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ABSTRACT Failure mode and effects analysis (FMEA) is a reliability analysis method that analysis
all possible failure modes for each product in a system and all possible effects of failure modes on the
system, to classify each failure mode and to propose solutions and preventative measures. It is undeniable
that the traditional FMEA method has been widely criticized for its simple scoring and single algorithm.
To improve the usability of FMEA, hesitation fuzzy preference relation sets (HFPRs) based on hesitant fuzzy
sets have been introduced into FMEA research because of their good fuzziness and uncertainty properties.
Most existing consistency-based algorithms for HFPR processing, however, do not consider the possible
coherence deviation of the reluctant fuzzy set itself, which includes multiplicative consistency (MC) theory,
which will result in the reduced accuracy of results from such algorithms, in addition to not supporting
group decision-making well in heterogeneous environments. At the same time, when building a group
consensus, constantly adjusting HFPRs through group decision feedback can easily lead to conservative or
radical scoring by experts. Therefore, an excellent hybrid FMEA assessment method is studied in this paper.
In this approach, an extended multiplicative consistency equation is constructed by extending the applicabil-
ity of MC in the treatment of HFPR, and on this basis, a mathematical model with the ability to deal with sets
of heterogeneous fuzzy preference relations (H-HFPRs) is constructed. Lastly, based on the predictability
principle of the occurrence level (O), a scoring correction algorithm is constructed based on group consensus
theory to reduce the conservative or aggressive bias of the expert group in the results. The new method was
used in the risk assessment of Change oilfield subsea pipeline engineering, and the results were compared
with several existing methods to verify the effectiveness and advancement of the proposed method.

INDEX TERMS FMEA, multiplicative consistency, heterogeneous hesitation fuzzy preference relation set
group decision, occurrence probability rank, risk assessment.

I. INTRODUCTION
FMEA is a technique for managing reliability and safety
in a group-oriented, structured and proactive manner,
in which determining the risk ranking of failure modes is
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a multi-faceted challenge that requires multi-criteria deci-
sion making (MCDM) analysis [1], [2]. Therefore, FMEA
can be regarded as a typical multi-criteria group decision
problem [3], in which the evaluation of experts plays a very
important role. A typical FMEA assessment method is the
risk priority number (RPN) method, where a group of experts
is invited to score the three main parameters of the RPN:
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S (severity), O (occurrence rate) and D (detection rate). Sim-
ple multiplication is then used to calculate the final risk score.
The traditional RPN method has some obvious defects, such
as subjectivity and uncertainty, and contradictions among
experts may even occur, leading to a score that does not fully
capture the original information to be expressed; only a score
of 0-10 results in a smaller data combination, and on the
base of simple multiplication, different combinations of risk
parameters may result in the same RPN value [4], [5], [6].

As the primary source of information in the FMEA risk
assessment, the value of the RPN has a very large impact
on the accuracy of the risk assessment results. Therefore,
the improvement of the RPN evaluation is very important.
Expert evaluation method is a basic method of evaluating the
source of basic data. Due to their subjectivity and uncertainty,
many researchers are committed to investigating optimization
methods in order to improve the accuracy of expert eval-
uation. Representative approaches include the reduction of
linguistic uncertainty, the consideration of expert fuzziness
and randomness and the enhancement of the reliability of
expert information by considering unknown information and
expert group consensus [7], [8], [9]. Thus, the optimization
of the expert evaluation method and the RPN calculation
method are still mainstream research directions. Several stud-
ies have shown that the hesitant fuzzy method developed
through fuzzy set theory can solve the problem of hesitant
and uncertain scoring by experts. This method allows the
evaluation object to belong to a set of several values [16].
However, the simple hesitant fuzzy method cannot solve the
problem of expert subjectivity and the heterogeneity of the
expert group. Especiallywhen given linguistic information by
the expert group, the traditional hesitant fuzzy method cannot
solve the problem of randomness, which becomes increas-
ingly obvious. In this case, the concept of heterogeneous hesi-
tant fuzzy preference relation (H-HFPR) sets was introduced.
Here, decision-makers in group decision-making often have
different professional knowledge, experience and personal-
ity qualities, which will lead to different forms of eval-
uation information, such as complete hesitation fuzzy
preference relation (HFPR), hesitation fuzzy linguistic pref-
erence relation (HFLPR), incomplete hesitation fuzzy pref-
erence relation (I-HFPR) and incomplete hesitation fuzzy
linguistic preference relation (I-HFLPR), which are collec-
tively referred to as heterogeneous hesitation fuzzy prefer-
ence relation (H-HFPR) [10], [11], [12]. In the group decision
problem, when there are two or more types of information
in the H-HFPR, this is referred to as the H-HFPR prob-
lem. In addition to solving subjective expert uncertainty and
individual heterogeneity problems, the group decision model
based onH-HFPR can also solve problems of randomness and
uncertainty. Existing methods based on expectation consis-
tency or regression for dealing with fuzzy sets, however, are
not fully applicable to the H-HFPR group decision problem.
There are also some limitations of both the existing addi-
tive consistency algorithm and the multiplicative consistency
algorithm, such as the inability to calculate the error when

dealing with fuzzy sets, with respect to the H-HFPR group
decision problem.

Furthermore, in engineering practice, it is possible to pre-
dict the occurrence of failure modes of a system or prod-
uct through the implementation of modeling and simulation,
prediction of the failure rate, and analysis of stress, similar
products or historical data [13], [14]. It is possible to convert
the product reliability prediction value into a failure density
function and a failure rate function and obtain the failure
mode occurrence rate. Therefore, the predicted value of the
occurrence rate is also an important source of information
in FMEA analysis. However, since there are always some
improvements or changes in new products, some new poten-
tial failure modes may occur [15]. Thus, in new product
FMEA, the opinions of experts are also very important infor-
mation. By combining the predicted value of the occurrence
rate with the opinions of experts, more efficient results can be
obtained.

Motivated by the discussion above, the following goals will
be achieved in this paper based on H-HFPR theory:

1) In order to make the computational results of the group
H-HFPR decision more accurate, we optimize the mul-
tiplicative consistency(MC) principle.

2) A hesitant fuzzy preference matrix model and a group
consensus (GC) model suitable for FMEA assessment
are constructed. Expert group consensus is achieved on
the basis of ensuring the consistency of expert prefer-
ence information.

3) In order to rule out possible radicalness or conserva-
tiveness during fitting, the rates of S, O and D obtained
byH-HFPRgroup decision-making aremodified by the
predictive value of O.

Based on the above research, we can obtain a hybrid
FMEA method that can deal with ensemble heterogeneity.
Not only can it better resolve uncertainty in risk assessment
information, ambiguity and randomness through the high
inclusivity of H-HFPR but also has the ability to adjust
thresholds to make the risk ranking results more accurate and
reliable.

The rest of this paper is arranged as follows. In Section II,
some previous literature is reviewed. In Section III,
an overview of H-HFPR theory, group consensus theory,
multiplicative consistent theory, occurrence prediction theory
and FMEA calculation theory, is provided. In Section IV, the
proposed hybrid FMEA method is described in a step-by-
step manner. In Section V, the feasibility and practicability of
the hybrid FMEA method is verified by taking the ChengBei
oilfield subsea pipeline as an example. In Section VI, the
advancement and superiority of the hybrid method is verified
by comparison with other existing methods. In Section VII,
the conclusions of the entire study are drawn.

II. LITERATURE REVIEW
In this section, previous related studies will be reviewed.
In the first subsection, the research on hesitant fuzzy set the-
ory and HFPR theory is reviewed. In the second subsection,
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the research status of FMEA based on fuzzy sets, especially
the research results of HFPR theory to evaluate FMEA,
is summarized.

A. HESITANT FUZZY SET THEORY AND HFPR
GROUP DECISION THEORY
In 2010, V. Torra [16] first proposed the concept of a hesitant
fuzzy set, which is based on the concept of a hesitant fuzzy
number and fuzzy set: the set of a single evaluation value
is replaced by a set that contains all the evaluation values
that the evaluator thinks is possible. It was pointed out that
the hesitant fuzzy set method can better reduce the pressure
of the evaluator during an evaluation and can also capture
the evaluation information of the evaluator more completely.
Then, Zhu et al. [17] proposed double hesitant fuzzy sets;
Rodriguez et al. [18] proposed hesitant fuzzy linguistic sets.
Chen et al. [19] proposed the concept of interval-valued
hesitant fuzzy sets, which was extended in the paper. The
theory of hesitant preference relation defines interval-valued
hesitant fuzzy preference relations and applies it to group
decision-making examples. Therefore, the interval fuzzy
preference relationship and the intuition fuzzy preference
relationship became the research hotspots [20]. Decision-
making is never the responsibility of one person, especially
for large-scale projects or key products. Therefore, how
to perfectly integrate hesitant fuzzy set theory with group
decision-making has become one of the current research
directions.

