
Received 25 November 2022, accepted 31 December 2022, date of publication 3 January 2023, date of current version 9 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3234021

Proactive Random-Forest Autoscaler for
Microservice Resource Allocation
LAMEES M. AL QASSEM , THANOS STOURAITIS , (Life Fellow, IEEE),
ERNESTO DAMIANI , (Senior Member, IEEE),
AND IBRAHIM (ABE) M. ELFADEL , (Senior Member, IEEE)
Center for Cyber-Physical Systems (C2PS), Khalifa University, Abu Dhabi, United Arab Emirates
Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates

Corresponding author: Ibrahim (Abe) M. Elfadel (ibrahim.elfadel@ku.ac.ae)

ABSTRACT Cloud service providers have been shifting their workloads to microservices to take advantage
of their modularity, flexibility, agility, and scalability. However, numerous obstacles remain to achieving
the most out of microservice deployments, especially in terms of a Quality of Service (QoS). One possible
approach to overcoming these obstacles is to perform autoscaling, which is the ability of cloud infrastructure
and services to scale themselves up or down by changing their resource pool. There are two major categories
of autoscaling: reactive and proactive. In reactive autoscaling, a feedback loop based on current workload
resource usage is implemented to guide resource scaling. One disadvantage of reactive autoscaling is that it
may result in inconsistencies between workload demand and resource allocation. In proactive autoscaling,
a prediction model is used to guide the future allocation of resources according to current workload metrics.
In this paper, a novel proactive autoscaling method is introduced where a two-state, machine-learning
Random Forest (RF) model is designed to forecast the future CPU and memory utilization values required
by the microservice workload. These predicted values are then used to adjust the resource pool both
vertically (hardware resources) and horizontally (microservice replicas). The RF proactive autoscaler has
been implemented on a home-grown, open-source microservice prototyping platform and verified using
real-world workloads. The experiments show that the RF proactive autoscaler outperforms state-of-the-art
ones in terms of allocated resources and latency. The increase in the utilization of allocated resources can
reach 90% and the improvement in end-to-end latency, measured by the 95th percentile, can reach 95%.

INDEX TERMS Microservices, autoscalers, resource allocation, resource utilization, machine learning,
random forest.

I. INTRODUCTION
The objective of autoscaling cloud resources is to dynam-
ically modify allocated resources to meet Quality of Ser-
vice (QoS) requirements. Resource allocation is the process
of distributing available computing resources economically
among competing services [1]. In other words, cloud resource
allocation involves resource search, selection, provisioning,
andmanagement. In the absence of proper resource allocation
management, services will starve. This issue is resolved by
dynamic resource provisioning using for instance, autoscal-
ing which allows service providers to manage the resources

The associate editor coordinating the review of this manuscript and

approving it for publication was Wanqing Zhao .

dynamically according to customer demand. An important
trend in cloud computing is the containerization of cloud
resources. Another important trend is the continued diversi-
fication of cloud workloads. Both of these trends pose stiff
challenges to the application of autoscaling techniques. For
example, in a diverse workload environment, sudden and
abrupt fluctuations in the nature of the workload may cause
the autoscaler to alternate between various resource config-
urations, but with a time lag that may result in a violation
of the Service Level Agreement (SLA). An important SLA
metric is tail latency, which is the long latency that clients
experience with low probability. Although tail latency occurs
infrequently, it is still an important metric, as it typically
impacts users with the highest number of requests. In a

2570 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0823-949X
https://orcid.org/0000-0002-3696-4958
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0003-3220-9987
https://orcid.org/0000-0001-6160-9547

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

microservice architecture, the computation of tail latency
may be quite complex, especially in use cases involving the
serial chaining of services. Such case arises when a front-end
service calls multiple back-end services, each one of which
could, in turn, call other services. A time lag in any of
these calls increases the end-to-end tail latency of the overall
service. Autoscaling may help in addressing such worst-case
scenarios by determining the amount of resources needed
to eliminate local time lags in a service chain. Resource
utilization is another important metric for cloud providers.
It facilitates the fulfillment of QoS requirements of customers
and providers [2].

There are two major categories of autoscaling: reactive
and proactive. The state-of-the-art autoscalers [3], [4], [5] are
reactive rule-based systems that scale resources in reaction
to specific events. For example, Kubernetes (K8s) [5] is a
well-known microservice autoscaler that tracks the average
CPU utilization and moves containers in or out to reach the
CPU and utilization thresholds specified by the end user. One
major shortcoming of these reactive autoscalers is that they
are burst-oblivious, that is, they do not consider workload
bursts when determining and provisioning suitable resources.
In particular, they cannot identify online surges in dynamic
workloads and prevent service performance from degradation
as a result. Furthermore, reactive autoscalers suffer from time
lags between observations and responses, especially when
workloads undergo drastic changes, resulting in non-optimal
resource configurations.

The second autoscaling category is that of proactive meth-
ods whose goal is to anticipate resource demands and meet
them in time so as to eliminate delayed responses. The
core of the proactive autoscaler is a prediction model of
future resource demands based on collected workload met-
rics. Recent trends have been to develop predictive autoscal-
ing solutions based on modern machine learning (ML)
methods [6], [7], [8], [9]. As pointed out in [10], the chal-
lenges posed by microservice management are best met by
ML models that can estimate end-to-end latency, compute
the likelihood of a QoS violation, and predict microservice
resource demands. The autoscaler then uses the outputs of
the ML models to optimize resource utilization under a given
set of QoS specifications.

In this paper, we present a new proactive autoscaler with
a random forest (RF) [11] demand prediction model. The
RF model forecasts both CPU and memory usage under
various cloud workloads. The proactive autoscaler leverages
the outputs of the RF model to appropriately allocate future
resources while continuously monitoring workload metrics.
The novel contributions of this paper are as follows:

1) We develop a robust multi-variate predictiveMLmodel
based on the RF paradigm of ensemble machine learn-
ing. The model considers all essential measures of
resource metrics for running microservices to predict
their CPU and memory usage accurately.

2) The model is workload-independent and can accurately
predict resource metrics of different workload types,
including those that contain activity bursts.

3) We show how our proactivemodel can adapt to changes
in the workload and be robust to outliers. We also
use the tools of explainable Artificial Intelligence (AI)
to trace the RF predictions to their root causes, thus
facilitating supervisory insights into future resource
demands.

4) The core of the autoscaler is a discrete-time, closed
feedback loopwith two states, CPU andmemory usage,
that is able to allocate resources in real time both hori-
zontally and vertically.

5) The RF-based autoscaler is evaluated on a home-
grown, open source, microservice prototyping platform
with the microservices deployed on an AWS virtual
machine and managed by the Docker Engine.

Recently, the cloud computing community has shown
strong interest in applying RFs to various aspects of cloud
resource management [8], [12], [13], [14], [15]. Applications
to both virtual machines [14], [15] andmicroservices [8], [13]
have been considered. This recent research and the encourag-
ing results it has produced confirm that RF machine learning
is very suitable for managing cloud workloads, be they run on
traditional infrastructures or on microservices. The distinct
novelty of our own contributions to this emerging research
area is threefold. The first is that our RF model predicts
both CPU and memory usage at once, while in prior work
two RF models must be trained, one for each metric. The
second is that our RF model is trained on publicly available
datasets rather than privately generated ones, and therefore
future RF models can use the same datasets to benchmark
their results against ours. The third is that our RF models
place no restrictions on the nature of the workloads that are
run on the cloud cluster.

The remainder of this paper is organized as follows.
In Section II, recent work onmicroservice proactive autoscal-
ing is reviewed. In Section III, the system architecture of
our proposed autoscaler is given, and in Section IV, the
design, analysis, and evaluation of the RF prediction models
are explained in detail and benchmarked against the prior
art. The RF models are nothing but components withing the
full autoscaler algorithm whose validation and evaluation are
given in Section V. The paper is concluded in Section VI.

II. LITERATURE REVIEW
Autoscaling systems are generally used to enhance the per-
formance of cloud-hosted applications. There are two main
types of autoscaling: (1) vertical autoscaling in which the
amount of hardware resources assigned to each microservice
is changed and (2) horizontal autoscaling in which the num-
ber of microservice replicas is changed. Figure 1 illustrates
how the two types of autoscaling work. Due to the migration
of cloud services to microservice architectures, an increas-
ing number of publications on microservice autoscaling has
appeared [6], [8], [9], [12], [13], [14], [15], [16], [17], [18].
In this section, we will review these publications with focus
on their use of machine learning in their microservice man-
agement models. We will then highlight those publications
that have used RFs in their machine learning modules.

