim sup
t→∞

1
t
ln |Λ(t; t0,Λ0)| < 0 (7)

almost sure.
Furthermore, we give another lemma that we need for this

paper.
Lemma 2 [10]: Assume Λ̂(t) = {Λ̂1(t), . . . , Λ̂m(t)}T and

Λ̌(t) = {Λ̌1(t), . . . , Λ̌m(t)}T are two states of FCNN (2),
then ∣∣∣∣ m∧

ς=1

ϕ̆ρςΓς (Λ̂ς (t))−
m∧
ς=1

ϕ̆ρςΓς (Λ̌ς (t))

∣∣∣∣
≤

m∑
ς=1

µς |ϕ̆ρς ||Λ̂ς (t)− Λ̌ς (t)|,

∣∣∣∣ m∨
ς=1

ω̆ρςΓς (Λ̂ς (t))−
m∨
ς=1

ω̆ρςΓς (Λ̌ς (t))

∣∣∣∣
≤

m∑
ς=1

µς |ω̆ρς ||Λ̂ς (t)− Λ̌ς (t)|

hold.
From (5), (7), we can easily see that MSES can be derived

from ASGES, but vice versa is not true. However, if assump-
tion III(1) and Lemma 2 hold, the MSES of SFCNN (4)
implies the ASGES of SFCNN (4) [34].

Next, let us explore the effect of stochastic perturbations
on stability of FCNN firstly.
Theorem 1: If assumptionIII(1) and Lemma 2 hold, FCNN

(2) is GES, then SFCNN (4) is ASGES if |σ∗| ≤ σ̌ρς ,
where σ̌ρς is the unique positive solution of the following
transcendental equation.

2ν2 exp(−2ϑ1)

+ 2σ 2
∗ ν

2/ϑ exp{81[1(κ1 + κ2)2 + σ 2
∗ ]} = 1, (8)

where

1 > ln(2ν2)/(2ϑ), κ1 = max
1≤ρ≤m

|%ρ |,

κ2 = max
1≤ρ≤m

µρ

m∑
ς=1

(|ϕ̆ςρ | + |ω̆ςρ |), σ∗= max
1≤ρ≤m

m∑
ς=1

|σςρ |.
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Proof: From FCNN (2), SFCNN (4) and assumption
I(2), we have

|Λρ(t)− Λ̃ρ(t)|

≤

∫ t

t0

{
|%ρ ||Λρ(s)− Λ̃ρ(s)|

+

m∧
ς=1

|ϕ̆ρς |µς |Λς (s)− Λ̃ς (s)|

+

m∨
ς=1

|ω̆ρς |µς |Λς (s)− Λ̃ς (s)|
}
ds

+

m∑
ς=1

|σρς ||Λς (s)|df(s). (9)

Let κ1 = max
1≤ρ≤m

|%ρ |, κ2 = max
1≤ρ≤m

µρ
m∑
ς=1

(|ϕ̆ςρ | + |ω̆ςρ |)

and σ∗ = max
1≤ρ≤m

m∑
ς=1
|σςρ |, thus,

||Λ(t)− Λ̃(t)||

=

m∑
ρ=1

|Λρ(t)− Λ̃ρ(t)|

≤

∫ t

t0

{ m∑
ρ=1

|%ρ ||Λρ(s)− Λ̃ρ(s)|

+

m∑
ρ=1

m∑
ς=1

|ϕ̆ρς |µς |Λς (s)− Λ̃ς (s)|

+

m∑
ρ=1

m∑
ς=1

|ω̆ρς |µς |Λς (s)− Λ̃ς (s)|
}
ds

+

∫ t

t0

m∑
ρ=1

m∑
ς=1

|σρς ||Λς (s)|df(s)

≤

∫ t

t0

{ m∑
ρ=1

|%ρ ||Λρ(s)− Λ̃ρ(s)|

+

m∑
ς=1

m∑
ρ=1

|ϕ̆ρς |µς |Λς (s)− Λ̃ς (s)|

+

m∑
ς=1

m∑
ρ=1

|ω̆ρς |µς |Λς (s)− Λ̃ς (s)|
}
ds

+

∫ t

t0

m∑
ς=1

m∑
ρ=1

|σρς ||Λς (s)|df(s)

≤

∫ t

t0

{ m∑
ρ=1

|%ρ ||Λρ(s)− Λ̃ρ(s)|

+

m∑
ρ=1

m∑
ς=1

|ϕ̆ςρ |µρ |Λρ(s)− Λ̃ρ(s)|

+

m∑
ρ=1

m∑
ς=1

|ω̆ςρ |µρ |Λρ(s)− Λ̃ρ(s)|
}
ds

+

∫ t

t0

m∑
ρ=1

m∑
ς=1

|σςρ ||Λρ(s)|df(s)