The group decision theory of hesitant fuzzy preference
relation sets has been considered and studied by researchers.
Li et al. [21] provided advice for local government computer
network system procurement by applying the multiplica-
tive consistency theory of HFPR to group decision-making;
Meng et al. [22] proposed a transformation method to
deal with hesitant fuzzy preference relation group decision-
making; Lin et al. [23] solved the group consensus problem
by processing the multiplicative preference relationship and
improving the consistency of the hesitant multiplicative pref-
erence relationship through regression methods and feedback
mechanisms. In addition to multiplicative consistency, pro-
cessing group decision-making based on the triangular hes-
itant fuzzy preference relationship is also a current research
direction. Yan et al. [24] dealt with the group decision-making
problem of hesitant fuzzy preference relations through tri-
angular fuzzy theory; Qiu [25] established a set of hesitant
fuzzy preference relations by introducing triangular hesitant
fuzzy numbers and then dealt with the group decision-making
of multi-attribute fuzzy preference information questions.
At present, the mainstream research content has become the
study of semantic hesitant fuzzy preference relation group
decision-making. Ren et al. [26] proposed a group decision
consensus model with HFLPR based on mapping and mea-
suring the semantic modification degree of decision-makers;
Liu et al. [27] proposed a group decision consensus model
with HFLPR. They determined the complete HFLPR and the

additive consistent relationship by setting the algorithm and
model. Finally, a complete HFLPR group decision model
was constructed. In this paper, the theory of MC is expanded
to make it more suitable for the H-HFPR group decision
problem in the FMEA environment, and a newmodel suitable
for solving this kind of problem is established.

B. FMEA BASED ON FUZZY SETS
FMEA technology first appeared in the 1950s. It was not
until 1964 that the concept of FMEAwas gradually improved
through the theory of ’’Failure Mode Effects Analysis’’ pro-
posed by J. S. Cuntinbo. Due to its good functionality and
ease of use, FMEA technology has been gradually imple-
mented in military systems and civilian industrial fields
such as machinery, automobiles and medical equipment [28].
FMEA risk assessment is mainly related to the three param-
eters of severity S, occurrence rate O and detection rate D.
The most classic RPN calculation method is the simple mul-
tiplication of the S, O and D parameters. Because of the
limitations of this method, researchers have proposed various
methods to optimize the equation to improve the reliability of
the RPN. Liu et al. [29] proposed a hybrid method based on
fuzzy FMEA and VIKOR methods to evaluate different fail-
ure modes and determine the most important failure modes.
Mandal et al. [30] combined the similarity measure of fuzzy
numbers with possibility theory. The failure modes based
on similar risk values can be combined with the theory of
similar values to carry out FMEA risk analysis. Li et al. [31]
integrated rough set and cloud model theories to process
information and rank failure modes by extending TOPSIS.
Xiao et al. [32] proposed a risk ranking method through
the interval hesitant fuzzy interactive multi-criteria decision-
making (TPDIM) model, which combined subjective expert
weights and objective weights of risk factors to obtain com-
prehensive weights to optimize FMEA analysis.

In an actual FMEA assessment, the expert group is likely
to give information about the hesitant fuzzy preference rela-
tionship or the hesitant fuzzy semantic preference relation-
ship, which constitutes the HFPR group decision problem.
In recent years, researchers have gradually paid attention to
the optimization of the FMEA assessment method based on
HFPR information. Yu et al. [8] established a linguistic term
set through semantic triangular fuzzy numbers and the idea
of evaluating cloud models, established first- and second-
level factors for the S, O and D failure mode parameters,
and then decomposed the S, O and D parameters into mul-
tiple factors. The RPN is calculated for each factor for risk
assessment. Boral et al. [40] proposed an integrated inter-
val type-2 fuzzy set (IT2FS)-based MCDM framework to
deal with safety, economic sequence, occurrence and detec-
tion and calculated the weight of risk factors according to
IT2F-AHP to analyze the FMEA of CNC machine tools.
Hassan et al. [33] combined the significant advantages of
hybrid FMEA with the fuzzy rule base (FRB) and gray rela-
tionship theory (GRT) to evaluate the hazards and risks of
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off-road oil and gas pipeline failure modes. Wang et al. [34]
combined several multi-criteria decision-making (MCDM)
techniques with probabilistic hesitant fuzzy linguistic term
sets (PHFLTSs) to implement the risk assessment of failure
modes by a panel of specialists to overcome some defects
existing in conventional FMEA. At the same time, in order
to make better group decisions, reduce conflicts within the
group, and reach group consensus, Zhang et al. [35] proposed
an optimization-based consensus model with the minimum
adjustment distance to obtain the ordinal risk levels of failure
modes by inputting linguistic fuzzy evaluation sets of risk
assessment parameters for each failure mode from a group
of experts and used in regulating the risk analysis in proton
beam radiotherapy. Zhang et al. [36] construct the treatment
of incomplete linguistic information by minimizing the devi-
ation of opinions among members, and propose two different
consensus optimization models based on consensus maxima
and adjusted minima in order to speed up consensus reaching
and improve the consensus reaching accuracy. Tang et al. [37]
Optimization of the FMEA expert group decision model
based on group structure detection from mesoscale perspec-
tive and fairness-oriented consensus approach, and verifica-
tion of the accuracy of the method by risk evaluation of PV
system. Shi et al. [38] build a new FMEA assessment by com-
bining hesitant linguistic preference relations and an extended
dynamic consensus model. Arantes et al. [39] planned patient
management in the operating room of a Brazilian hospital
by building a consensus reaching model with a mixture of
Eliminate and select conversion trees and double hierarchy
hesitant fuzzy linguistic term sets, but the results were poor.

In summary, in many related studies, there are many meth-
ods to deal with hesitant fuzzy preference relation sets based
on consistency, but there are few studies on how to effectively
deal with fuzzy sets in advance. Most of the existing fuzzy set
preprocessing methods are based on regression or expected
value. First, the resulting value, when processed using these
methods, cannot effectively contain the original information
of the fuzzy set, and second, the possible consistency devi-
ation in the fuzzy set information cannot be calculated well.
Therefore, in this paper, dealing with fuzzy sets in advance by
using fuzzy set optimization is proposed.Moreover, in FMEA
optimization research, how to effectively correct the FMEA
results by using O predictors is one of the feasible research
directions. Therefore, on the basis of optimizing the multi-
plicative consistency process of the hesitant fuzzy preference
relation set, a method to modify FMEA results based on the
occurrence prediction value is studied in this paper, and its
availability is proven.

III. PRELIMINARIES
In this section, the basic theory that supports the optimization
algorithm proposed in the paper is summarized. The related
theory of H-HFPR, the basic theory of consistency-based
group consensus and the basic theory of how to predict the
failure rate are introduced.

A. HFPR THEORY
As the basic structure of H-HFPR, a hesitant fuzzy set is a
means to better read expert information. The definitions are
as follows.
Definition 1 [41]: Let X be the given domain of discourse;

then, H = {< x, hH (x) >} is a hesitant fuzzy set on
X , where hH (x) is a set composed of different numbers in
the interval [0, 1]. The possible membership degree of x
belonging to the set H : h = hH (x) = {γ |γ ∈ hH (x)} =
H{γ 1, γ 2, γ 3, . . . , γ l} is a hesitant fuzzy number, where
γ α ∈ [0, 1], α = 1, 2, . . . , l and l represents the number of
elements in the hesitant fuzzy number h.

To better solve the group decision problem, the preference
relationship is introduced. The main objective of this study
is H-HFPR. H-HFPR consist of four preference relation-
ships: HFPR, HFLPR, I-HFPR and I-HFLPR. The definitions
of HFPR and HFLPR are as defined in Definition 2 and
Definition 3:
Definition 2 [42], [43]: A set of schemes X is represented

by a matrix P to represent its hesitant fuzzy relation set, i.e.,
P = (Pij)n×n ⊂ X × X ,Pij ∈ [0, 1]. The elements in the
matrix satisfy complementarity, i.e., Pij = 1− Pji(∀i.j ∈ N ),
where Pij represents the preference of method i relative to j.
If Pij > 0.5, method i is superior to method j. If Pij = 0.5,
there is no difference between method i and method j.
Pij = {r

σ (l)
ij |l = 1, 2 . . . , #Pij}, where #Pij represents the

number of elements in Pij, and the following formula is
satisfied.

rσ (l)ij + r
σ (#pij−l+1)
ji = 1;

rij = {0.5}; #Pij = #Pji; i, j = 1, 2, . . . , n (1)

where rσ (l)ij represents the first element of Pij, r
σ (l)
ij ∈ [0, 1].