VOLUME 11, 2023 2571

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

FIGURE 1. Vertical vs. horizontal scaling.

RScale [6] is an autoscaler that provides an end-to-end
performance guarantee. It uses a predictive model based on
Gaussian Process Regression (GP) to predict the end-to-end
tail latency of microservice work?ows and provides confi-
dence bounds on each prediction with minimal overhead.
RScale periodically collects the resource usage metrics at two
levels: the container level and the virtual-machine level. The
periodically calculated utilization value is used as the thresh-
old value in the Kubernetes autoscaler [19] to find the desired
number of containers (see also Section III). The microser-
vices are either scaled up by adding more containers or down
by removing containers. The RScale evaluation results have
shown that the proposed system can meet the system SLAs
(e.g.,tail latency) even in the presence of varying interference
and evolving system dynamics.

HyScale predicts future CPU utilization using a neural net-
work (NN) model [16]. Four NNs have been trained offline:
standard (baseline model), layer-normalized, long short term
memory (LN-LSTM); multi-layered, LN-LSTM; and convo-
lutional, multi-layered, LN-LSTM. These pretrained models
are used as references and updated reactively to real-time data
using the online technique recommended in [20]. The con-
volutional, multilayered, LN-LSTM has achieved the lowest
error in the training phase and has been used as a reference
for online training. The updated online model outperformed
its offline version and reduces its prediction error to about
3.77%. Due to its up-to-date data processing, online learning
is considered the preferred method for identifying time-series
anomalies.

The autoscaling method introduced in [7] uses neural net-
works to predict the workload of microservices and execute
advanced scaling to avoid SLA violations. The workload
prediction is based on the HTTP request history. The method
is focused on reducing microservice management costs as
the system searches for cloud packages that have the lowest
prices for a given task. As such, the system works as a cloud
broker that continuously monitors the SLA’s and notifies
the scaling module whenever an SLA violation occurs so as
scaling action is taken.

In [9], a horizontal autoscaling model based on predictive
ML is proposed that uses the collected workload observations

to predict future workload bursts. This predicted value is used
to find the number of containers needed to meet the SLA
latency requirements. Different state-of-the-art ML models
were evaluated and themodel with the least mean square error
was selected, namely, the decision tree regression model.
This predictive autoscaler targets CPU-bound microservices.
The Fast Fourier Transformation (FFT) algorithm [21] is
used to evaluate system performance and compare it with
four previous autoscaling methods for virtual machines. The
proposed model was found to outperform all of them under a
variety of workloads.

A very recent predictive autoscaler that employs 2 ML
models, a CPU model and a Request model, to predict the
number of replicas needed for each microservice is proposed
in [8]. The model also considers the impact of scaling a
given microservice may have on other microservices under a
given workload. The resource allocation is threshold-based as
in [19]. The experimental results indicate that this autoscaler
outperforms the Kubernetes horizontal autoscaler in terms
of response time and throughput. Moreover, it takes fewer
actions to achieve the desired efficiency and QoS standard
for the target application.

The system of [17] is made up of two modules. The first
uses a generic autoscaling algorithm installed on Google’s
Kubernetes Engine (GKE) to determine the microser-
vice resource needs. The algorithm adjusts the Kubernetes
autoscaler based on the microservice resource needs. The
secondmodule employs Reinforcement Learning (RL) agents
to learn and select autoscaling threshold values depend-
ing on resource demands and QoS. The experimental find-
ings demonstrate that the microservice response time can
be improved by up to 20% compared to the Kubernetes
default autoscaler. Furthermore, the RL agents can deter-
mine the threshold values without violating the response
time SLA. The proposed system provides a customized
autoscaling solution for microservices while adhering to
QoS restrictions with little effort required from the system
users.

One of the most recent autoscalers is SHOWAR [18],
which uses empirical variance and average historical usage to
estimate the optimal resources for the running microservices.
It scales the microservices horizontally based on a given
target latency, which is defined as the 95th percentile of the
observed latency during one minute. The measurement is the
average observed latency during one minute. The difference
between target and measurement is used in a proportional-
integral-derivative (PID) controller.

The above-mentioned autoscalers use a variety of machine
learning methods to forecast the workload. However, they do
so only for the workloads of the interactive, latency-critical
containers. These are the workloads required to satisfy the
SLA requirement for response time and tail latency. The batch
containers that are used in scientific computing or offline
training are not considered, mainly due to the fact that their
forecasts are less precise than what autoscalers require if
they are to make fine-grained resource updates. Our approach
addresses this modeling gap and offers predictive models

2572 VOLUME 11, 2023

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

that work for both interactive and batch workloads. We now
highlight the use of RFs in the machine learning components
of the surveyed articles.

As mentioned in the previous section, the use of RFmodels
has been steadily growing in cloud computing [8], [12], [13],
[14], [15]. However, the RF models differ significantly in
their input features and predicted outputs. For instance, [13]
uses RF to predict the resource usage (CPU or memory)
based on past resource usage and the number of message
requests. On the other hand, [8] uses the number of replicas
and the request rate to predict CPU utilization. In both [8]
and [13], the RF models are trained on data from a specific
microservice application. The direct comparison between
these RFmodels and ours is hampered by the lack of common
benchmarks, the widely differing feature sets, and the incom-
patibilities between the monitoring windows. One aspect of
prior RF models is that they are single output, and so for
multiple metrics of resource allocation, the RFmodel must be
duplicated and retrained for each metric. On the other hand,
the proposed RF model of this paper is a two-output model
that predicts both CPU and memory usage with consistent
recruiting of all the available input features. Our two-output
RF model translates into a significant reduction in model
complexity, memory footprint, and training requirements.
Metric selection is another important aspect in RF predic-
tion. Indeed, while existing RF models are restricted to few
resource metrics, our RF model takes into account all the
metrics provided by Docker. This enables a more compre-
hensive modeling methodology that can extend the validity of
the model to a variety of workloads. Finally, it is important to
note that our model is trained on a publicly available dataset,
namely FastStorage [22], whose metrics are collected for
different types of workloads over an extended period of time.
This again helps in having a more comprehensive model that
can be used with any microservice application without the
need for training.

The closest work to ours is RunWild, a very recent indus-
trial system from IBM Research [13] that was reported while
our own academic research was in its final stages. The IBM
system is based on commercial IBM tools such as IBMCloud
and AutoAI [23] while ours uses only open-source tools.
RunWild is composed of three main modules: management,
computation, and execution. The management module pro-
cesses the microservice deployment specifications, such as
past resource usage and expected workload. The computation
module computes the deployment solution for every periodic
window. Machine learning is heavily used in the computation
module. For one thing, K-means clustering is used to group
microservices based on the number of message requests, CPU
usage, and memory usage. For another, a regression model is
generated using AutoAI for each microservice cluster. The
regression models are used to predict the resource usage of
the microservices. The deployment plan generated by the
computation module consists of the number of replicas, node
placement, allocated resources, and the workload partitioning
strategy. For each microservice group in RunWild, there are
two ML models: one to predict CPU usage and the other

FIGURE 2. MAPE control loop autoscaler.

to predict memory usage. RF models have been used as
regressors for some of the microservice groups. Their highest
R2 scores are 0.655 for CPU utilization and 0.713 for memory
usage. Our top two output RF models outperform those of
RunWild as shown in Section IV.

III. SYSTEM ARCHITECTURE OF THE PROACTIVE
AUTOSCALER
In this section, we discuss the core concepts of our predictive
ML autoscaler, whose main goal is to offer strong perfor-
mance and SLA guarantees for containerized microservices.
The autoscaler relies on an RF regression model that predicts
near-future CPU and memory utilization for each running
microservice based on previously collected metrics. These
metrics are as follows: CPU usage, memory usage, and the
throughputs of network input, network output, disk input, and
disk output. The predicted values are leveraged to find the
desired number of replicas (horizontal scaling) and resources
(vertical scaling) needed to avoid SLA violations.

This core section of our paper is organized into three
subsections. In Subsection III-A, the proactive autoscaler sys-
tem architecture is described. Subsection III-B is devoted to
the random-forest predictor. Finally, in Subsection III-C, the
algorithms for horizontal and vertical scaling are described.