≤

∫ t

t0
κ1||Λ(s)− Λ̃(s)|| + κ2||Λ(s)− Λ̃(s)||ds

+ σ∗

∫ t

t0
||Λ(s)||df(s). (10)

Therefore, by Itô formula,

||Λ(t)− Λ̃(t)||2

≤ 2
{∫ t

t0
κ1||Λ(s)− Λ̃(s)|| + κ2||Λ(s)− Λ̃(s)||ds

}2
+ 2σ 2

∗

∫ t

t0
||Λ(s)||2ds

≤ 2(t − t0)
∫ t

t0
(κ1 + κ2)2||Λ(s)− Λ̃(s)||2ds

+ 2σ 2
∗

∫ t

t0
||Λ(s)||2ds. (11)

Then, for t ≥ t0 + 21,

E||Λ(t)− Λ̃(t)||2

≤ [41(κ1 + κ2)2 + 4σ 2
∗ ]
∫ t

t0
E||Λ(s)− Λ̃(s)||2ds

+ 2σ 2
∗ ν

2/ϑE||Λ̃0
||
2. (12)

Then for t0 + 1 ≤ t ≤ t0 + 21, by Gronwall-Bellman
inequality,

E||Λ(t)− Λ̃(t)||2 ≤ 2σ 2
∗ ν

2/ϑE||Λ̃0
||
2

× exp{81[1(κ1 + κ2)2 + σ 2
∗ ]}. (13)

Thus, for t0 +1 ≤ t ≤ t0 + 21,

E||Λ(t)||2

≤ 2E||Λ̃(t)||2 + 2E||Λ(t)− Λ̃(t)||2

≤

{
2ν2 exp(−2ϑ1)+ 2σ 2

∗ ν
2/ϑ

× exp{81[1(κ1 + κ2)2 + σ 2
∗ ]}
}
E||Λ̃0

||
2. (14)

Select

H(σ∗) = 2ν2 exp(−2ϑ1)

+ 2σ 2
∗ ν

2/ϑ exp{81[1(κ1 + κ2)2 + σ 2
∗ ]}.

We can easily observe that H(σ∗) is strictly increasing for
σ∗. And noting that 1 > ln(2ν2)/(2ϑ), thus, H(0) < 1.
Therefore, there must be a σ̌ρς > 0, such that H(σ̌∗) = 1.
Then, let P = − lnH(σ∗)/1, we can see P > 0, from (14),

for t0 +1 ≤ t ≤ t0 + 21, we can obtain that

E||Λ(t)||2 ≤ exp(−P1)E||Λ̃0
||
2. (15)

Therefore, from Lemma 1, we can get

Λ(t; t0,Λ0) = Λ(t; t0 + (r − 1)1,

Λ(t0 + (r − 1)1; t0,Λ0)).
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where r is positive constant. Thus, for t ≥ t0 + m1,

E||Λ(t)||2

= E||Λ(t; t0 + (q− 1)1,Λ(t0 + (q− 1)1; t0,Λ0))||2

≤ exp(−P1)E||Λ(t; t0 + (q− 1)1; t0,Λ0)||2

= exp(−P1)E||Λ(t; t0 + (q− 2)1,

Λ(t0 + (q− 2)1; t0,Λ0))||2

· · ·

≤ exp(−qP1)E||Λ0
||
2. (16)

Therefore, for any t > t0 + 1, there must be a positive
constant u such that

E||Λ(t; t0,Λ0)||2

≤ exp(−P(t − t0)) exp(P1)E||Λ0
||
2 (17)

for t0 + (u − 1)1 ≤ t ≤ t0 + u1 holds. And it is obviously
that (17) is also hold for t0 ≤ t ≤ t0 +1. Thus, SFCNN (4)
is ASGES. �

III. DEVIATING ARGUMENT EFFECT ON STABILITY
In this part, we mainly explore the effect of deviating argu-
ment, and consider following FCNNDA.

Λ̇ρ(t) = −%ρΛρ(t)+
∧m
ς=1 ϕ̆ρςΓς (Λς (H(t)))

+
∨m
ς=1 ω̆ρςΓς (Λς (H(t))),

Λρ(t0) = Λ0
ρ = Λ̃

0
ρ,

(18)

where H(t) is deviating function, and H(t) = H∗k , when
t ∈ [ℵk ,ℵk+1). Γς (·) is the ς th activation function. And exist
two sequences {ℵk}, {H∗k}, k ∈ N such that ℵk ≤ H∗k < ℵk+1,
∀k ∈ N, and ℵk → ∞, H∗k → ∞. Thus, if ℵk ≤ t ≤
H∗k < ℵk+1, the FCNNDA (18) is an advanced system. On the
contrary, if ℵk ≤ H∗k ≤ t < ℵk+1, (18) is a delayed
system. Therefore, FCNNDA (18) is a mix type of advanced
and delayed system that means the dynamic behavior of
FCNNDA (18) depends not only on its past values, but also
on its advanced values. This type of system (18) can be used
to simulate the behaviours of pathodynamical system [27].