Definition 3 [44], [45]: Given a term set S in advance, the
term set-to-symbol representation is shown in Table 1. If a
scheme set X is represented by the matrix R:R = (Rij)n∗n ⊂
X ∗ X , the matrix element rij ∈ S in R represents the
preference strength that experts believe that option i is better
than option j, and the matrix elements satisfy complemen-
tarity, i.e., ⊕rijrji = S0,∀i.j ∈ N . Let Rij = {r

σ (l)
ij |l =

1, 2, . . . , #Rij}, where #Rij represents the linguistic item con-
tained in Rij. If i < j, then

rσ (l)ij ⊕ r
σ (#pij−l+1)
ji = S0; rii = {S0};

#Rij = #Rji; rσ (l)ij < rσ (l+1)ij ;

rσ (l)ji < rσ (l+1)ji (2)

In this study, the subscript symmetric linguistic term
set S = {Sα|α = −τ, . . . ,−1, 0, 1, . . . , τ } defined by
Reference [46], whereτ is a positive integer and S satisfies
Sα > Sβ (if α > β), is followed. There is a negative operator
Neg, and Neg(Sα) = S−α .
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Xu [44] defined the basic operation rules for two linguistic
words as follows:

sa ⊕ sβ = sa+β; sa ⊕ sβ = sβ ⊕ sa
λsa = sλa;
(λ1 + λ2)sa = λ1sa + λ2sa; λ, λ1, λ2 ≥ 0
λ(sa ⊕ sβ ) = λsa ⊕ λsβ

(3)

In this study, when dealing with HFPR and HFLPR,
MC and additive consistency (AC) theory are introduced to
solve the problem of consistency. The theoretical definitions
are as follows.

TABLE 1. Linguistic set S and symbolic expression examples.

Definition 4 [47]: Let H = (hij)n∗n be a HFPR.
If hikhkjhji = hkihjkhij (i, j, k = 1, 2, . . . , n), then H is said
to be a multiplicative consistent fuzzy preference relation.

Reference [48] set δ(hσ (l)ij ) as the exact number of the

processed hesitant fuzzy set and proposed δ(hσ (l)ij ) = h1ij or

h2ij or h
3
ij . . . or h

#hij
ij .

Reference [49] proposed an expectation (multiplicative)
consistency theory on the basis of Definition 4 to deal with
hesitant fuzzy sets. If e(hik )e(hkj)e(hji) = e(hki)e(hjk )e(hij)
(i, j, k = 1, 2, . . . , n), then H is expected to be (multiplica-
tive) consistent.

e(hij) =
ωi

ωi + ωj
, ∀i, h = 1, 2, . . . , n;

e(hij) = δ(h
σ (l)
ij ) =

ωi

ωi + ωj

= h1ij or h
2
ij or h

3
ij . . . or h

#hij
ij (4)

where ω = (ω1, ω2, . . . , ωn) is the weight vector of prefer-
ence matrix H , and

∑n
i=1 ωi = 1.

In most studies, the hesitant fuzzy set usually needs to be
preprocessed before processing the hesitant fuzzy preference
matrix based on MC theory; in other words, the hesitant
fuzzy set is replaced by some precise representative num-
ber. However, the existing studies usually use the method
based on expectation or regression to preprocess fuzzy sets,
which ignores the consistency deviation caused by hesitant
fuzzy sets. Therefore, in the fourth section, a new method to
obtain amore accurate deviation between the expert’s original
information is proposed, and it is made more consistent by

extending the scope of the multiplicative consistency applied
to the hesitant fuzzy set.

The Multiplicative Consistency theory is used in differ-
ent group decision environments to calculate the degree of
consistency of the experts in the HFPR matrix, and the
Additive Consistency theory is used to calculate the expert
coherence procedure in the HFLPRmatrix, where each expert
is assigned a weight according to the degree of coherence.
In this study, we propose a formula for converting HFLs
to HFs to better handle the heterogeneous group decision
environment, which requires a partial Additive Consistency
theory for the support, and the theory is defined as follows:
Definition 5 [45]: The HFLPR H = (hij)n∗n and its

normalized HFLPR H = (hij)n∗n are confirmed to be AC if
the following formula is satisfied.

h
σ (l)
ij = h

σ (l)
ik ⊕ h

σ (l)
kj ; (i, j, k = 1, 2 . . . , n; i 6= j 6= k)

(5)

The AC-HFLPR Ȟ = (h̃ij)n∗n can be determined by the
following formula:

h̃ij = ⊕
1
n

n∑
k=1

(hikhkj) (6)

AC calculation is generally based on the consistency index
of the HFLPR distance measurement, which is defined as
follows.
Definition 6 [50]: Suppose S is a semantic set with

length L(S) = T : S = {S
−
T−1
2
, . . . , S0, . . . , S T−1

2
}. Let

Sa, Sβ ∈ S; then, the distance between Sa and Sβ is defined
as d(Sa, Sβ ) =

|α−β|
T . Ifhα and hβ are fuzzy linguistic sets

and satisfy hα, hβ ∈ S, L(hα) = L(hβ ) =l, then the distance
between hα and hβ , denoted as d(hα, hβ ), is calculated by the
following formula.

d(hα, hβ ) =

∑l
i=1 |h

α
i − h

β
i |

l ∗ T
(7)

If Bα and Bβ are the hesitant fuzzy linguistic relationship
matrices, then the distance between Bα and Bβ : D(Bα,Bβ )
is calculated by the following formula.

D(Bα,Bβ ) =

√
2

n ∗ (n− 1)

∑n

i<j
(d((bNij )α, (b

N
ij )β ))

2

(8)

When solving the linguistic set distance problem, the
semantic quantity of the two sets needs to be equal.
Sometimes, the linguistic items contained in each element
in the hesitant fuzzy linguistic preference relation matrix
given by experts are not necessarily the same. Therefore,
we first need to process the linguistic entry. Reference [45]
proposed two normalization methods, α-normalization and
β-normalization. For two sets, α-normalization reduces a
fuzzy set of data with many elements to the minimum number
of elements between the two sets, and β-normalization adds
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to a fuzzy set of data with few elements to obtain the max-
imum number of elements between the two sets. There are
three ways to add elements to β-normalization, pessimistic,
optimistic, and average.

When experts give the HFPR matrix, sometimes the
I-HFPR matrix is given instead due to limited information
or other external reasons. The following are definitions of the
I-HFPR and I-HFLPR matrices.
Definition 7 [48]: Let X = {x1, x2, . . . , xn} be a fixed set.

I-HFPR on X are represented by matrix H = (hij)n×n ⊂
X × X . For all known HFEs, Hij = {γ lij|l = 1, 2, . . . , #hij},
where #hij is the number of values in hij, represents all pos-
sible values for the preference degree and should satisfy the
following conditions.

γ
σ (l)
ij + γ

σ (l)
ji = 1,

hii = {0.5}
#hij = #hji

(9)

I-HFPR allows single or multiple vacancies in H (undeter-
mined). There is a minimum acceptable situation for I-HFPR;
that is, at least one row and one column for determining
elements must be satisfied. An I-HFPR is an I-HFLPR when
HFEs are linguistic sets.

B. CONSISTENCY-BASED GROUP CONSENSUS THEORY
Expert group decision-making is a heterogeneous GDMdeci-
sion, which requires more reasonable attention to experts
who provide consistent information. Chiclana et al. [52]
introduced the induced importance ordered weighted average
(I-IOWA) operator to handle expert weights in complex envi-
ronments where it is difficult to characterize expert attitudes.
I-IOWA is defined as follows.
Definition 8 [53], [54]: Let α = (α1, α2, . . . , αn) is

an information vectors. Introduce an n-dimensional correla-
tion weighting vector ω = (ω1, ω2, . . . , ωn) and a set of
inducers u = (u1, u2, . . . , un). The IOWA operator of an
n-dimensional importance weight mapping Rn → R follows
the formula:

IOWA(< u1, a1 >,< u2, a2 >, . . . , < un, an >)

=

∑n

j=1
ωjbj (10)

where ωj ∈ [0, 1],
∑n

j=1 ωj = 1. The I-IOWA calculation is
based on pairing ui and ai, then sorting ai by ui, where bj is
the jth ai after sorting ai by ui. Reference [52] introduced the
regular increment operator (RIM) concept of the Q algorithm
into the group weight vector to make the individual weight
vector aggregated by the I-IOWA operator more reasonable:
Q(0) = 0; Q(1) = 1; Q(X ) > Q(Y ) if x > y.
The calculation of the individual weights in the group

follows the formula:

ωk = Q(
S(k)
S(n)

)− Q(
S(k − 1)
S(n)

) (11)

where S(k) =
∑k

l=1 uσ (l), uk is the importance of the k-th
expert. In HFPR group decision-making, σ (l) is the l-th value
of u after ranking the degree of consistency.

C. FAILURE RATE AND RELIABILITY CONVERSION THEORY
The failure rate O can be a time-based failure rate λ(t) or
a quantity-based failure rate λ(t). λ(t) is calculated by the
following formula:

λ(t) =
dr(t)

Ns(t) ∗ dt
(12)

where dr(t) is the number of faulty products within dt after
time t andNs(t) is the number of remaining products that have
not failed at time t .