Note that Section IV of the paper will be devoted to the
evaluation and explainability of the random-forest model
itself while Section V will be devoted to numerical exper-
iments on autoscaling using an e-commerce microservice
mesh with real-world workloads.

A. MAPE CONTROL LOOP
Fig. 2 illustrates the main system components. The model
is a ‘‘MAPE’’ control loop (i.e., Monitor, Analyze, Plan,
and Execute). The monitor is responsible for periodically
collecting the resource metrics of the running microservices.
The collected metrics are then used by the analyzer, which
is the RF regression model, to predict the running applica-
tion performance. The predicted metrics are then sent to the
planner to find the desired number of replicas for the run-
ning microservices and meet the SLAs. Finally, the executor
is responsible for scaling the containers up or down. The

VOLUME 11, 2023 2573

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

FIGURE 3. System architecture.

analyzer and the planner will be fully explained in Subsec-
tions III-B and III-C, respectively.

Fig. 3 further illustrates the system components and their
interactions. The system workflow is as follows:

1) Training: Train the RF model on a large dataset col-
lected from various applications running in the cloud.
This helps to design a generalized training model that
can accurately predict future CPU and memory usage
for any type of workload. The training and evaluation
of the model are discussed in Section IV.

2) Monitoring: The trained model periodically receives
the performance metrics from the Monitor and uses
them to predict future CPU and memory usages.

3) Estimating: The autoscaler then uses the predicted
values to estimate the desired number of replicas and
resources needed. This is explained in the autoscaling
algorithms of Subsection III-C.

4) Scaling: The values calculated in the previous step are
used to scale the containers.

B. THE ANALYZER: RANDOM FOREST PREDICTIVE MODEL
The analyzer is the random-forest (RF) regressor which uses
an ensemble of decision trees to produce accurate predictions
with a small amount of training data. RF uses the bagging
technique to select the features for the best node splitting
and to build multiple decision trees [24]. The average value
across all decision tree predictions is the RF prediction.
RF models can handle data with a mixed and large num-
ber of features, and are already widely used to predict the
performance of virtual machines under a variety of work-
loads [15]. The evaluation results of [15] showed that the RF
model outperformed both linear regression and plain decision
trees. Furthermore, a very recent study [14] has conducted
a comprehensive evaluation on a variety of workload pre-
dictors under four different workload patterns. The results
showed that the RF model had good predictive accuracy
compared with other models. All in all, RF models are scal-
able, largely resistant to overfitting [25], and well adapted
to cloud computing tasks. Our work further supports these
conclusions by showing that the RF regressor is an excellent
fit for the microservice autoscaling task under unpredictable
workloads.

1) MODEL FORMULATION
The RF model is an ensemble of decision trees. A decision
tree with L leaves recursively partitions the K -dimensional
feature space F ⊂ <K into L regions: Rl, 1 ≤ l ≤ L. For a
feature vector x ∈ F , the general prediction function f (x) of
one decision tree is given by

f (x) =
L∑
l=1

clI (x,Rl)

I (x,Rl) =

{
1; x ∈ Rl
0; x /∈ Rl

(1)

where cl is a constant calculated during the training phase and
is equal to the average of the response variables in region Rl .

The above expression is compact and indicates how the
decision tree returns the value of the leaf corresponding to the
input feature vector. A more operational expression is given
by

f (x) = cfull +
K∑
k=1

C(x, k) (2)

where cfull is themean of the response variables in the training
set andC(x, k) the contribution of the k th feature in the vector
x. Note that the contribution of each feature k is decided by all
the features in vector x, and these contributions correspond to
a specific decision path that traverses the tree.

Using Eq. (2), one can write the prediction function F(x)
of an RF model as

F(x) =
1
J

J∑
j=1

cjfull +
K∑
k=1

1
J

J∑
j=1

Cj(x, k)

 (3)

where J is the number of decision trees, and Cj(x, k) the
contribution of the k th feature in feature vector x in the j-th
tree. The above expression for F(x) clarifies the fact that the
RF prediction is simply the average of the tree predictions
over all the trees.

In our context, the vector of features x has six compo-
nents, which are the container resource metrics: CPU usage,
memory usage, network input throughput, network output
throughput, disk input throughput, and disk output through-
put. These six metrics are gathered over a time interval of
N minutes and stored in an array X[n−N ,n] ∈ F ⊂ <K .
The dimension of the feature space K = 6N . The values
of J and K are decided at the training phase by perform-
ing hyper-parameter tuning with different sampling intervals.
Finally, F(x) is the 2D column vector (ĈPU , M̂EM)T of the
CPU utilization and memory usage estimates.

2) DATA NORMALIZATION
To efficiently scale microservices, different resource metrics
should be considered. This aids in an accurate prediction of
CPU and memory utilization. However, these metrics dif-
fer in scale and units. For example, the CPU usage ranges
from 0 to 100 % while the network throughput ranges
from 0 to 27727 KB/s. Re-scaling data before training

2574 VOLUME 11, 2023

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

machine learning models can be beneficial as it reduces the
sensitivity of the training process to the feature scale. This
results in all features having the same influence on the model.

In addition to scale, the presence of outliers may impact
the quality of the learned model. The workload metrics of the
dataset used to train the RF model happen to contain many
outliers, which usually compromises any advantages z-score
scaling may provide. To address this aspect of the dataset,
we have used RobustScaler [26] as a drop-in replacement for
the z scoring. RobustScaler subtracts the median and scales
the data according to the interquartile range (IQR). Recall
that the IQR is given by IQR = Q3(x) − Q1(x) where Q1(x)
and Q3(x) are the first and third quartiles, i.e., the 25th and
75th quantiles, respectively. Centering and normalization are
performed individually on each feature by computing the
necessary statistics. The medians and IQRs are then saved
to use with the validation data. The RobustScaler formula is
given by

x − Q2(x)
IQR

(4)

where Q2(x) is the median.

3) HYPERPARAMETER TUNING AND FEATURE SELECTION
While model parameters are learned during training, its
hyperparameters are specified ahead of training. The RF
model parameters include decision features and thresholds.
Its hyperparameters include the number of decision trees and
the depth of each tree. Machine learning libraries like Scikit-
Learn provide a set of reasonable default hyperparameters for
all models. Such default hyperparameters are not guaranteed
to be optimal for all problems. Finding the optimal hyperpa-
rameters requires the formulation of an optimization problem
whose solution may use a variety of deterministic, stochastic,
or heuristic methods.

Hyperparameter tuning is based on experimental results
that are obtained by means of a grid or random search.
To determine the ideal hyperparameter values, a large number
of various combinations are tested, and their impact on model
accuracy using k-fold cross-validation is considered. In our
case, we have used RandomizedSearchCV from Sickit-learn
for hyperparameter tuning. The tuning results of the 5 hyper-
parameters considered are given below based on dataset with
84191 traces across 100 different combinations:

1) Number of decision trees in the forest: 1000.
2) Maximum number of features to be considered at each

split: 6 (all features).
3) Maximum depth of each tree in the model: 100.
4) Minimum number of data points placed in a node

before splitting: 5.
5) Minimum number of data points in a leaf node: 4.

These hyper-parameter values achieve an improvement of
20% in the RMSE with respect to the default values.

Once an RF is available, the importance of features can
be calculated based on a test data set. In permutation impor-
tance, features are randomly shuffled and the change inmodel
performance computed after each shuffle. The feature that

impacts the most on the performance of the model is declared
to be the most important. The following section will illustrate
the impact of selecting the most important features not only
on model accuracy, but also on its complexity.

C. THE AUTOSCALER
We have designed a full autoscaler model that bridges the
gap between vertical and horizontal autoscaling. The model
achieves competitive targets in resource utilization and end-
to-end responsiveness.