Here are some assumptions for H(t) need to satisfy.
III(2). There is a ℵ > 0 such that ℵk+1 − ℵk < ℵ, k ∈ N.
III(3). ℵ[κ1(1+ κ2ℵ) exp(κ1ℵ)+ κ2] < 1.
III(4). ν exp(−ϑ1)+ 2κ2ν/ϑ exp[21(κ1 + 3κ2)] < 1.
Remark 2: As we all know, for deviating argument, the

deviating interval affects the stability of the perturbed neural
network. Therefore, assumption III(2) guarantees that the
deviating interval of the perturbed neural network is bounded.
Besides, the relationship between the statesΛ(H(t)) andΛ(t)
is guaranteed by assumption III(3).

Firstly, we explore the relationship between the state Λ(t)
and Λ(H(t)).
Lemma 3: Let III(1)-III(3) hold, then the following

inequality

||Λ(H(t))|| ≤ Ξ ||Λ(t)||, ∀t ∈ R+ (19)

holds, where Λ(t) is a solution of FCNNDA (18) and

Ξ =

{
1− ℵ[κ1(1+ κ2ℵ) exp(κ1ℵ)+ κ2]

}−1
,

κ1 = max
1≤ρ≤m

|%ρ |, κ2 = max
1≤ρ≤m

µρ

m∑
ς=1

(|ϕ̆ςρ | + |ω̆ςρ |).

Proof: Since k ∈ N, for any t ∈ [ℵk ,ℵk+1), from
assumptions III(1) and Lemma 2, we have

m∑
ρ=1

|Λρ(t)| =
m∑
ρ=1

|Λρ(H∗k )| +
m∑
ρ=1

∫ t

H∗k

[
|%ρ ||Λρ(t)|

+

m∑
ς=1

|ϕ̆ρς |µς |Λς (H∗k )|

+

m∑
ς=1

|ω̆ρς |µς |Λς (H∗k )|
]
ds. (20)

Further, we can get

||Λ(t)|| ≤ ||Λ(H∗k )|| +
∫ t

H∗k

[
κ1||Λ(t)|| + κ2||Λ(H∗k )||

]
ds

≤ (1+ κ2ℵ)||Λ(H∗k )|| +
∫ t

H∗k

κ1||Λ(t)||ds. (21)

Using Gronwall-Bellman inequality, we have

||Λ(t)|| ≤ (1+ κ2ℵ)||Λ(H∗k )|| exp(κ1ℵ). (22)

Similarly,

||Λ(H∗k )||

≤ ||Λ(t)|| +
∫ t

H∗k

[
κ1||Λ(t)|| + κ2||Λ(H∗k )||

]
dt

≤ ||Λ(t)|| + ℵ[κ1(1+ κ2ℵ) exp(κ1ℵ)+ κ2]||Λ(H∗k )||

≤ Ξ ||Λ(t)||. (23)

where Ξ =
{
1− ℵ[κ1(1+ κ2ℵ) exp(κ1ℵ)+ κ2]

}−1
.

Since t and k are random constant, thus, (23) holds for t ∈
[ℵk ,ℵk+1). �
Based on Lemma 3, we investigated the effect on stability

of FCNN disturbed by deviating argument.
Theorem 2: Let assumptions III(1)-III(4) hold, and FCNN

(2) is GES, then the FCNNDA is also GES if ℵ <

min{1/2, ¯̄ℵ} and ¯̄ℵ is the unique solution of the following
transcendental equation.

ν exp(−ϑ(1− ℵ))+ ν/ϑκ2

{
1+ (1− ℵ[κ1(1

+ κ2ℵ) exp(κ1ℵ)+ κ2])−1
}
exp

{
21
(
κ1 + 2κ2

+ κ2

[
1+ (1− ℵ[κ1(1+ κ2ℵ) exp(κ1ℵ)

+ κ2])−1
])}
= 1, (24)

where 1 > ln υ/ϑ .
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Proof: For any t ≥ t0 ≥ 0, from (2), (4), thus,
m∑
ρ=1

|Λρ(t)− Λ̃ρ(t)|

≤

∫ t

t0

[ m∑
ρ=1

|%ρ ||Λρ(s)− Λ̃ρ(s)|

+

m∑
ρ=1

m∑
ς=1

|ϕ̆ρς |µς |Λς (H(s))− Λ̃ς (s)|

+

m∑
ρ=1

m∑
ς=1

|ω̆ρς |µς |Λς (H(s))− Λ̃ς (s)|
]
ds

≤

∫ t

t0

[ m∑
ρ=1

|%ρ ||Λρ(s)− Λ̃ρ(s)|

+

m∑
ρ=1

m∑
ς=1

|ϕ̆ςρ |µρ |Λρ(H(s))− Λ̃ρ(s)|

+

m∑
ρ=1

m∑
ς=1

|ω̆ςρ |µρ |Λρ(H(s))− Λ̃ρ(s)|
]
ds. (25)