The formula can be transformed as follows:

λ(t) =
dr(t)

Ns(t) ∗ dt
=

dr(t)
Ns(t) ∗ dt

∗
N0(t)
N0(t)

=
f (t)
R(t)

(13)

λ(t)dt = −
dR(t)
R(t)

→ R(t) = e−
∫ t
0 λ(t)dt (14)

where R(t) is the product reliability, f (t) is the failure density
function, andN0(t) is the number of products initiallyworked.
According to the above formula, the conversion relationship
between the failure rate O and the reliability is obtained.
Between them, if O is the time-based failure rate, Eq. (14)
can also be obtained by generalizing the number of products
to the time series.

IV. PROPOSED HYBRID FMEA METHOD
This section will describe in detail the implementation steps
for FMEA opyimization by building a hybrid algorithm based
on the group decision method MC processing H-HFPR for
O predictable failure modes will be described in detail. The
method proposed in this paper is divided into five key steps.
First, the FMEA expert group is required to determine the
failure mode and risk factors for the project product. Second,
the expert group is required to establish HFPR for the S,
O, D parameter preference relationship under each failure
mode and the possible scores of the S, O, D parameters to
establish HFPR. In the third step, the level of consistency and
weighting of each expert is determined based on the MC and
I-IOWA operator. Next, by establishing a group consensus,
the weights and the possible scores of the three parameters S,
O, and D under the failure mode are obtained. Final param-
eters scores can be determined according to the weights.
Lastly, based on the predicted value of O, the final score of
the three parameters is adjusted to calculate the risk priority
number of the failure mode. After the risk priority number of
each failure mode is determined by the same method, each
failure mode can be prioritized.

Fig. 1 shows a flow chart of the steps for the hybrid
FMEA.

Suppose a product has n failure modes, which are denoted
as FM = {fm1, fm2, fm3, . . . , fmn}. An introduction to
the computational stages of product risk assessment via
the hybrid algorithm proposed in this paper is provided
below.
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FIGURE 1. Workflow of Hybrid FMEA.

A. STEP I: DETERMINE THE H-HFPR MATRIX FOR FMEA
In this paper, failure mode risk assessment occurs primarily
through the determination of the weights and scores for the
three parameters S, O and D as well as the mixed evaluation
based on the predictable nature of the occurrence rate O.
Therefore, a preference relation matrix that evaluates the S,
O and D weights is first determined. The preference relation
matrix is shown in Table 1, where hij(i, j = 1, 2, 3) is the
hesitant fuzzy preference set or the exact value.

It is often difficult to directly give exact S, O and D scores.
As a result, the project team needs to establish a possible score
set from 1-9 points through experience and historical data
and then use this set as the evaluation element of the HFPR
matrix. Each score in the score set is determined a weight
based on the HFPR group decision, and the final score can be
determined by a simple weighted summation. The score can
be determined according to the S, O and D score table given
in the new version of the FMEA handbook [55].

B. STEP II: DETERMINE THE CONSISTENCY LEVEL CL
FOR EACH EXPERT AND THE WEIGHT OF THE
EVALUATION METRICS
The determination of the expert level can be assessed
by the consistency level (CL) [56]. In actual decision-
making, it is difficult for experts in heterogeneous group
decision-making environments to provide completely consis-
tent HFPR. Experts who were able to provide more consistent
responseswere considered to have a higher professional level.
As a result, the group decision-making weights will be corre-
spondingly higher, which represents a positive correlation.

From the previous theories, the decision-making of HFPR
can be handled by MC theory; the decision-making of
HFLPR can be handled byAC theory. However, in a heteroge-
neous group decision-making environment, if the processing
method is different, the evaluation results of expert who give
HFPR and those who give HFLPR will be different, which
will cause the calculated expert weights to deviate from the
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TABLE 2. HFPR matrix for determining S, O, and D weights.

actual weights. Therefore, in order to establish weights in a
heterogeneous environments, MC is theoretically extended to
solve the HFLPR problem. It is also extended to the hetero-
geneous group decision-making environment with I-HFPR.

The processing flow chart of H-HFPR is shown in the
Fig. 2.

It can be seen from Fig. 2 that the processing is slightly
different for different evaluation forms in heterogeneous envi-
ronments, and processing methods and model construction
for different evaluation forms are described in detail below.

1) HESITANT FUZZY PREFERENCE RELATIONSHIP
According to Definition 4 and Eq. (3), in the existing
research [57], the MC formula δ(hσ (l)ij ) = wi

wi+wj
is trans-

formed to obtain the following formula:

(δ(hσ (l)ij )− 1)wi + δ(h
σ (l)
ij )wj = 0 (15)

Set zσ (l)ij ∈ (0, 1), let δ(hσ (l)ij ) = zσ (l)ij hσ (l)ij . Then, a model
is directly built for the preprocessed preference relationship
matrix, and the total deviation value is calculated by setting
the positive and negative operators d+ij and d−ij . Throughthe
aforementioned study, it was found that the expected (multi-
plicative) consistency theory for HFPR did not calculate the
bias of dealing with hesitant fuzzy sets into the consistency
level CL, so we extended it further on the basis of Song’s
research.

To obtain the bias of processing fuzzy sets, we treat the
fuzzy set as an interval. The theoretical construction of
δ(hσ (l)ij ) in Extended Definition 4 is as follows:

δ(hσ (l)ij ) =
ωi

ωi + ωj
= hσ (l)ij , hσ (l)ij ∈ [h1ij, h

#hij
ij ];

hσ (l)ij = z1ijh
1
ij + z

2
ijh

2
ij + . . .+ z

#hij
ij h

#hij
ij

(z1ij, z
2
ij, . . . , z

#hij
ij ∈ [0, 1],

∑#hij

m=1
zmij = 1)

(16)

After processing hδ(l)ij ,H δ remains consistent with the defi-
nition of HFPR,where hij = {r lij|l = 1, 2, . . . , #hij}, as shown
in the following proof.

Proof 1: Let #hij = #hji, r lij = 1− r lji;

FIGURE 2. Processing flow chart of H-HFPR.

then:

hδ(l)ij = z1ijh
1
ij + z

2
ijh

2
ij + . . .+ z

#hij
ij h

#hij
ij

= z1ij(1− h
1
ji)+ z

2
ij(1− h

2
ji)+ . . .+ z

#hij
ij (1− h

#hij
ji )

= 1− z1ijh
1
ji − z

2
ijh

2
ji − . . .− z

#hij
ij h

#hij
ji

= 1− hδ(l)ji

where H δ is the fuzzy preference relation.
Next, Eq. (15) is further treated using Eq. (16). To deter-

mine the optimal weight vectorω = {ω1, ω2, . . . , ωn} closest
to the expert information through the preference relation-
ship, the maximum deviation value of Eq. (15) needs to
be minimized, so the following mathematical model can be
established:

min f =
∑ n∗(n−1)

2

m=1
Dm

s.t.



(
#hij∑
l=1

(zlijh
l
ij)− 1)ωi + (

#hij∑
l=1

(zlijh
l
ij))ωj − Dm ≤ 0,

(1−
#hij∑
l=1

(zlijh
l
ij))ωi − (

#hij∑
l=1

(zlijh
l
ij))ωj − Dm ≤ 0

n∑
i=1

ωi = 1,

#hij∑
l=1

zlij = 1,

zlij ∈ [0, 1],

ωi > 0,
i, j ⊆ {1, 2, . . . , n},
i < j.

(17)

where Dm represents the deviation value of the m-th element
of the triangular part on the hesitant fuzzy preference relation

cl(H ) = 1−
2(f +

∑n
i=1

∑n
j>imin{|

∑#hij
l=1 z

l
ij ∗ h

l
ij − h

m
ij ||m = 1, 2, . . . , #hij})

n ∗ (n− 1)
(18)
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set matrix. zlij is the weight value of element hlij in the hesitant
fuzzy set hij. Here, with the idea of assuming that the fuzzy set
is an interval number, to optimise the fuzzy set, the variable
zlij is added to determine the optimal representative number
of the hesitant fuzzy set hij. The consistency level cl(H)
contains the matrix deviation f and the deviation between the
initial fuzzy set and the final value after multiplicative con-
sistency processing because the mathematical programming
also addresses fuzzy sets. Therefore, the formula for cl(H) is
as in (8), shown at the bottom of the previous page.

2) HESITANT FUZZY LINGUISTIC PREFERENCE
RELATIONSHIP
Reference [51] explored the scheme of additive consistent
processing of HFLPR. However, when there are HFPR in
group decision-making, if different methods are used to pro-
cess HFLPR and HFPR, obviously, it will lead to deviation
in the results. Therefore, the HFLPR are addressed to make
them applicable to the mathematical model built in this paper
based on the extendedMC theory to solve the H-HFPR group
decision-making problem.