The algorithm 1 shows how the horizontal and vertical
autoscalers work together. The autoscaler’s throughtput is one
decision per minute. This is based on the fact that one minute
is the shortest time interval needed to collect an adequate
quantity of metric values in order to predict the resources
and perform autoscaling. During this time interval, the mon-
itoring program collects metric values at a sampling rate of
12 samples per minute with each sample containing values
of 4 metrics for a total of 48 values. This is accomplished in
parallel for all microservices (lines 5-7 of Algorithm 1). Hor-
izontal scaling is based on the CPU usage metric (line 10 of
Algorithm 1) while vertical scaling is based on the memory
metric (Algorithm 2). In addition, each microservice is given
a CPU limit of 1 CPU core, as recommended by Kubernetes
best practices for most workloads on the Google Cloud Plat-
form [19]. As a result, CPU’s are not scaled vertically as each
microservice will run on a single CPU. Furthermore, vertical
scaling in memory is given priority over horizontal scaling.
This is to avoid Out-of-Memory (OOM) errors. Such errors
cannot be addressed by adding more microservice replicas.
While CPU’s can be scheduled to run heavy workloads and
achieve full utilization at the price of larger latency, memory
resources cannot. A container will be terminated if it exceeds
its memory limit.

For horizontal scaling, the same formula used by the
Kubenertes horizontal autoscaler, K8s-HA, is adopted to find
the desired number of replicas:

Rd =
⌈
Rc
µc

µd

⌉
(5)

where d·e is the ceiling function, Rc and Rd are, respectively,
the current and desired number of replicas, µc the predicted
metric and µd the threshold value of the metric, assumed to
be known for each container. The scaling is only performed
if the ratio µc

µd
is less than 0.9 or larger than 1.1. Reac-

tive autoscalers, such as K8s-HA, make scaling decisions
whenever an SLA violation occurs or whenever the resource
utilization of a container exceeds its threshold. On the other
hand, in predictive autoscalers, such as the one proposed in
this paper, the predicted value µc helps in taking the scaling
decision well in advance of any SLA violation. In our context,
µc is the predicted CPU value ĈPU , and µd is the CPU
threshold value thr .

The industrial state of the art in vertical autoscaling,
notably the Kubernetes vertical autoscaler [5] and the Google
Autopilot [27], adopt a traditional approach to setting limits
onmicroservice CPU andmemory. In particular, theymonitor

VOLUME 11, 2023 2575

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

Algorithm 1 Autoscaling Algorithm for Each Microservice
InputMEM_limitc, Rc, thr
MEM_limitc: current MEM limit in MB
Rc: current number of replicas
thr : CPU threshold
Output Rd , MEM_limitd
Rd : desired number of replicas
MEM_limitd : desired MEM limit in MB

1: ĈPU : predicted CPU usage
2: M̂EM : predicted MEM usage
3: RF : Random Forest model
4: while True do
5: for a duration of 1 minute do
6: Collect metrics every 5 seconds
7: end for
8: < ĈPU , M̂EM >= RF .predict(metrics)

Vert. Scaling
9: MEM_limitd ← mem_scaling(MEM_limitc, M̂EM)

Horz. Scaling
10: Rd =

⌈
Rc ĈPUthr

⌉
11: end while

Algorithm 2Memory Scaling Algorithm

Input M̂EM , MEM_limitc
MEM_limitc: current MEM limit in MB
M̂EM : predicted MEM usage
OutputMEM_limitd
MEM_limitd : current MEM limit in MB

1: if M̂EM > 80% then
2: MEM_limitd ← (1+ α) ∗MEM_limitc
3: end if
4: if M̂EM < 50% then
5: MEM_limitd ← (α + M̂EM) ∗MEM_limitc
6: end if
7: returnMEM_limitd

resource usage (CPU and memory) during a time window,
from a few minutes to several days, and set the resource
allocation for the next time window to be some percentile,
typically between 90th and 99th, of the usage in the previous
time window with a safety margin between 0.10 and 0.2.
While this strategy addresses the under-provisioning problem
and reduces the frequency of CPU throttling and OOMerrors,
it still leaves the issue of underutilized resources unaddressed,
which is not cost-effective for cloud users.

In our vertical autoscaler, both under- and over-provisioning
are considered along with their implications. This is embod-
ied in Algorithm 2. The vertical scalar uses the predicted
memory utilization to scale the memory limit of each con-
tainer. The memory limit of the microservice is adjusted dur-
ing the upcoming time window to M̂EM (1+α)∗MEM_limit
if the predicted memory utilization is more than 80% of
the current limit, lines 1-3 of Algorithm 2. The additional

TABLE 1. The schema of fastStorage dataset. The highlighted rows are
the selected features in the RF model.

α% of memory is used as a safety margin to prevent under-
provisioning. A sweep over the safety margin α ∈ [0.1, 0.2]
has been carried out and the value α = 0.15 has been
selected as it gives the best results with competitive resource
utilization and no OOM errors. Details about these selections
will be given in Section IV. To avoid over-provisioning, the
autoscaler reduces the mem_limit to be at least 1 − (α +
M̂EM) less than the current limit if the predicted utilization
is less than 50%, lines 4-6 of Algorithm 2. In other words,
the reduction amount in the memory limit is mem_limitc −
mem_limitd = (1− (α+M̂EM))mem_limitc. This guarantees
that memory utilization will always be more than 50%.

The proposed vertical autoscaler prevents under- and
overprovisioning by considering the predicted memory
usage instead of the current tail percentile usage. When
there is a considerable fluctuation in resource utilization,
the autoscaler supplies adequate resources, thus prevent-
ing both under-provisioning and performance deterioration.
Furthermore, when resource utilization variance is small,
the autoscaler does not over-provision, thus preventing
over-provisioning and resource wastage.

IV. VALIDATION OF THE AUTOSCALER RANDOM-FOREST
MODEL
This section is devoted to the evaluation and validation of
the autoscaler predictive RF models, including the data set
used in the evaluation (Subsection IV-A), the figures of merit
(Subsection IV-B), and the design details of the RF models
(Subsection IV-C). An important advantage of decision tree
and random forest learning models is their explainability.
This is addressed in Subsection IV-D for the autoscaler RF
models. Finally, in Subsection IV-E, the autoscaler RF model
is compared with some of the linear regression models that
have appeared in the literature.

A. DATASET
To train and evaluate the RFmodel, we have used the fastStor-
age dataset [22]. fastStorage is comprised of workload traces
of different software applications running on 1,250 VMs
hosted within the Bitbrains data center. The workload traces
have been collected as tenants join and leave the cluster
and are, therefore, very dynamic. This is why fastStorage
facilitates the creation of a very general model that is robust
to variations in workload. The fastStorage traces are saved
in CSV files, with each file containing one month worth of

2576 VOLUME 11, 2023

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

FIGURE 4. The average CPU and memory consumption across 50 Bitbrains fastStorage VMs.

FIGURE 5. The average CPU and memory consumption
across 10 Bitbrains fastStorage VMs.

traces collected at the sampling rate of one sample every five
minutes. The schema of the dataset is shown in Table 1.

Of the 1,250 VMs, we randomly chose 50 VM traces
(445,102 traces) for training and validation. We have also
chosen another 10 VMs (170,00 traces) to test the accuracy
and generality of the trainedmodels. Figures 4 and 5 show the
average CPU and memory usage in the 50 virtual machines
used for training and the 10 virtual machines for testing,
respectively.

These plots clearly show the workloads to be very bursty,
which makes prediction and generalization quite challenging.
The average CPU utilization is less than 10% in more than
half of the virtual machines. In addition, 50% of the record
have a very low (almost zero) CPU usage (see Table 2). On the
other hand, memory has lower variance with most of the VMs
having about the same average memory usage. In fact, the
memory variance is the lowest among all resources, while
network input throughout has the highest variance [28]. There
is also a strong correlation between CPU and memory usage
when CPU usage is high. However, the correlations between
CPU usage and other resources are very low. According to the

TABLE 2. Statistical analysis of workloads (50 VMs).

statistical analysis performed on fastStorage in [28], about
half of VMs have stable CPU utilization centered on the
mean.

Further statistical analysis is conducted on the features
of the fastStorage dataset. Six features were selected and
Table 2 highlights their statistical properties. All features,
except memory utilization, have almost zero values most of
the time. CPU and memory utilizations have values larger
than 100% as highlighted in yellow in the table. These out-of-
range values indicate over-utilization cases where the usage
exceeds the provisioned resources, and are, therefore, consid-
ered outliers. To normalize the feature values, RobustScaler
is used because of its robustness with respect to outliers. Note
that a significant part of the monitored CPU usage in the
Bitbrains dataset is 0%. Since a faithful model is supposed
to capture this CPU behavior, the use of data filtering has
been limited, and CPU usage that is zero or nearly zero is
not filtered out.