Therefore, by Lemma 3, we have

||Λ(t)− Λ̃(t)||

≤

∫ t

t0

[
(κ1 + κ2)||Λ(s)− Λ̃(s)||

+ κ2||Λ(H(s))−Λ(s)||
]
ds

≤ (κ1 + 2κ2 + κ2Ξ )
∫ t

t0
||Λ(s)− Λ̃(s)||ds

+ κ2(1+Ξ )ν/ϑ ||Λ̃0
||. (26)

Thus, by applying Gronwall-Bellman lemma, for t0+ℵ ≤
t ≤ t0 + 21, we have

||Λ(t)− Λ̃(t)||

≤ κ2(1+Ξ )ν/ϑ ||Λ̃0
||

× exp[21(κ1 + 2κ2 + κ2Ξ )]. (27)

Noting that ℵ ≤ 1/2, for t0 −ℵ+1 ≤ t ≤ t0 −ℵ+ 21,

||Λ(t)|| ≤ ||Λ(t)− Λ̃(t)|| + ||Λ̃(t)||

≤

{
ν exp(−ϑ(1− ℵ))+ κ2(1+Ξ )ν/ϑ

× exp[21(κ1 + 2κ2 + κ2Ξ )]
}
||Λ̃0
||. (28)

Let F(ℵ) = ν exp(−ϑ(1 − ℵ)) + κ2(1 + Ξ )ν/ϑ exp[21
(κ1+2κ2 + κ2Ξ )], E(ℵ) = ℵ[κ1(1 + κ2ℵ) exp(κ1ℵ) + κ2],
then, we can easily observe that E(ℵ) is strictly increasing for
ℵ, thus, there must be a ℵ̄ such that E(ℵ̄) = 1. On the other
hand, F(ℵ) is also strictly increasing for ℵ and from III(4) we
have F(0) < 1, thus, there must be another positive constant
¯̄
ℵ ∈ (0, ℵ̄) such that F( ¯̄ℵ) = 1. Since F(ℵ) is also increasing
forℵ on interval (0, ℵ̄), therefore, we can know thatF(ℵ) < 1,

when ℵ < ℵ̄. Then, from what has been discussed above,
we know that F(ℵ) < 1, when ℵ < min{1/2, ¯̄ℵ}.

Setting K = − lnF/1, then for t0 − ℵ + 1 ≤ t ≤ t0 −
ℵ+ 21 we have

||Λ(t)|| ≤ exp(−1K )||Λ0
||. (29)

From Lemma 1, we have

Λ(t; t0,Λ0) = Λ(t; t0 + (m− 1)1,

Λ(t0 + (m− 1)1; t0,Λ0)).

where m is positive constant. Thus, for t ≥ t0 − ℵ+ m1,

||Λ(t)||

= ||Λ(t; t0 + (m− 1)1,Λ(t0 + (m− 1)1; t0,Λ0))||

≤ exp(−1K )||Λ(t; t0 + (m− 1)1; t0,Λ0)||

= exp(−1K )||Λ(t; t0 + (m− 2)1,

Λ(t0 + (m− 2)1; t0,Λ0))||

· · ·

≤ exp(−m1K )||Λ0
||. (30)

Therefore, for any t > t0 − ℵ + 1, there must be an l >
0 such that

||Λ(t; t0,Λ0)|| ≤ exp(−K (t − t0))

× exp(K (1− ℵ))||Λ0
||, (31)

for t0 − ℵ + (l − 1)1 ≤ t ≤ t0 − ℵ + l1 holds. And it is
obviously that (31) is also hold for t0 ≤ t ≤ t0−ℵ+1. Thus,
FCNNDA (18) is also GES. �
Remark 3: Assumption III(4) guarantees that the derived
transcendental equation (24) has real solutions on the interval
(0,+∞).

IV. THE EFFECT OF DEVIATING ARGUMENT AND
STOCHASTIC DISTURBANCES
In this part, we will consider random perturbations on the
basis of FCNNDA (18) and explore the influence of both ran-
dom perturbation and deviating argument on the stability of
FCNNDA (18). Then, the model of SFCNNDA is as follows.

dΛρ(t) =
[
−%ρΛρ(t)+

∧m
ς=1 ϕ̆ρςΓς (Λς (H(t))

+
∨m
ς=1 ω̆ρςΓς (Λj(H(t))

]
dt

+
∑m
ς=1 σρςΛς (t)df(t),

Λρ(t0) = Λ0
ρ = Λ̃

0
ρ,

(32)

where σ = (σρς )m×m is a matrix of diffusion coefficients.
For the purpose of investigating the impact of deviating

argument and random disturbances on stability, we give two
assumptions we will use in the follows.
III(5).