Eq. (3) gives the basic rules for operations between lin-
guistic words. According to the rules, we found that HFLPR
can show similar properties to HFPR by some processing of
linguistic word sets. Let H = (hij)n∗n be a given HFLPR
matrix and S = {S

−
T−1
2
, . . . , S0, . . . , S T−1

2
} be its linguistic

term set; then, the processing formula is as follows:

ȟmij =
hmij ⊕

(T−1)
2

T − 1
(19)

At this point, S0 becomes S0.5, S− T−1
2
= S0, and S T−1

2
= S1.

According to the rules of Eq. (3), it is consistent with
the HFPR definition and can be used to solve for CL and

metric weight through multiplicative consistency in the addi-
tive computing environment. Eqs. (15)-(16) become the fol-
lowing formulas:

(δ(hσ (l)ij )− 1)ωi ⊕ δ(h
σ (l)
ij )ωj = 0,

hσ (l)ij ∈ [h1ij, h
#hij
ij ];

hσ (l)ij = z1ijh
1
ij ⊕ z

2
ijh

2
ij ⊕ . . .⊕ z

#hij
ij h

#hij
ij ,

(z1ij, z
2
ij, . . . , z

#hij
ij ∈ [0, 1],

∑#hij

m=1
zmij = 1)

(20)

Next, the HFLPR can be solved by the MC mathematical
programming proposed in Eq. (17) and the expert CL and the
metric weight vector ω can be obtained.

3) INCOMPLETE - HESITANT FUZZY PREFERENCE
RELATIONSHIP AND INCOMPLETE - HESITANT FUZZY
LINGUISTIC PREFERENCE RELATIONSHIP
For acceptable I-HFPR and I-HFLPR, receiving incomplete
information may result in a deviation from the information
that the expert wants to provide. Based on this, the ‘‘soft
consistency’’ theory [60], [61] is proposed to represent
approximate consistency. Correspondingly, to make the
calculation results closer to the original information of
experts, the maximum deviation in the preference matrix is
transformed into the multiplicative consistency matrix and
becomes the expert’s deviation value, not the average value
as shown in Eq. (18). After processing the I-HFLPRs through
Eq. (19), following mathematical model (Eq. (22)) is pro-
posed in this paper to solve the cl(H) of the H-HFPR group
decision problem under incomplete conditions, (21) and (22),
as shown at the bottom of the page, where b is the number of
incomplete elements in the matrix. By solving the obtained

min f = ξ

s.t.



(
#hij∑
l=1

(zlijh
l
ij)− 1)ωi + (

#hij∑
l=1

(zlijh
l
ij))ωj − ξ ≤ 0

(1−
#hij∑
l=1

(zlijh
l
ij))ωi − (

#hij∑
l=1

(zlijh
l
ij))ωj − ξ ≤ 0

n∑
i=1

ωi = 1,

#hij∑
l=1

zlij = 1,

zlij ∈ [0, 1],

ωi > 0,
i, j ⊆ {1, 2, . . . , n},
i < j.

(21)

cl(H ) = 1− ξ −
2(
∑n

i=1
∑m

j=i+1min{|δ(hij)− hlij||l = 1, 2, . . . , #hij})

n(n− 1)− b
(22)
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weight vector ω, the ambiguous elements in the I-HFPR can
be solved by using Eq. (16).

C. STEP 3: ESTABLISH A GROUP CONSENSUS OF H-HFPR
AND DETERMINE THE FINAL WEIGHT
The idea for the I-IOWA algorithm is given in Definition 8.
Reference [58] proposed the following application for calcu-
late priority weight of the group.

Suppose the HFPR of m experts are obtained: H e(k)
=

(hij)
e(k)
n∗n (k = 1, 2, . . . ,m). Let ωe(k) = (ωe(k)1 , ω

e(k)
2 , . . . ,

ω
e(k)
n )T (k = 1, 2, . . . ,m) be the individual priority

weight vector according to proposed IOWA-based opera-
tor aggregation. The group priority weight vector ωc =
(ωc1, ω

c
2, . . . , ω

c
n)
T is obtained, where n is the number of

metrics, m is the number of experts, e(k) represents the kth
expert, and c represents the group. The formula is as follows:

ωci = IOWAQc (ω
e(1)
i , ω

e(2)
i , . . . , ω

e(m)
i )

= ϕω(<cl1, ω
e(1)
i >,<cl2, ωe(2)i >, . . . , <clm, ωe(m)i >)

=

∑m

γ=1
λγ ∗ ω

e(m)
i (23)

where λ is calculated by Eq. (11). S(k) =
∑k

l=1 cl
σ (l), clσ (l)

is the lth largest value in {cl1, cl2, . . . , clk}. The ability of
the expert is positively correlated with the consistency level
given by the expert. At this time, Q(x) should represent the
regular increasing monotonic RIM quantifier.

Reference [52] provided the Q(x) function under RIM as
follows:

Q(x) = xλ or Q(x) = 1− (1− x)λ (24)

Q(x) is used to express whether the consistency level can
meet the conceptual degree of expert linguistic quantifiers.
Reference [59] studied the results caused by the value of λ.
Generally, λ is set as 0.9.
After determining the group weightωc= (ω1

c , ω
2
c , . . . , ω

m
c )

of each expert, calculate the priority weight vector ωc and
group decision matrix H c

= (hij)cn∗n of each expert group by
using the following formulas:

ωci =
∑m

k=1
ω
e(k)
i ωkc (25)

hcij =
∑m

k=1
ω
e(k)
i hkij (26)

where hkij is an exact value that is the representative number of
hesitant fuzzy sets determined by Eq. (17). At this time, the
individual priority weight ω(k) and the group priority weight
ωc have been obtained, so the group consensus degree (GCD)
of each expert can be determined by the following formula:

GCD(e(k)) = 1−

√√√√1
n

n∑
i=1

(
ω
e(k)
i − ωci

)2
(27)

Eq. (27) is used to determine the group consensus level for
group decision-making for complete HFPR. Then, the aver-
age consistency degree of the expert group can be solved by

the following formula:

GCL =

∑m
k=1GCD(e(k))

m
(28)

If GCL=1, then all experts agree with the group.
In addition, the GCD can be calculated based on the

de-fuzzy evaluation matrix in addition to the metric weights.
Assume that there are m experts’ preference matrices:

H k
= (hij)kn∗n(k = 1, 2, . . . ,m). The group decision matrix

H c
= (hij)cn∗n can be solved by Eq. (26) after the weight

vector ω = (ω(1), ω(2), . . . , ω(m)) is determined by Eq. (21).
Because the initial information of I-HFPR is incomplete, the
indexweight based on soft consistency cannot define the orig-
inal information of experts well. Therefore, the expert group
consensus is determined by the distance between the com-
pleted scoring matrix H k and the group decision matrix H c;
that is, the calculation of GCD is shown in following formula:

GCD(e(k))

= 1−
2

n ∗ (n− 1)

∑n

i=1

∑n

j=i+1
|he(k)ij − h

c
ij| (29)

A comparison is made with the group consensus threshold
GCD set by the project team. If GCD(e(k)) < GCD, feedback
adjustment is needed.

Reference [12] provided a method based on an interaction
mechanism. According to the different representations of
preference structures, we propose modifications to the expert
preference matrix with the smallest GCD, which is only
suitable for AC environments. To solve the group decision
problem of solving H-HFPR through MC, the interaction
mechanism method is partially modified in this paper. The
modified method is as follows:

First, determine where each expert needs to adjust p(t)ij,k :

p(t)ij,k = max(i,j)|h
(t)
ij,k − h

(t)
ij,c| (30)

Next, according to the following relationship feedback to
the expert to modify the elements of p(t)ij,k , and according to
the conditions that H = (hij)n∗n was HFPR and L = (lij)n∗n
was HFLPR,
HFPR:

h(t)ij,k ∈ [min{h(t)ij,k , h
(t)
ij,c},max{h(t)ij,k , h

(t)
ij,c}];

h(t)ji,k = 1− h(t)ij,k ; (i < j) (31)

HFLPR:

l(t)ij,k ≤ l
(#l(t)ij,k )
ij,k ≤ h(t)ij,c, (l(t)ij,k < h(t)ij,c), (i < j);

h(t)ij,c ≥ l
(#l(t)ij,k )
ij,k ≥ l(t)ij,k , (l(t)ij,k > h(t)ij,c), (i < j) (32)

These calculations need to be recalculated from the beginning
of step 1 after the expert modifies the original preference
matrix. Iterations continued until GCD ≥ GCD.
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D. STEP 4: SOLVING FOR OCCURRENCE
PREDICTABLE RPN VALUES
We obtain the parameter weight SW ,OW ,DW and score
Sv,Ov,Dv of the failure mode as well as the consistent level
CLe(k)S , CLe(k)O , CLe(k)D and group consensus GCLS , GCLO,
GCLD of each expert when scoring.
To solve the conservative or radical problems that

may arise among experts when building group consensus,
an expected value O is established through the occurrence
prediction value Opre and the expert rating value Ov to obtain
a more objective evaluation result. At the same time, based
on this Ov, Sv and Dv are adjusted.
Based on the consensus loss information and Bayesian

decision theory, the results of a group consensus are usually
affected by the group influence of the decision-maker group
itself, the scope brought about by the problem orientation and
the relationship and exchange of opinions among decision-
makers [62], [63], [64]. In our view, scores from the same
group of experts on all three parameters under the same
failure mode (same scope definition) are always positively
correlated; that is, their scores for S and D will be too con-
servative or radical if the scores of the expert group for O are
also too conservative or radical.