One major criterion of feature selection is to avoid redun-
dant selections. For example, in Table 1 the feature # 4 (CPU
utilization) is nothing but the ratio of features # 2 and #
3. Feature # 4 is selected as it is the one provided by the
Docker stats. Similarly, memory utilization (%) is calculated
by dividing memory usage (KB) by provisioned memory
(KB). All other features are used as given. The model features
are, therefore, CPU utilization (%), memory utilization (%),
and read, write, network in and network out performance.
These features are also the metrics collected by the Docker
engine and are the main metrics used to analyze the container
workloads. For prediction, the data needs to be rearranged in a

VOLUME 11, 2023 2577

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

time series. This is achieved using a sliding window of 1 hour
with a sliding step of 5 minutes. As a result, the total number
of feature samples is 6 features × (1 hour/5 minutes) =
72 values.

B. FIGURES OF MERIT
The figures of merit used for RF model evaluation are: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and the coefficient of determination (R2) whose expressions
are

MAE =
1
N

N∑
k=1

|yk − ŷk | (6)

RMSE =

√√√√ 1
N

N∑
k=1

(yk − ŷk)2 (7)

R2 = 1−

N∑
k=1

(
yk − ŷk

)2
N∑
k=1

(yk − ȳ)2
(8)

whereN is the number of data points, yk the k-th data sample,
ŷk the k-th predicted value, and ȳ the statistical mean of the
N data points.
RMSE andMAE are loss functions that measure prediction

precision, MAE being the most resistant to outliers [29],
and RMSE the most commonly used to compare regression
models with others. Typically, small MAE and RMSE values
indicate an accurate regression model.

On the other hand,R2 is a statistical measure that quantifies
the proportion of variance of a dependent variable that is
attributed to the regression variable(s). In contrast, correla-
tion quantifies the variation overlaps between two statistical
variables. For example, a value of R2 = 0.79 means that the
regressionmodel can explain about 79% of the variance of the
dependent variable. The highest R2 score is 1, which implies
that the regression model fits the data perfectly.

C. RANDOM FOREST MODELS
Our initial RF model has a single output and was geared
toward the predictions of CPU utilization in compute-
intensive microservices. As is clear from the statistical analy-
sis of the fastStorage dataset, predicting CPU alone is not suf-
ficient to avoid SLA violations. Memory utilization must also
be taken into account. In the absence of prediction of memory
utilization, OOMerrors will result in increased response time,
forcing microservice replication, which in turn translates into
resource waste and increased cost. To address this common
scenario, we have designed a two-output RF regressionmodel
that predicts both CPU and memory utilizations.

Multiple two-output RF models have been designed with
different feature space dimensions and data normalization
techniques. The best among these RF models has been com-
pared with a reference linear regression model. The dataset
selected from fastStorage (see IV-A) has been partitioned
into two parts: 70% for training and validation and 30%

TABLE 3. The four RF models designed using two feature dimensions:
4 and 6, with and without normalization. The quality of the model is
evaluated on the basis of the three criteria: R2, RMSE, MAE.

FIGURE 6. Regression metrics for the RF models.

for testing. The models have been validated using 10-fold
cross-validation using the k-fold cross-validation API from
Python’s scikit-learn library. In the selection of the of
the feature space dimension, both a dimension of 6 (all
features) and 4 have been considered. An important aspect
of the latter choice is the selection the top 4 most criti-
cal features. This has been accomplished using permuta-
tion feature importance [30], [31]. This approach randomly
shuffles each feature j to break the associations between
the feature and the output variables. It then calculates the
difference between the original-model performance measure

2578 VOLUME 11, 2023

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

FIGURE 7. The cumulative feature importance graph.

(e.g., R2) and the model performance with the shuffled data
(e.g., R2(j)). The most important features result in the most
significant gain R2 − R2(j) in the model performance mea-
sure. The cumulative feature importance graph is shown
in Figure 7, where the Disk_Read and Disk_Write features
are the least important and can therefore be removed. The
remaining four features: CPU_usage, Memory_usage, Net-
work_In, andNetwork_Out exceed 95% of cumulative impor-
tance and are therefore retained. Another possible selection
that exceeds the 95% threshold is to replace Network_Out
with Disk_Read. We have opted for the first selection as Net-
work_Out turned out to be more important than Disk_Read.
Four RF models have been designed and their properties

are summarized in Table 3. The MAE, RMSE and R2 perfor-
mance measures of these models are illustrated in Figure 6.
The G1 and G2 testing sets are the traces of 10 different
VMs. The traces in G1 have memory utilization outliers
that range from 200 to 1750%, while G2 has no such out-
liers. In terms of CPU utilization, G1 has one CPU utiliza-
tion outlier of value 120%. On the other hand, most of the
G2 traces have very low CPU utilization (< 20%). The main
goal of using the G1 and G2 datasets is to illustrate the
robustness of the RF models and their ability to accurately
predict future resource utilization regardless of the type of
workload.

From Table 3 and the graphs in Figure 6, the RF_6 model
has a high R2 value for the CPU in the G1 dataset, but a
very low R2 value for the CPU in the G2 dataset. This is
due to the very long stretches of zero CPU utilization in
this dataset. On the other hand, the R2 of the RF_6 model
is more than 0.7 for memory utilization when there are no
outliers. Its performance is better than the RF_6_norm model
for all three measures MAE, RMSE, R2. On the other hand,
models RF_4 and RF_4_norm compare more favorably than
RF_6_norm. Note that RF_4 model has the lowest MAE and
RMSE for CPU and memory utilization when there are no
outliers. It also has a high R2 score in all cases. The RF_4
model is the fastest in both the training (670 seconds) and
scoring (1.02 seconds) phases. On the other hand, the training

TABLE 4. The feature vector of a sample, its actual CPU, and memory
utilization.

times of the other models range from 780 to 1046 seconds,
and their prediction times range from 1.15 to 1.24 seconds.

The evaluation results illustrate the negative impact of
overfitting (6 features instead of 4) and the important fact
that in RF regression, normalization may not have the same
favorable impact as in linear regression.

The advantage of a compact RF model is the signifi-
cant reduction in storage footprint, which has been reduced
from 4 GB to 2 GB when the feature space dimension
is reduced from 6 to 4. Note that normalization is a
pre-processing step that increases the learning runtime by
15% and the prediction runtime by 4% with respect to non-
normalized input. Normalization has no impact on the per-
formance measures for the predicted CPU utilization. On the
other hand, it negatively impacts predicted memory utiliza-
tion, even though the memory utilization traces have more
outliers compared with the CPU traces. The conclusion is
that in RF regression, the RF models can be made suffi-
ciently robust in the presence of outliers without any input
normalization.

The predicted and actual values of the RF_4model for CPU
and memory utilization are shown in Figures 8 and 9, respec-
tively, with (b) and without (a) outliers. The CPU outlier
value is 120%while the memory’s is 1750%. This latter value
explains why memory outliers have such a negative impact
on prediction accuracy. The range of the predicted CPU and
memory utilization values is from 0 to 100%. Finally, note
that there is no difference in the trends between the predicted
and actual values. In other words, future CPU and memory
utilizations are readily predictable from previous data traces.

D. MODEL EXPLAINABILITY
The decision trees of the RF predictor can be analyzed to gain
more information on the relationship between the features
and the predicted values. The RF autoscaler predictor is an
ensemble of decision trees, the first of which is illustrated
in Figure 10. The highlighted path is the decision path of
the input sample shown in Table 4. The 12 samples collected
during the one-hour sliding window are indexed from 0 to 11,
and the notation CPU_usage11 indicates a value of CPU
utilization that corresponds to the very last sample. Similarly,
mem_usage7 indicates a value of memory utilization that
corresponds to the 8th sample. For the RF_4 model, the total
number of values is 48, all of which are used to predict CPU

VOLUME 11, 2023 2579

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

FIGURE 8. Actual and predicted CPU usage.

FIGURE 9. Actual and predicted memory usage.

FIGURE 10. One of the decision trees of the RF model. The actual depth of the estimator is 100, but it is reduced to 5 in this graph for easier
visualization. The highlighted path is the decision path taken for prediction based on the sample of Table 4.

and memory utilizations in the next 5 minutes. The details
of the decision path are illustrated in Figure 11. The features
shown in Table 4 and their value correspond to those used
along the decision path of Figure 11. Note that the decision
path corresponds to workload metrics collected in the middle
and at the end of the sliding window. According to Eq. (1),
the predicted values correspond to the internal state of the

leaf node (ĈPU , M̂EM) = (1.73, 6.26). It is important to
note that the tree has been pruned for easier visualization. The
actual predicted values are slightly different and are given by
(ĈPU , M̂EM) = (1.43, 8.01). These values are very close
to the actual ones. Other decision paths can be traced as well
across the trees of the ensemble with their leaf states averaged
out to provide the RF predictions.