φ = 6ℵ2κ22 + 9ℵ(2ℵκ21 + σ
2
∗ )

× (1+ 2ℵ2κ22 ) exp[ℵ(6ℵκ
2
1 + 3σ 2

∗ )] < 1.
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III(6).

2ν2 exp(−2ϑ1)+ 256κ221ν
2/ϑ

× exp{1612(κ21 + 34κ22 )} < 1.

And the relation between E||Λ(t)||2 and E||Λ(H(t))||2 is
unmasked as follows.
Lemma 4: Let assumptions III(1), III(2) and III(5) hold,

then ∀t ∈ R+, such that

E||Λ(H(t))||2 ≤ ξE||Λ(t)||2 (33)

holds, where

ξ = 3(1− φ)−1,

φ = 6ℵ2κ22 + 9ℵ(2ℵκ21 + σ
2
∗ )

× (1+ 2ℵ2κ22 ) exp[ℵ(6ℵκ
2
1 + 3σ 2

∗ )],

and Λ(t) is the solution of SFCNNDA (32).
Proof: Since t ∈ R+, and k ∈ N, thus, there exists

k ∈ R+, for all t ∈ [ℵk ,ℵk+1), such that H(t) = H∗k . Then by
assumption III(1) and Lemma 2, we can obtain that
m∑
ρ=1

|Λρ(t)|

= ||Λ(t)||

≤

m∑
ρ=1

|Λρ(H∗k )| +
m∑
ρ=1

∫ t

H∗k

[
|%ρ ||Λρ(s)|

+

m∑
ς=1

µς |ϕ̆ρς ||Λς (H∗k )| +
m∑
ς=1

µς |ω̆ρς ||Λς (H∗k )|
]
ds

+

m∑
ρ=1

∫ t

H∗k

m∑
ς=1

|σρς ||Λς (s)|df(s)

≤ ||Λ(H∗k )|| +
∫ t

H∗k

[
κ1||Λ(s)|| + κ2||Λ(H∗k )||

]
ds

+

∫ t

H∗k

σ∗||Λ(s)||df(s). (34)

Thus,

E||Λ(t)||2

≤ 3E||Λ(H∗k )||
2
+ 6ℵ

∫ t

H∗k

κ21E||Λ(s)||
2

+ κ22E||Λ(H
∗
k )||

2ds+ 3σ 2
∗

∫ t

H∗k

E||Λ(s)||2ds

≤ (6ℵκ21 + 3σ 2
∗ )
∫ t

H∗k

E||Λ(s)||2ds

+ (3+ 6ℵ2κ22 )E||Λ(H
∗
k )||

2. (35)

Then, by Gronwall-Bellman lemma,

E||Λ(t)||2 ≤ (3+ 6ℵ2κ22 )E||Λ(H
∗
k )||

2

× exp{ℵ(6ℵκ21 + 3σ 2
∗ )}. (36)

Similarly,

E||Λ(H∗k )||
2

≤ 3E||Λ(t)||2 + 6ℵ2κ22E||Λ(H
∗
k )||

2

+

{
ℵ(6ℵκ21 + 3σ 2

∗ )(3+ 6ℵ2κ22 )

× exp[ℵ(6ℵκ21 + 3σ 2
∗ )]
}
E||Λ(H∗k )||

2

≤ 3E||Λ(t)||2 + φE||Λ(H∗k )||
2

≤ 3(1− φ)−1E||Λ(t)||2, (37)

where

φ = 6ℵ2κ22 + 9ℵ(2ℵκ21 + σ
2
∗ )

× (1+ 2ℵ2κ22 ) exp[ℵ(6ℵκ
2
1 + 3σ 2

∗ )].

Therefore,

E||Λ(H∗k )||
2
≤ ξE||Λ(t)||2 (38)

holds for all t ≥ t0, where ξ = 3(1− φ)−1.
Since t and k are random, thus, ∀t ∈ R+ (38) holds. �
Remark 4: Through the proof process, we can find that if

assumption III(5) not hold, then ξ < 0, this is contrary to the
fact that E||Λ(H)∗k ||

2
≥ 0.

Theorem 3: Let assumptions III(1), III(2), III(5) and III(6)
hold, and FCNN (2) is GES, then SFCNNDA (32) is MSES
if |σ∗| < σ̄∗/

√
2 and ℵ < min{1/2, ℵ̂}, where σ̄∗ and ℵ̂ are

the solutions of following two transcendental equations.