First,O is solved by themean formula:O = Opre+Ov
2 . At the

same time, the adjustment value of O can be obtained: Odv =
O − Ov. Then, Sv and Dv are optimized and adjusted by the
following method.

Next, we need to solve the group offset level (GOL). It is
know that all three metrics are scored by the same group
of experts, the original HFPR have more or less deviation
from the multiplicative consistent HFPR due to the problem
of expert ability or subjective factors, which will lead to a
certain offset between the final result and the ability of the
expert group itself. Therefore, GOL is related to the consistent
level CL and the group consensus degree GCL, which can be
solved by the following formula:

GOLi =

∑m
k=1 (1− cle(k)i )

m∗GCLi
(33)

where GOLi is the group offset level of the HFPR group deci-
sion for metric i and m is the number of experts. From this,
the adjustment values Sdv and Ddv of Sv and Dv, respectively,
for group decision-making can be derived as follows:

Sdv GOLS = OdvGOLO = DdvGOLD

⇒ Sdv =
OdvGOLO
GOLS

; Ddv =
OdvGOLO
GOLD

⇒ Sdv =

(O− OV )GCLS
m∑
k=1

(1− cle(k)O )

GCLO ∗
m∑
k=1

(1− cle(k)S )

Ddv =

(O− OV )GCLD
m∑
k=1

(1− cle(k)O )

GCLO
m∑
k=1

(1− cle(k)D )
(34)

In actual work, the weight of S is likely to exceed the
weight of O too much. Similarly, for certain failure modes,
the weight of D may also account for the highest proportion.
This may cause our adjustment of S and D to result in a high
variance in the resulting value of the final RPN. Therefore,
a cautious parameter γI→O is set in this paper for tuning
values here if SW > OW or DW > OW :

γI→O =
OW
IW

(I is S or D) (35)

Eq. (34) becomes the following:

Sdv =

εS→O(O− OV )GCLS
m∑
k=1

(1− cle(k)O )

GCLO
m∑
k=1

(1− cle(k)S )
;

Ddv =

εD→O(O− OV )GCLD
m∑
k=1

(1− cle(k)O )

GCLO
m∑
k=1

(1− cle(k)D )
; (36)

Finally, after modifying Sdv and Ddv , the risk of each failure
mode can be quantitatively evaluated and ranked by solving

the risk priority number R̃PN through the following formula:

R̃PN = SωSv + OωOv + DωDv (37)

The improved risk priority number R̃PN is prioritized.

At this time, the larger the R̃PN , the higher the priority of
the failure mode, the greater the harm, and the greater the
number of improvement measures and attention that needs
to be paid. When a failure mode with a large hazard cannot
be eliminated, its hazard degree must be reduced as much
as possible from the aspects of design, use and maintenance.
Then, the product is reevaluated.

V. APPLICATION OF METHODOLOGY: CASE STUDY
In this section, a case of failure risk assessment for oil and
gas pipeline systems in Chengbei Oilfield, Bohai Sea, is pre-
sented. The failure risk of the oil and gas pipeline system will
be evaluated through the optimization algorithm proposed in
this paper, which will serve as a reference for improving the
safety factor of the oil and gas pipeline system and at the same
time proving the feasibility and effectivency of the method.

The Bohai Oilfield is the largest offshore oilfield in China
and the second largest crude oil production base in the coun-
try. The total oilfield resources are approximately 12 billion
cubic meters. Its geologic reservoirs are characterized by bro-
ken structures, developed fractures and complex reservoirs.
The Chengbei Oilfield is one of the Bohai Oilfields. The
reservoirs in the oilfield are sedimentary facies of discrim-
inative river delta facies, and the sedimentary structure has
an obvious vertical positive rhythm [65]. The oilfield system
consists of three platforms, namely, the wellhead platform in
area A, the wellhead platform in area B, and the comprehen-
sive processing platform [66]. Their geographic locations are
shown in Fig. 3.
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FIGURE 3. Illustration of the Chenbei oilfield in the Bohai Sea.

The oilfield has an average water depth of 15.8 m and
the three platforms are connected by submarine pipelines,
including an oil-gas-water mixing pipeline, a water injection
pipeline and a submarine cable. The submarine pipeline is
divided into a horizontal pipe section and riser section, with
a total length of 1.64 km and a wall thickness of 9.5 mm.
The pipe is covered with a 50 mm-thick rock wool insulation
layer, and the outer wall has a 3.2 mm-thick polyethylene
layer. The historical operating conditions of the pipeline are
as follows: an inlet pressure of 0.15 MPa, an inlet temper-
ature of 95 ◦C, hoop stress of 3 MPa, total axial stress of
204 MPa, equivalent stress of 203 MPa and allowable stress
of 197 MPa [67].

In order to conduct a risk assessment of the oil-gas-water
mixing pipeline at Chengbei Oilfield, 4 reliability engineers
were specially invited to form an FMEA team. The team
evaluated the pipeline environmental conditions, operating
status, basic parameters, and historical operating information
in order to analyze the potential risk of pipeline failure and
determine the failuremode. Based on the database statistics of
OGP [68], the analysis results of references [69], [70] and the
combined experience of the FMEA team members, the seven
typical types of oil and gas pipeline systems in the Chengbei
Oilfield were assessed according to the causes of submarine
pipeline failure, including corrosion (FM1), suspended span
(FM2), external loads (FM3), natural disasters (FM4), mate-
rial defects (FM5), weld defects (FM6) and auxiliary failures
(FM7). The expert group set the group consensus threshold
at 90% through discussion.

A. DETERMINING THE H-HFPR MATRIX
For seven typical failure modes, the expert FMEA group was
invited to establish an HFPR matrix of S, O, and D metrics
and to establish an HFPR matrix for each metric score set
under the failuremode. The experts were allowed to use either
HFPR, HFLPR, I-HFPR or I-HFLPR.

The term set of HFLPR is shown in Table 1, and the HFPR
set of FM1 and FM2 from all experts is given in Table 3.1

At the same time, after the reliability of each unit was
predicted, the project team estimated the occurrence rate O
of seven failure modes according to the failure rate of other
submarine pipeline products that are similar to the product
and have historical data, as shown in Table 4.

The seven typical failure modes of oil field pipelines were
evaluated and ranked by the optimization method proposed
in the fourth section of this paper. Using expert-provided
HFPR, we found that, for FM1, experts 1 and 4 provided
HFPR matrices, and experts 2 and 3 used HFLPR matrices.
For FM2, Expert 1 and Expert 4 gave the I-HFPR matrix,
and Expert 2 and Expert 3 used the I-HFLPR matrix. There-
fore, the risk assessment of FM1 and FM2 are taken as
an example in this section to give the detailed calculation
process.

B. DETERMINING EXPERT CL AND METRIC WEIGHTS
FM1 and FM2 are both H-HFPR group decision problems,
so the HFLPR matrices for FM1 and FM2 need to be pro-
cessed by using Eq. (19). Some of the processing results are
shown in Table 5.2

Next, each HFPR is solved by using Eq. (17). For exam-
ple, the following mathematical model (Eq. (38)) can be
established for the HFPR of the three metrics of FM1 for
Expert 1.

min f =
∑3

m=1
Dm

s.t.



((0.6z112 + 0.7z212)− 1) ∗ ω1 + (0.6z112 + 0.7z212)ω2

−D1 ≤ 0,
(1− (0.6z112 + 0.7z212)) ∗ ω1 − (0.6z112 + 0.7z212)ω2

−D1 ≤ 0,
((0.4z123 + 0.5z223)− 1) ∗ ω2 + (0.4z123 + 0.5z223)ω3

−D3 ≤ 0,
(1− (0.4z123 + 0.5z223)) ∗ ω2 − (0.4z123 + 0.5z223)ω3

−D3 ≤ 0,
−0.2ω1 + 0.8ω3 − D2 ≤ 0,
0.2ω1 − 0.8ω3 − D2 ≤ 0,
3∑
i=1

ωi = 1,

z112 + z
2
12 = 1, z123 + z

2
23 = 1,

z112, z
2
12, z

1
23, z

2
23 ∈ [0, 1],

ω1, ω2, ω3 > 0
(38)

Using the LINGO 18.0 software to solve the mathemat-
ical model in Eq. (38), the metric weight ωe(1)

fm1 = {SW,
OW, DW} = {0.600, 0.200, 0.200} can be solved. The fuzzy

1The evaluation matrix for all failure modes is in Table 1 of the Appendix.
2The results of all treatments are shown in Appendix Table 2.
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TABLE 3. FM1 and FM2 Evaluation results of the four experts.