2580 VOLUME 11, 2023

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

FIGURE 11. The decision path of the sample of Table 4.

FIGURE 12. A LIME-generated bar chart of feature value contributions to
the prediction of CPU utilization corresponding to the sample of Table 4.

One major advantage of using decision tree and random
forest regression is their explainability. A given decision path
in a tree can be readily used to trace back the prediction
values to the input sample. When the RF model consists of
a large number of decision trees (in our case 1000 trees)
with high depth, a tool is needed to visualize the aggregate
contributions of the trees to the RF predictions. We have used
the LIME [32] tool for such visualizations. Figure 12 lists the
top 10 regressor values, of the 48 collected in the one-hour
time window, that contribute the most to the prediction. The
vertical bar graph has the decision region of each regressor
value on the y axis and the contribution weight of each
regressor on the x axis. A positive (negative) weight is coded
as a green (red) bar. It indicates an increase (decrease) in
the predicted value when the regressor value increases. For
the particular sample under consideration, CPU_usage11,
mem_usage11, mem_usage4, and Network_out8 all have
negative weights and decrease the predicted CPU utiliza-
tion when they increase. All other regressors increase the

FIGURE 13. The total number of requests per seconds and number of
users of the generated loads.

predicted CPU utilization when they increase. Note that such
explanations are for the RF model with 1000 trees. They
could not have been made without LIME.

E. COMPARISON WITH LINEAR REGRESSION
The best RF model, the RF_4 model, was compared with a
reference linear regression model, denoted LR. The regres-
sion variables in both models are the 48 variables collected
during a time window of 1 hour at the sampling rate of
1 sample every 5 minutes. Compared with LR, RF_4 has
lower MAE, MSE, RMSE, and a higher R2 score. When
examined further, many of the predicted values of LR are neg-
ative, possibly due to the presence of outliers in the dataset.
Naturally, the learning and prediction run times of the linear
regression model are much lower than those of RF_4.

The RF models have also been compared against recent
state-of-the-art predictive autoscalers. In comparison with
LSTM NN model proposed in [16] (3.9 average RMSE),
RF_4 has achieved a better prediction accuracy with an
average RMSE of 2.9 vs. 3.9. The LSTM NN model is
more complex, requiring 12 × 3 × 6 = 216 samples (i.e,
3-hour sliding window and 6 features) vs. 1 hour for RF_4.
In addition, the LSTM NN model has used all 6 features vs.
RF_4 which uses only the top 4 features. In other words,
RF_4 achieves better prediction accuracy with a less complex
model having a smaller number of features, a narrower data
window, and a shorter training time. RF_4 learns thousands
of samples in seconds and makes predictions in fractions of
a second, allowing for frequent model re-training using the
most recent traces. It is also much less prone to overfitting
even in the presence of highly repetitive data sequences.

In [8], an RF model is proposed that uses the number of
container replicas and the request rate to predict CPU uti-
lization. The targeted application is interactive microservices
and the dataset used for training, validation, and testing is
TeaStore. On the other hand, RF_4 has been designed for
arbitrary workloads and uses the most important resource
metrics to predict CPU and memory utilization.

V. APPLICATION TO MICROSERVICE AUTOSCALING
In this section, a complete e-Commerce example of a
microservice mesh is used to evaluate the proposed predictive
autoscaler. The evaluation will exercise the complete MAPE

VOLUME 11, 2023 2581

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

FIGURE 14. Average memory utilization during the load test with the proactive autoscaler (this work).

FIGURE 15. Average memory utilization during the load test with SHOWAR vertical autoscaler [18].

architecture of Fig. 2 and analyze the evaluation results for
all mesh microservices. This is done on a home-grown,
open-source platform for the fast prototyping of microservice
meshes [33].

A. EXPERIMENTAL SETUP
The experiments are carried out on the AWS Cloud in the
ap-south-1 region, using a t2.2xlarge instance (x86_64 archi-
tecture) with 8 vCPU (Intel Scalable Processor up to 3GHz)
and 32 GB of memory, running Ubuntu 18.04 LTS. All ser-
vices are running on a single host. Docker-compose is used to
configure the services and create a network for inter-container
communication. The Docker-compose version is 1.29.2 and
the Docker-engine version is 20.10.21.

1) E-COMMERCE MICROSERVICE EXAMPLE
The full autoscaler is evaluated using Socks Shop [34],
an e-commerce application implemented as a microservice

mesh to demonstrate the advantages of using a container
platform. It consists of 14 microservices built using Spring
Boot, Go kit, and Node.js. It also contains a load test, which
we utilize to benchmark a live example and quantify the
consumption of computing resources for each one of its
microservices. Each running microservice has a CPU limit
of 1 core with no memory limit. Consequently, the initial
memory limit of each container is that of the server physical
memory, namely, 32GB. We have also used the load test
to determine the threshold values of microservices in Socks
Shop.

2) LOAD GENERATION
We have used Locust [35], an open-source load testing tool,
as the workload generator. Locust has been extensively tested
and successfully used to swarm systems with millions of
simultaneous users. Our own load test has been performed

2582 VOLUME 11, 2023

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

FIGURE 16. The average memory utilization for three microservices
during the load test with the SHOWAR vertical autoscaler.

under the assumptions that the number of users ranges
from 5 to 50 and that the spawn rate ranges from 10 to 100.
This workload mimics the typical browsing behavior of most
users visiting the socks-shop store. It adheres to a closed
workload model and incorporates operations such as visit-
ing the home page, logging in, adding items to the basket,
going to checkout, and placing an order. The aggregated
number of requests during load testing is in excess of 235,000
requests, and the number of requests per second (RPS) ranges
from 18 RPS to 90 RPS. The total RPS and the number
of users are shown in Figure 13. The workloads include
activity bursts that are used to evaluate the robustness of the
autoscaler.

B. REACTIVE AUTOSCALERS
The proactive horizontal autoscaler is compared with the
reactive K8s-HA configured according to Eq. (5), by setting
the target CPU utilization to 70%, and replacing the predicted
metric with the 95th percentile of the collected metrics in the
data frame.

The vertical autoscaler is compared with one of the latest
state-of-the-art vertical autoscalers, namely, SHOWAR [18].
SHOWAR is a reactive autoscaler that uses the running mean
µ and standard deviation σ over a window of N samples
of the memory usage time series to estimate the memory
resource,M , a container needs according to the formulaM =
µ+3∗σ . The scaling decision is made only whenM changes
by more than 15% compared to the previous observation.
The SHOWAR vertical autoscaler is reported to have very
good performance with less memory allocation compared
with K8s and Autopilot [18]. In the comparisons with our
own autoscaler, we have used our own implementation of
SHOWAR.

C. COMPARISONS
Throughout the load tests, the usage of resources of all run-
ning containers is collected and considered for normalization.
CPU and memory utilizations are then analyzed along with
the number of replicas and the other resources of the vari-
ous workloads. Furthermore, the failure rates are logged to
quantify the robustness of the autoscaler. Figures 14 and 15
illustrate the average memory utilization of microservices
during load testing with our RF proactive autoscaler and
the SHOWAR vertical autoscaler, respectively. Under the

proactive autoscaler, all containers have an average usage of
more than 30% regardless of how the load changes. On the
other hand, with the SHOWAR vertical autoscaler, the aver-
age memory utilization is less than 25%.

Memory utilization for payment, catalogue, and user
microservices is less than 50% under the proactive RF
autoscaler. This is due to the fact that the autoscaler cannot set
a memory limit less than 20 MB. Since these microservices
are assigned the lowest possible memory limit, there is no
way to increase memory utilization. The other microservices
maintain a memory utilization of more than 50% most of the
time.