2ν2 exp(−2ϑ1)+ 4[64k221+ σ̄
2
∗ ]ν

2/ϑ

× exp{1612(k21 + 34k22 )+ 81σ̄∗} = 1 (39)

and

2ν2 exp(−2ϑ(1− ℵ̂))+ 2S̃ exp(2Q̃1) = 1. (40)

where κ1 and κ2 are as same as we defined in Theorem 1,

1 > ln(2ν2)/(2ϑ),

S̃ = {32k221[1+ 3(1− 6ℵ̂2k22 + 9ℵ̂(2ℵ̂k21 + σ
2
∗ /2)

× (1+ 2ℵ̂2k22 ) exp[ℵ̂(6ℵ̂k
2
1 + 1.5σ̄ 2

∗ )])
−1]}ν2/ϑ,

Q̃ = 81(k21 + 2k22 )+ 64k221[1+ 3(1− 6ℵ̂2k22
+ 9ℵ̂(2ℵ̂k21 + σ

2
∗ /2)(1+ 2ℵ̂2k22 )

× exp[ℵ̂(6ℵ̂k21 + 1.5σ̄ 2
∗ )])
−1]+ 2σ 2

∗ .

Proof: From (2), (32), we have

m∑
ρ=1

|Λρ(t)− Λ̃ρ(t)|

≤

m∑
ρ=1

∫ t

t0

[
|%ρ ||Λρ(s)− Λ̃ρ(s)|

+

m∑
ς=1

|ϕ̆ρς |µς |Λς (H(s))− Λ̃ς (s)|
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+

m∑
ς=1

|ω̆ρς |µς |Λς (H(s))− Λ̃ς (s)|
]
ds

+

m∑
ρ=1

∫ t

t0

∣∣∣∣ m∑
ς=1

σρςΛς (s)

∣∣∣∣df(s). (41)

Then, we have

E||Λ(t)− Λ̃(t)||2

≤ 4(t − t0)
∫ t

t0

[
κ21E||Λ(s)− Λ̃(s)||

2

+ κ22E||Λ(H(s))− Λ̃(s)||
2
]
ds

+ 2σ 2
∗

∫ t

t0
E||Λ(s)||2df(s)

≤

{
4(t − t0)(κ21 + 2κ22 )+ 32κ22 (t − t0)(1+ ξ )

+ 4σ 2
∗

}∫ t

t0
E||Λ(s)− Λ̃(s)||2ds

+ [16κ22 (t − t0)(1+ ξ )+ 2σ 2
∗ ]ν

2/ϑE||Λ̃0
||
2. (42)

Let Q = 81(κ21 + 2κ22 ) + 64κ221(1 + ξ ) + 4σ 2
∗ , S =

[32κ221(1+ξ )+2σ 2
∗ ]ν

2/ϑ . Using Gronwall-Bellman lemma
for (42), then for t0 + ℵ ≤ t ≤ t0 + 21

E||Λ(t)− Λ̃(t)||2 ≤ SE||Λ0
||
2 exp(2Q1). (43)

Noting that ℵ < 1/2, therefore, for t0 − ℵ + 1 ≤ t ≤
t0 − ℵ+ 21,

E||Λ(t)||2 ≤
{
2ν2 exp(−2ϑ(1− ℵ))

+ 2S exp(2Q1)
}
E||Λ0

||
2. (44)

SelectY(σ∗,ℵ) = 2ν2 exp(−2ϑ(1−ℵ))+2S exp(2Q1),
from assumption III(6), we know that Y(0, 0) < 1. On the
other hand, we can easily observe that Y(σ∗, 0) is strictly
increasing for σ∗. Thus, we can find a σ̄∗ > 0 that meets
Y(σ̄∗, 0) = 1. And we also see that Y(σ∗,ℵ) is increasing
monotonically with respect to ℵ, thus there must be a ℵ̂ such
that Y(σ∗,ℵ) < 1, when |σ∗| < σ̄∗/

√
2, ℵ < min{1/2, ℵ̂}.

Setting Ω = − ln(Y(σ∗,ℵ))/1, the rest of the proof is as
same as Theorem 1, so we omit it here.

Therefore, ∀t ≥ t0, E||Λ(t)||2 ≤ exp(−Ω(t − t0))
exp(Ω(1 − ℵ))E||Λ0

||
2 holds. Then, SFCNNDA (32) is

ASGES. �
Remark 5: The proof in this part is not a simple combi-

nation of the previous two parts. It can be found that the
Theorem 3 reveals the constraint relationship between the
upper bounds of the two perturbations to a certain extent.
Furthermore, if assumption III(6) is not hold, then equation
(39) and (40) have no roots on interval (0,+∞).
Remark 6: Table 1 shows a brief comparison between a

part of existing literature and this paper. The elements of
comparison include the following parts: fuzzy logic, devi-
ating argument, stochastic disturbance, exponentially stable,

asymptotic stability, robust stability. Because the neural net-
work introduced in this paper contains fuzzy logic, its appli-
cation will be more extensive compared with the general
systems. For example, template learning [35], digital image
restoration [27] and so on.