TABLE 4. Predicted O values for the seven failure modes.

TABLE 5. Preprocessed HFLPR.

set processing parameters {z112, z
2
12, z

1
23, z

2
23} = {0.000,

1.000, 0.000, 1.000} and total offset Fe(1)fm1 = 0.04 are
obtained, and consistency level CLe(1)

fm1,sod = 0.987 can be
obtained by using Eq. (18).

The I-HFPR matrix proposed by Expert 2 for the severity
S score of FM2 can be solved by using Eq. (21) to establish

the following model.

min f = ζ

s.t.



((0.39z113 + 0.5z213)− 1)ω1 + (0.39z113 + 0.5z213)
×ω3 − ζ ≤ 0,

(1− (0.39z113 + 0.5z213))ω1 − (0.39z113 + 0.5z213)
×ω3 − ζ ≤ 0,

((0.06z124 + 0.17z224)− 1)ω2 + (0.06z124 + 0.17z224)
×ω4 − ζ ≤ 0,

(1−(0.06z124+0.17z
2
24)) ∗ ω2−(0.06z124 + 0.17z224)

×ω4 − ζ ≤ 0,
−0.72ω1 + 0.28ω4 − ζ ≤ 0,
0.72ω1 − 0.28ω4 − ζ ≤ 0,
−0.72ω3 + 0.28ω4 − ζ ≤ 0,
0.72ω3 − 0.28ω4 − ζ ≤ 0,
4∑
i=1

ωi = 1,

z113 + z
2
13 = 1, z124 + z

2
24 = 1,

z112, z
2
12, z

1
23, z

2
23 ∈ [0, 1],

ω1, ω2, ω3 > 0
(39)
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TABLE 6. Consistency level CL and metric weight before establishing a group consensus.

The weights of the ratings {4, 5, 6, 7} are obtained for S:
ω
e(2)
fm2,S = {0.163, 0.253, 0.164, 0.420}, fuzzy set processing

parameters {z112, z
2
12, z

1
23, z

2
23}={0.000, 1.000, 1.000, 0.000},

minimum offset ζ e(2)fm2,S = 0.83× 10−7 and consistency level

cle(2)fm2,S = 1−ζ e(2)fm2,S . The uncertain element is solved by used
Eq. (16), and the results are h12 = 0.163

0.163+0.253 = 0.391, h21 =
0.609, h23 = 0.607, h32 = 0.393.
At this time, the consistency level CL and metric weight

of all experts in FM1 and FM2 before the establishment of a
group consensus is obtained, as shown in Table 6.

C. DETERMINE GROUP CONSENSUS
The HFPR matrix CL given by the four experts for
three-metric FM1 is as follows:

CLe(1)fm1,sod = 0.987, CLe(2)fm1,sod = 0.991, CLe(3)fm1,sod =

0.989, and CLe(4)fm1,sod = 0.992.

Using Eq. (24), λ = 0.9 [12]; then,

CLe(4)fm1,sod > CLe(2)fm1,sod > CLe(3)fm1,sod > CLe(1)fm1,sod

The following formulas are calculated:
ω
e(4)
fm1,sod = Q( 0.992

4∑
i=1

CLe(i)fm1,sod

) = 0.288;

ω
e(2)
fm1,sod = Q( 0.992+0.9914∑

i=1
CLe(i)fm1,sod

)−Q( 0.992
4∑
i=1

CLe(i)fm1,sod

)0.288 = 0.249;

ω
e(3)
fm1,sod = Q( 0.992+0.991+0.9894∑

i=1
CLe(i)fm1,sod

)−Q( 0.992+0.9914∑
i=1

CLe(i)fm1,sod

) = 0.236;

ω
e(1)
fm1,sod = 0.227.

Then, the weight vector of each expert for the S, O, D
weights is obtained:

{e1, e2, e3, e4} = {0.227, 0.249., 0.236, 0.288}

Next, the relative weights of the S, O, and D metrics of the
group can be obtained by using Eq. (25):

ωcfm1,sod = {0.6476, 0.1972, 0.1552}

Then, the GCD of each expert can be obtained by using
Eq. (27):

GCDe(1)
fm1,sod = 0.9612, GCDe(2)

fm1,sod = 0.9812,

GCDe(3)
fm1,sod = 0.9420, and GCDe(4)

fm1,sod = 0.9343.
The GCD of each expert is greater than the threshold of

0.9, so the relevant weight of the metric is ωcfm1,sod.
For group decision-making of the FM1 S-score HFPR,

GCDe(1)
fm1,S = 0.849, GCDe(2)

fm1,S = 0.787, GCDe(3)
fm1,S = 0.697,

and GCDe(4)
fm1,S = 0.929. It was found that except for Expert 4,

theGCDwas less than the initial set threshold. The preference
matrix for Expert 1, Expert 2 and Expert 3 needs to be
adjusted. The group consensus HFPR matrix of the FM1
S-score is shown in Table 7.

TABLE 7. Group consensus HFPR matrix of the FM1 S-score.

The modified positions of Expert 1, Expert 2 and Expert 3
are found through Eq. (30). The modified positions are h2,3,
h1,2 and h1,3, and the modification interval for each expert
is found by Eqs. (31)-(32). The results show that this inter-
val is [0.3, 0.593] for Expert 1, [0.17, 0.491] for Expert 2,
and [0.491, 0.83] for Expert 3. After expert consideration,
Expert 1 changed h2,3 to 0.55, Expert 2 changed h1,2 to 0.45,
and Expert 3 changed h1,3 to 0.5. The HFPR matrix of the
four experts is recalculated. Then,

ω
e(1)
fm1,S = {0.355, 0.355, 0.290},CL

e(1)
fm1,S = 0.968;

ω
e(2)
fm1,S = {0.383, 0.468, 0.149},CL

e(2)
fm1,S = 0.951;

ω
e(3)
fm1,S = {0.474, 0.474, 0.052},CL

e(3)
fm1,S = 0.969;

ω
e(4)
fm1,S = {0.342, 0.512, 0.146},CL

e(4)
fm1,S = 0.984.

The weight of each expert is obtained as ω{e1,e2,e3,e4}fm1,S =

{0.291, 0.249, 0.279, 0.181}, and the weight of each metric
is ωcfm1,S = {0.393, 0.445, 0.162}.

The GCD are GCDe(1)
fm1,S = 0.907, GCDe(2)

fm1,S = 0.983,

GCDe(3)
fm1,S = 0.919, and GCDe(4)

fm1,S = 0.950.
The group consensus of the four experts is greater

than N , which meets the standard. The final S-score is
Sfm1 = ω

c
fm1,S × [5, 4, 3]T = 4.231.

D. MODIFIED SCORES BASED ON
OCCURRENCE PREDICTIONS
The above method is repeated to obtain the other results,
which are Ofm1 = 4.306 and Dfm1 = 3.411. It can be seen
from Table 4 that Opre

FM1 = 4. Therefore, it is believed that the
evaluation of FM1 by the expert group is radical. The group
offset level of FM1 can be obtained by Eq.(33):
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GOLfm1,S = 0.034, GOLfm1,O = 0.016, GOLfm1,D =

0.035.
The cautious parameter can be obatined by Eq.(35):

εS→O = 0.333. Then, Odv = −0.153, S
d
v = −0.022, and

Ddv = −0.07 can be calculated by using Eq. (36). Therefore,
the final scores are
Dfm1 = 3.341, Sfm1 = 4.209, Ofm1 = 4.153, and

R̃PN fm1 = ω
c
fm1,sod × [Sfm1,Ofm1,Dfm1]T = 4.063.

In the risk assessment of FM2, the ωe(2)fm2,S determined in
Section V-B needs to be iteratively calculated because the
group consensus is not met. At this time, the weights deter-
mined by the experts who changed the matrix have changed:
ω
e(2)
fm2,S = {0.154, 0.097, 0.154, 0.595}. However, the original

matrix should remain unchanged except for the part to be
modified in the calculation.

After the group consensus has been established in FM1
and FM2, the above steps are repeated to obtain the experts’
weights, the group weight, the metrics weight given by each
expert, the final CL, and the GCL, as shown in Table 8.3

Further determination of the three-parameter scores for the
remaining six remaining failure modes FM2, . . . ,FM7 and

the final R̃PN fm2 . . . , R̃PN fm7 scores, respectively, can be
made, as shown in Table 9. Finally, according to Table 4,
a determination is made on whether there is a conservative
scoring situation in the expert group, and the score and the
final score are further modified, as shown in Table 10.