With the SHOWAR vertical autoscaler, there are bursts
in memory utilization during the load test, as shown in
Figure 16. The memory utilization for the carts and user
microservices increases for a few minutes to more than 90%,
then drops to around 10%. These bursts cause OOM errors
and increase the failure rate. Failure requests occur since
the back-end services are not able to fulfill the requests
even when the load is very low (10 users and 5 spawn rate)
due to the small amount of memory assigned, which causes
OOM errors. Such failure is the main drawback of reactive
autoscalers. For example, under the SHOWAR autoscaler, the
post and delete HTTP requests of the cart microservice have
a failure rate of 12 failures/minute. On the other hand, under
the proactive autoscaler of this work, the failure rate of the
delete request is 0.0 failures/minute, and of the post request is
0.168 failures/minute. Finally, SHOWAR hasO(N) complex-
ity due to the calculations of mean and standard deviations,
while the complexity of the proactive vertical autoscaler
is O(1).
For the proactive horizontal autoscaling, one CPU core is

found to be sufficient for most containers except for ship-
ping. In addition, there is no need to add replicas to meet
the high number of requests. For the shipping microservice,
the horizontal autoscaler scales up when the load reaches the
maximum of 50 users to meet the high number of requests.
During this load, the CPUutilization of the shipping container
is around 50%.

On the other hand, the reactive K8s Horizontal Pod
Autoscaler (HPA) scales many microservices up and down
based on the 95th percentile. For instance, with only 30 users,
K8s HPA adds many replicas for the shipping microservice
even though the CPU utilization is not high and the load
is considered moderate. In contrast, the proactive horizon-
tal autoscaler adds more replicas only when the load is
high, and the predicted CPU utilization is more than the
threshold.

In terms of reliability and performance, the reactive
autoscalers have suffered more failures and their response
time has been longer when compared with the proactive
autoscaler. Specifically, the system average response time is
22ms with the reactive autoscalers and 14ms with the proac-
tive autoscaler. In addition, the max 95th percentile of the
response time under various loads is 250mswith the proactive
autoscaler and 5100ms (more than 20X!) with the reactive
ones.

VOLUME 11, 2023 2583

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

In summary, we have found that scaling the con-
tainers proactively with the RF predictive model maxi-
mizes resource utilization and mitigates resource over- and
under-provisioning in all load tests. The RF model can accu-
rately predict the resource utilization of a microservice mesh
and help to allocate them both in batch and in interactive
workloads.

VI. CONCLUSION
In this paper, we have presented a robust, proactive, hor-
izontal, and vertical autoscaler. The core of the proactive
autoscaler is a predictive random forest (RF) model that
predicts future CPU and memory utilization for container-
ized microservices. The forecast values are then used by
the autoscaler to find the optimal number of microservice
replicas and the amount of memory needed. Experimental
evaluations have shown that the RF model can accurately
predict CPU andmemory utilization of dynamicmicroservice
workloads. Compared to industry and state-of-the-art reactive
autoscalers, the proposed proactive autoscaler has resulted in
significantly improved response time (60%) and tail latency
(19.6X). Furthermore, the proactive autoscaler has virtually
eliminated out-of-memory failures, thus resulting in much
improved memory utilization.

The proposed predictive RF model is a deterministic,
supervised ML model that is used to predict the hardware
resource usage of the underlying dynamic cloud workloads.
Although the RF model used is very robust and accurate, its
expansion to dynamically account for new features in cloud
workloads is a challenge. One way to address such challenge
is to use progressive learning, which is expected to converge
faster to a better generalizationmodel while preservingmodel
accuracy.

REFERENCES
[1] A. Yousafzai, A. Gani, R. M. Noor, M. Sookhak, H. Talebian, M. Shiraz,

and M. K. Khan, ‘‘Cloud resource allocation schemes: Review, taxonomy,
and opportunities,’’ Knowl. Inf. Syst., vol. 50, no. 2, pp. 347–381, 2017.

[2] H. Singh, A. Bhasin, and P. R. Kaveri, ‘‘QRAS: Efficient resource allo-
cation for task scheduling in cloud computing,’’ Social Netw. Appl. Sci.,
vol. 3, no. 4, pp. 1–7, Apr. 2021.

[3] W. Iqbal, M. Dailey, and D. Carrera, ‘‘SLA-driven adaptive resource man-
agement for web applications on a heterogeneous compute cloud,’’ in Proc.
IEEE Int. Conf. Cloud Comput. Berlin, Germany: Springer, Dec. 2009,
pp. 243–253.

[4] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, ‘‘Lightweight resource scal-
ing for cloud applications,’’ in Proc. 12th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput., May 2012, pp. 644–651.

[5] Kubernetes. (2020). Kubernetes. Accessed: Feb. 16, 2020. [Online]. Avail-
able: https://kubernetes.io/

[6] P. Kang and P. Lama, ‘‘Robust resource scaling of containerized microser-
vices with probabilistic machine learning,’’ in Proc. IEEE/ACM 13th Int.
Conf. Utility Cloud Comput. (UCC), Dec. 2020, pp. 122–131.

[7] I. Prachitmutita, W. Aittinonmongkol, N. Pojjanasuksakul,
M. Supattatham, and P. Padungweang, ‘‘Auto-scaling microservices
on IaaS under SLA with cost-effective framework,’’ in Proc. 10th Int.
Conf. Adv. Comput. Intell. (ICACI), Mar. 2018, pp. 583–588.

[8] A. Goli, N. Mahmoudi, H. Khazaei, and O. Ardakanian, ‘‘A holistic
machine learning-based autoscaling approach for microservice applica-
tions,’’ in Proc. 11th Int. Conf. Cloud Comput. Services Sci. (CLOSER),
2021, pp. 190–198.

[9] M. Abdullah, W. Iqbal, J. L. Berral, J. Polo, and D. Carrera, ‘‘Burst-aware
predictive autoscaling for containerized microservices,’’ IEEE Trans. Serv.
Comput., vol. 15, no. 3, pp. 1448–1460, May 2022.

[10] Y. Zhang,W.Hua, Z. Zhou, E. Suh, andC. Delimitrou, ‘‘Sinan: Data-driven
resource management for interactive microservices,’’ ML Comput. Archit.
Syst., Washington, DC, USA, Tech. Rep. NSF-PAR ID: 10165231, 2020.

[11] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[12] O. Anisfeld, E. Biton, R. Milshtein, M. Shifrin, and O. Gurewitz, ‘‘Scal-
ing of cloud resources-principal component analysis and random for-
est approach,’’ in Proc. IEEE Int. Conf. Sci. Electr. Eng. Isr. (ICSEE),
Dec. 2018, pp. 1–5.

[13] S. Choochotkaew, T. Chiba, S. Trent, andM. Amaral, ‘‘Run wild: Resource
management system with generalized modeling for microservices on
cloud,’’ inProc. IEEE 14th Int. Conf. Cloud Comput. (CLOUD), Sep. 2021,
pp. 609–618.

[14] H.Mohamed andO. El-Gayar, ‘‘End-to-end latency prediction ofmicroser-
vices workflow on kubernetes: A comparative evaluation of machine learn-
ing models and resource metrics,’’ in Proc. 54th Annu. Hawaii Int. Conf.
Syst. Sci., 2021, p. 1717.

[15] Y. Li, D. Ou, C. Jiang, J. Shen, S. Guo, Y. Liu, and L. Tang, ‘‘Virtual
machine performance analysis and prediction,’’ in Proc. Int. Conf. Com-
mun., Comput., Cybersec., Informat. (CCCI), Nov. 2020, pp. 1–5.

[16] J. P. Wong, ‘‘HyScale: Hybrid scaling of dockerized microservices archi-
tectures,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 2019.

[17] A. A. Khaleq and I. Ra, ‘‘Intelligent autoscaling of microservices in the
cloud for real-time applications,’’ IEEE Access, vol. 9, pp. 35464–35476,
2021.

[18] A. F. Baarzi and G. Kesidis, ‘‘SHOWAR: Right-sizing and efficient
scheduling of microservices,’’ in Proc. ACM Symp. Cloud Comput.,
Nov. 2021, pp. 427–441.

[19] S. Dinesh. (2018). Kubernetes Best Practices: Resource Requests and
Limits. Accessed: Feb. 5, 2022. [Online]. Available: https://cloud.
google.com/blog/products/containers-kubernetes/kubernetes-best-
practices-resource-requests-and-limits

[20] A. Kwan, J. Wong, H.-A. Jacobsen, and V. Muthusamy, ‘‘HyScale: Hybrid
and network scaling of dockerized microservices in cloud data centres,’’
in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019,
pp. 80–90.