V. EXAMPLES
There are some instances to prove the validity of theoretical
results in this part.
Example 1:We consider the following SFCNN.

dΛ1(t) =
[
−%1Λ1(t)+

∧2
ς=1 ϕ̆1ςΓς (Λς (t))

+
∨2
ς=1 ω̆1ςΓς (Λς (t))

]
dt

+
∑2
ς=1 σ1ςΛς (t)df(t),

dΛ2(t) =
[
−%2Λ2(t)+

∧2
ς=1 ϕ̆2ςΓς (Λς (t))

+
∨2
ς=1 ω̆2ςΓς (Λς (t))

]
dt

+
∑2
ς=1 σ2ςΛς (t)df(t),

(45)

where

% = (%ρς )2×2 =
[
1 0
0 1

]
,

ϕ = (ϕ̆ρς )2×2 =
[
0.1 0.2
0.2 0.1

]
,

ω = (ω̆ρς )2×2 =
[
0.2 0.1
0.1 0.2

]
.

From the known conditions, and according to the principle
of comparison, the FCNN without stochastic disturbances

Λ̇1(t) = −%1Λ1(t)+
∧2
ς=1 ϕ̆1ςΓς (Λς (t))

+
∨2
ς=1 ω̆1ςΓς (Λς (t)),

Λ̇2(t) = −%2Λ2(t)+
∧2
ς=1 ϕ̆2ςΓς (Λς (t))

+
∨2
ς=1 ω̆2ςΓς (Λς (t)),

(46)

is GES with ν = 1, ϑ = 0.9.
We select 1 = 0.5 and Γς (·) = tanh(·), then |Γς (u) −

Γς (v)| ≤ |u−v| holds, that meansµς = 1. Therefore, we can
get that κ1 = 1, κ2 = 0.6.
And from (8), the following transcendental equation can be

obtained.

2 exp(−0.9)+ 2.2222σ 2
∗ exp(5.12+ 4σ 2

∗ ) = 1. (47)

We solved (47) by MATLAB, then we can obtain σ̌∗ =
0.0224, thus, SFCNN (45) is still GES when the column sum
of the matrix σ is less than σ̌∗. Fig. 1 shows the states of (45)
with σ in Table 1, we can know that σ∗ = 0.02. Fig. 2 shows
the states of (45) with σ in Table 2, then σ∗ = 0.04, thus,
SFCNN (45) is GES.
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TABLE 1. Differences between other literature and our paper.

FIGURE 1. States of SFCNN (45) with σ∗ = 0.02.

FIGURE 2. States of SFCNN (45) with σ∗ = 0.04.

TABLE 2. Values of σ . (3 and 7 represent whether σ∗ is lower than σ̌∗).

Example 2:We consider the following FCNNDA.

Λ1(t) = −%1Λ1(t)+
∧2
ς=1 ϕ̆1ςΓς (Λς (H(t)))

+
∨2
ς=1 ω̆1ςΓς (Λς (H(t))),

Λ2(t) = −%2Λ2(t)+
∧2
ς=1 ϕ̆2ςΓς (Λς (H(t)))

+
∨2
ς=1 ω̆2ςΓς (Λς (H(t))),

(48)

where

% = (%ρς )2×2 =
[
1 0
0 1

]
,

ϕ = (ϕ̆ρς )2×2 =
[
0.003 0.004
0.004 0.003

]
,

FIGURE 3. States of FCNNDA (48) with {ℵk } = k/50 and
{H∗k } = (2k + 1)/100.

FIGURE 4. States of SFCNNDA (52) with {ℵk } = k/2700,
{Hk } = (2k + 1)/5400 and σ∗ = 0.00032.

ω = (ω̆ρς )2×2 =
[
0.004 0.003
0.003 0.004

]
.

And in this instance, we set {ℵk} = k
50 , {H

∗
k} =

2k+1
100 .

By computing the parameters we gave above, we can obtain
that κ1 = 1, κ2 = 0.014.

On the other hand, the system (48) without deviating argu-
ment is as shown below.

Λ1(t) = −Λ1(t)+
∧2
ς=1 ϕ̆1ςΓς (Λς (t))

+
∨2
ς=1 ω̆1ςΓς (Λς (t)),

Λ2(t) = −Λ2(t)+
∧2
ς=1 ϕ̆2ςΓς (Λς (t))

+
∨2
ς=1 ω̆2ςΓς (Λς (t)).

(49)

It follows from the comparison principle that it is GESwith
ν = 1 and ϑ = 0.8.
Then we select 1 = 0.1, Γς = tanh(·) and µς = 1, ς =

1, 2. Thus, we can obtain

exp(−0.8× 0.1)+ 0.035 exp(0.2084) = 0.9662 < 1.

(50)
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FIGURE 5. States of SFCNNDA (52) with {ℵk } = k/2700,
{Hk } = (2k + 1)/5400 and σ∗ = 0.00011.

By solving the following transcendental equation

exp(−0.8× (0.1− ℵ))+ 0.0175{1+ (1− ℵ[(1+ 0.014ℵ)

× expℵ + 0.014])−1} exp
{
0.2(1.028+0.014[1+(1−ℵ[(1

+ 0.014ℵ) expℵ + 0.014])−1])
}
= 1. (51)

We can easily obtain ¯̄ℵ = 0.0435. Therefore, the FCNNDA
is said to be GES if ℵ < 0.0435.
Fig. 3 shows the states of FCNNDA (48) with {ℵk} = k

50 ,
and {H∗k} =

2k+1
100 . It meets the conditions of Theorem 1, thus,

it is GES.
Example 3:We consider the following SFCNNDA.

dΛ1(t) =
[
−%1Λ1(t)+

∧2
ς=1 ϕ̆1ςΓς (Λς (H(t))

+
∨2
ς=1 ω̆1ςΓς (Λj(H(t))

]
dt

+
∑2
ς=1 σ1ςΛς (t)df(t),

dΛ2(t) =
[
−%2Λ2(t)+

∧2
ς=1 ϕ̆2ςΓς (Λς (H(t))

+
∨2
ς=1 ω̆2ςΓς (Λj(H(t))

]
dt

+
∑2
ς=1 σ2ςΛς (t)df(t),

(52)

where

% = (%ρς )2×2 =
[
−3 0
0 −3

]
,

ϕ = (ϕ̆ρς )2×2 =
[
0.00008 0.00007
0.00007 0.00008

]
,

ω = (ω̆ρς )2×2 =
[
0.0004 0.0006
0.0006 0.0004

]
.

Then, the system (50) without deviating argument and
stochastic disturbances is as same as the system (49). Simi-
larly, by comparison principle [34], it is GES with ν = 1 and
ϑ = 2.8. We select 1 = 0.26. Thus, we can easily get
κ1 = 3, κ2 = 0.0002. Let Γς (·) = tanh(·), then, similar to
Example 1, we take µς = 1, ς = 1, 2. Therefore, we can
get the following equations that by plugging in the above

FIGURE 6. States of SFCNNDA (52) with {ℵk } = 3k/10000,
{Hk } = (2k + 1)/20000 and σ∗ = 0.0004.

FIGURE 7. States of SFCNNDA (52) with {ℵk } = 3k/10000,
{Hk } = (2k + 1)/20000 and σ∗ = 0.0004.

FIGURE 8. States of SFCNNDA (52) with {ℵk } = 3k/10000,
{Hk } = (2k + 1)/20000 and σ∗ = 0.0008.

parameters,

2 exp(−1.456)+ 3.1438× 10−5

× exp(9.7344) = 0.9973 < 1. (53)

On the other hand, we plug the parameters into (39),
(40), then, by solving equations (39) and (40), we can get
σ̄∗ = 0.00033438, and ℵ̂ = 0.00050941. Therefore, when
|σ∗| < σ̄∗/

√
2 = ¯̄σ∗ = 0.00023644 and ℵ < 0.00050941,

SFCNNDA (52) is said to be GES. Since σ∗ = max
1≤ρ≤m

σρς ,

that means the system is ASGES when the max sum of the
columns of σ is less than ¯̄σ∗ we derived.

From Table 3, we can easily observe that the max sum of
columns of σ is 0.0003 in Fig. 4, it is larger than ¯̄σ∗, thus, the
system is not ASGES.
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TABLE 3. Parameters of Fig. 4-Fig. 10.

FIGURE 9. States of SFCNNDA (52) with {ℵk } = 3k/10000,
{Hk } = (2k + 1)/20000 and σ∗ = 0.0006.

FIGURE 10. States of SFCNNDA (52) with {ℵk } = 3k/10000,
{Hk } = (2k + 1)/20000 and σ∗ = 0.0011.

In Fig. 5, we choose the same {ℵk} and {Hk} as in Fig. 4,
and σ is shown in Table 3. Since the max sum of columns of
σ is lower than ¯̄σ∗, thus, SFCNNDA (52) is ASGES.

Fig. 6 - Fig. 9 show the states of SFCNNDA (52) with
{ℵk} = 3k/10000, {Hk} = (6k + 1)/20000 and the value
of σ is shown in Table 3 respectively. We can easily see that
both of the sum of columns of σ of Fig. 6 - Fig. 9 are lager
than ¯̄σ∗, thus, it is not ASGES.
According to the parameters in Table 3, we can see that

Fig. 10 is also not ASGES.

VI. CONCLUSION
The robustness of the stability of FCNN with deviating argu-
ments and stochastic noises are examined in this article.
In order to make the system with external disturbances we
suggested in this paper to stay globally exponential stable,
the upper bounds of noise and the deviating interval have

to be determined. By resolving the transcendental equations,
we can estimate the upper boundaries of the interference
that we considered. The conclusions we reached here offer
bedrock for applications and designs of FCNN. Improve-
ments of upper limits may be the focus of future research
to provide bigger stability margins that can survive random
disturbances and deviating arguments.
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