[21] K. R. Rao, D. N. Kim, and J. J. Hwang,Fast Fourier Transform: Algorithms
and Applications. Dordrecht, The Netherlands: Springer, 2010.

[22] The Grid Workloads Archive. The Grid Workloads Datasets. Accessed:
Mar. 22, 2021. [Online]. Available: https://github.com/acmeair/acmeair

[23] D. Wang, P. Ram, D. K. I. Weidele, S. Liu, M. Müller, J. D. Weisz,
A. Valente, A. Chaudhary, D. Torres, H. Samulowitz, and L. Amini,
‘‘AutoAI: Automating the end-to-end AI lifecycle with humans-in-the-
loop,’’ in Proc. 25th Int. Conf. Intell. User Interfaces Companion,
Mar. 2020, pp. 77–78.

[24] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, ‘‘A parallel
random forest algorithm for big data in a spark cloud computing environ-
ment,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp. 919–933,
Apr. 2017.

[25] R. Caruana and A. Niculescu-Mizil, ‘‘An empirical comparison of super-
vised learning algorithms,’’ in Proc. 23rd Int. Conf. Mach. Learn., 2006,
pp. 161–168.

[26] (2021). Scikit Learn. Accessed: Oct. 20, 2021. [Online]. Available:
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
RobustScaler.html#sklearn.preprocessing.RobustScaler

[27] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, ‘‘Autopilot:
Workload autoscaling at Google,’’ in Proc. 15th Eur. Conf. Comput. Syst.,
Apr. 2020, pp. 1–16.

[28] S. Shen, V. Van Beek, and A. Iosup, ‘‘Statistical characterization
of business-critical workloads hosted in cloud datacenters,’’ in Proc.
15th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2015,
pp. 465–474.

[29] C. Pascual. (2018). Tutorial: Understanding Regression Error
Metrics in Python. [Online]. Available: https://www.dataquest.io/
blog/understanding-regression-error-metrics/

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay.
(2022). Permutation Feature Importance. Accessed: Jan. 3, 2023.
[Online]. Available: https://scikit-learn.org/stable/modules/permutation_
importance.html

2584 VOLUME 11, 2023

L. M. Al Qassem et al.: Proactive Random-Forest Autoscaler for Microservice Resource Allocation

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Jan. 2011.

[32] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trust you?’
Explaining the predictions of any classifier,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1135–1144.

[33] L. A. Qassem, ‘‘Microservice architecture and efficiency model for cloud
computing services,’’ Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci.,
Khalifa Univ., Abu Dhabi, UAE, 2022.

[34] Weaveworks. (2016). Containersolutions: Socks Shop—A Microser-
vices Demo Application. [Online]. Available: https://microservices-
demo.github.io/

[35] Locust. (2020). An Open Source Load Testing Tool. Accessed:
Feb. 11, 2020. [Online]. Available: https://locust.io/

LAMEES M. AL QASSEM received the M.Sc.
and Ph.D. degrees from Khalifa University, Abu
Dhabi, United Arab Emirates, in 2017 and 2022,
respectively. She is currently a Postdoctoral Fellow
at Khalifa University. Her M.Sc. thesis focused
on Arabic natural language processing (NLP) and
artificial intelligent. Her Ph.D. thesis focused on
microservice architecture and efficiency models
for cloud computing services. She has published
in the areas of educational technology, including

augmented and virtual reality, Arabic natural language processing, cloud
computing, and microservice architectures. She received the Best Paper
Award from the 2019 UAEGraduate Student Research Competition (GSRC)
for her work on Arabic NLP.

THANOS STOURAITIS (Life Fellow, IEEE)
received the Ph.D. degree from the University
of Florida. He is currently a Professor with the
Department of Electrical Engineering and Com-
puter Science, Khalifa University, United Arab
Emirates, and a Professor Emeritus of the Uni-
versity Patras. He has served on the faculties
of The Ohio State University, the University of
Florida, New York University, and The Univer-
sity of British Columbia. He also served on the

National Scientific Board for Mathematics and Informatics of Greece.
He was a Founding Council Member of the University of Central Greece.
Along with several textbooks, he has authored about 200 technical papers,
several book chapters, and holds one USA patent on DSP processor design.
He has led several DSP processor design projects funded by the European
Union, American organizations, and the Greek government and industry. His
current research interests include AI hardware systems, signal and image
processing systems, computer arithmetic, and design and architecture of
optimal digital systems with emphasis on cryptographic systems. He is a
fellow of IEEE for his contributions in digital signal processing architectures
and computer arithmetic. He has served as an Editor or a Guest Editor for
numerous technical journals, including IEEE TRANSACTIONS ON COMPUTERS,
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, and IEEE TRANSACTIONS ON

VERYLARGE SCALE INTEGRATION (VLSI) SYSTEMS, and theGeneral Chair and/or
Technical Program Committee Chair for many international conferences,
including IEEE ISCAS, AICAS, SiPS, ICECS, and GlobeCom. He received
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS SOCIETY Guillemin-Cauer
Award. He has served IEEE in many ways, including as the President,
from 2012 to 2013, of its Circuits and Systems Society.

ERNESTO DAMIANI (Senior Member, IEEE) is
the Director of the Center for Cyber-Physical Sys-
tem at Khalifa University, Abu Dhabi, and a Full
Professor at the Department of Computer Sci-
ence, Università degli Studi diMilano, Italy, where
he leads the SESAR Lab, and President of the
National Interuniversity Consortium for Computer
Science. He has hold a Visiting Positions at a num-
ber of international institutions, including George
Mason University, Virginia, USA, Tokyo Denki

University, Japan, La TrobeUniversity,Melbourne, Australia, and the Institut
National des Sciences Appliquées (INSA), Lyon, France. He is a Fellow of
the Japanese Society for the Progress of Science. He has been the Principal
Investigator in a number of large-scale research projects funded by the
European Commission, the Italian Ministry of Research and by private com-
panies such as British Telecom, Cisco Systems, SAP, Telecom Italia, Siemens
Networks (now Nokia Siemens). He has coauthored more than 700 scientific
articles and many books, including ‘‘Open Source Systems Security Certifi-
cation’’ (Springer 2009). His research interests include artificial intelligence,
machine learning, cyber-physical systems, secure service-oriented archi-
tectures, privacy-preserving big data analytics, and cyber-physical systems
security. He serves as the Editorial Board of several international journals;
among others, he is the EIC of the International Journal on Big Data and
of the International Journal of Knowledge and Learning. He is an Associate
Editor of the IEEE TRANSACTIONS ON SERVICE-ORIENTED COMPUTING and of the
IEEE TRANSACTIONS ON FUZZY SYSTEMS. In 2008, he was nominated ACM
Distinguished Scientist and received the Chester Sall Award from the IEEE
Industrial Electronics Society.

IBRAHIM (ABE) M. ELFADEL (Senior Member,
IEEE) received the Ph.D. degree from the Mas-
sachusetts Institute of Technology (MIT), in 1993.
He is currently a Professor of electrical engineer-
ing and computer science at Khalifa University,
Abu Dhabi, United Arab Emirates. Prior to his
current academic position, he was with the cor-
porate CAD organizations at IBM Research and
the IBM Systems and Technology Group, York-
town Heights, NY, USA, where he was involved

in the research, development, and deployment of CAD tools and method-
ologies for IBM’s high-end microprocessors. His current research inter-
ests include the IoT platform prototyping; energy-efficient edge and cloud
computing; secure IoT communications; embedded digital-signal process-
ing; and computer-aided design for VLSI, MEMS, and silicon photonics.
He was a recipient of six Invention Achievement Awards, one Outstand-
ing Technical Achievement Award, and one Research Division Award, all
from IBM, for his contributions in the area of VLSI CAD. His other
awards include the D. O. Pederson Best Paper Award from the IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN, the SRC Board of Directors Spe-
cial Award for pioneering semiconductor research in Abu Dhabi, the Best
Paper Award from the IEEE Conference on Cognitive Computing, Milan,
Italy, in July 2019 and 2022 Service Award from the International Feder-
ation of Information Processing (IFIP). He is an Associate Editor of the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS.
He has served on the Technical Program Committees of several leading
conferences, including DAC, ICCAD, ASPDAC, DATE, ISCAS, VLSI-
SoC, ICCD, ICECS, and MWSCAS. He was the General Co-Chair of the
25th IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC 2017), Abu Dhabi, UAE.

VOLUME 11, 2023 2585