VI. VALIDATION AND DISCUSSION
A. RESULT ANALYSIS
The seven failure modes can be ranked from the final R̃PN
of each failure mode calculated in Section V: FM5> FM7>
FM6> FM2> FM1> FM3> FM4. Based on the ranking
results of the seven failure modes according to the method
proposed in this study, this allows the project team to further
determine the improvement needs of the project and to imple-
ment stricter measures and supervision for the failure modes
with high severity. Appropriate control measures are also
taken for other less critical failuremodes in order tomaximize
the reliability of the project based on cost savings. FM5, for
example, has the highest risk priority. It has low detection
efficiency, while its severity and frequency are moderately
high. Therefore, it is necessary to give priority (the greatest
attention) to preventivemeasures in the safetymanagement of
the project team, from preventive control to detection control.

It can be seen from Table 3 that when establishing the
HFPR matrix for the three-metrics scores of each failure
mode, the project team gave possible score sets based on
experience and previous historical data. After these score sets
are counted and averaged, the average value of the failure
mode score is calculated. The statistical results are shown
in Table 9. It is found that the ranking of failure modes by
this average result is somewhat similar to the final ranking of
risk priorities calculated by themethod proposed in this paper.

3The results of all failure modes are shown in Table 3 in the Appendix.

For example, the rankings of F5 and F7 are both in the first
and second positions. The reason for this is that there are
various evaluation criteria for all three metrics under the same
failure mode. For example, the criticality S can be evaluated
in terms of casualties, structural damage, environmental haz-
ards, and progress delays. It is possible that different experts
recognize different emphases, leading to great differences
in the preference matrix results given by the experts. When
performing group consensus fitting, the average score will
naturally be approached. it can be seen, However, that the
results obtained by the project team based on experience
and historical data are actually quite different from the final
results. For example, although the average score of FM6 is
lower than that of FM4, the expert group believes that the
severity is particularly important in the failure mode risk
assessment of FM6 and FM4, but theweight of the occurrence
rate is not high. The severity score of FM6 ismuch higher than
that of FM4, resulting in the RPN value of FM6 being higher
than that of FM4 in the final score of the method proposed
in this paper. Attention should be given to FM6. Although
FM4 has a high occurrence rate, it is easy to detect and is
not harmful. After combining Opro, its risk rating is further
reduced, so it is placed at the bottom of the list. Although
the occurrence rate and detection rate of FM5 are higher than
those of FM7, the risk assessment of the two failure modes
focuses more on the severity. Because the severity of FM5
is much lower than that of FM7, the initial assessment of
the risk of FM5 is lower than that of FM7. However, after
modifing the FM5 score by the failure occurrence prediction
value, FM5 was given a higher score than FM7, so FM5 was
assigned the first rank.

B. COMPARATIVE ANALYSIS
In order to verify the efficiency and advanced nature of the
proposed method, In what follows, the results of the methods
of this study will be compared in two aspects, respectively:
the first aspect is to compare the gap values of the matrix
obtained by the original processing method [12] without the
theory of extended MC and the method of the present paper;
the second aspect is to compare the results of the failure mode
ranking obtained by the methods in different papers with the
results obtained by the method in this study.

1) DEVIATIONS COMPARISON
The evaluation matrices of 12 groups of different forms
(HFPR, HFLPR, I-HFPR, I-HFLPR) were input into the orig-
inal method as well as the method of this study, respectively,
and 48 comparisons were obtained in total.4

By averaging the internal deviations of the data for each
different assessment form, a line graph can be drawn com-
paring the deviations of the assessment matrix obtained based
on the MC theory with expanded application with the devia-
tions of the assessment matrix obtained from the MC theory

4See Table 4 in Appendix.
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TABLE 8. E-metric weight, CL, GCL, expert weight, and G-metric weight of FM1 AND FM2.

FIGURE 4. Comparison of the degree of deviation of the original MC and
extended MC treatment H-HFPR.

without expanded scope for different assessment forms,
as shown in the following Fig. 4.

According to TAB, it can be found that the deviation values
of the matrices obtained based on this paper are 100% lower
or equal to the deviation values of the hesitant fuzzy sets
processed by the original MC, regardless of the form of eval-
uation. Lower values of matrix deviations tend to represent
that the obtained metric weights as well as the defuzzification
matrix are closer to the consistency matrix, i.e., they are more
accurate.

Meanwhile, since the original MC does not consider the
possible consistency deviation in the hesitant fuzzy set,
we can find that after incorporating the hesitant fuzzy set
deviation values into the expert consistency level devia-
tion, there exists 12.5% matrix consistency deviation greater
than the original MC consistency deviation in the evaluation
matrix with complete information, while in the evaluation
matrix with incomplete information, all the matrix consis-
tency deviations with hesitant deviation are greater than the
This is precisely because after the incomplete information is
brought into themodel, thematrix consistency level decreases
significantly due to the reduced information, and more con-
sistent level deviations are included in the hesitation ambi-
guity set, which leads to the HFPR deviation of extended
MC being larger than the HFPR deviation of original MC.
This is one of the evidences that the method in this paper can

TABLE 9. First score.

TABLE 10. Final score.

TABLE 11. Possible score means of the three metrics under each failure
mode.

be used in the heterogeneous hesitant fuzzy group decision
environment.

2) COMPARISON OF ASSESSMENT RESULTS
Compare five different FMEA assessment methods: the tra-
ditional FMEA method, the improved CEV-FMEA method
based on the cloud model, the ZFB-FMEA method based on
Z-MOORA and the fuzzy BWM, fuzzy FMEA and nonpreset
O threshold data of the MHHG-FMEA method based on MC
and H-HFPR group decisions to evaluate failure modes, and
the finalized failure mode ranking are compared with the
research results.

Each of the five methods has different characteristics,
as shown in Table 13.

The traditional FMEA method first solves the mean value
by calculating the possible scores of the metrics under each
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TABLE 12. Comparison of the results of different methods.

TABLE 13. Different characteristics of methods.

failure mode given by the project team, as shown in Table 11.
Next, the mean results of the three metrics in each failure
mode in Table 11 are multiplied to obtain the RPN value
under each failure mode, and each failure mode is sorted
according to the RPN value, as shown in Table 12.

The CEV-FMEA method decomposes the primary factors
of failure mode occurrence, severity, detection and mainte-
nance into nine secondary factors. Through the evaluation
standard cloud constructed in this paper, the expert panel sets
the semantic label of the secondary factors and the trust of
the experts and obtains the expert rating interval for each
secondary factor. The expert evaluation interval is solved,
and finally, the ranking of each failure mode after the expert
weight is determined by each professional factor of the expert
is determined. In this study, the weight of the experts is
measured through the level of expert consistency. Therefore,
the HFPR matrix given by the experts can be transformed,
and the preference value can be broken down into the range
of assessment of the seven failure mode reviews, which are
required by the CEV-FMEA method. In parallel, by consult-
ing the data and according to the original data of the paper
[8], the evaluation interval of the two second-level hazardous
metrics under the first-level metric M of the failure mode
is determined in order to calculate the ranking result for the
CEV-FMEA method, as shown in Table 12.

The scoring index of the FMEA method using Z-MOORA
and fuzzy BWM is established by linguistic interval [VL, L,
ML, M, MH, H, VH]. Each expert needs to give the credi-
bility of each score. The credibility is determined from the

interval [VL, L, M, H, VH]. The triangular fuzzy number
indicators are given in that paper for different semantic scores
and credibility semantic combinations. Therefore, the score
from 0-10 in this study can be divided into 7 equal parts,
and the CI can be divided into 5 equal parts starting from
0.90, that is, by dividing it into five intervals [0-0.92), [0.92,
0.94), [0.94, 0.96). All the result values of the HFPR matrix
in Table 3 when the group consensus is not established are
converted into the linguistic expression in the above paper
according to the interval to equivalently convert the consistent
degree into the credibility degree. The S, O, D preference
matrix of each expert is processed and converted into the
semantic preference of the best and worst S, O, Dmetrics that
each expert believes in order to calculate the ranking result
using the ZFB-FMEA method, as shown in Table 12.

Linguistic variables based on fuzzy set numbers are uti-
lized in the fuzzy-FMEA method to deal with uncertain and
complex situations. The linguistic review set S = 9 defined
in this study, which contains semantic repartitioning, S−4 is
merged with S−3, and S4 is merged with S3 to correspond to
the linguistic variable T = 7 of the fuzzy-FMEA method.
In the fuzzy-FMEA method, fuzzy AHP is used to calculate
the experts’ respective abilities and weights. In addition,
through the fuzzy AHP and entropy methods, considering
subjective and objective weights, the comprehensive weight
ωj(j = 1, 2, . . . , n) of risk factors is calculated. Fuzzy RPN
is defined as the sum of multiple products: RPN = (RF1 ×
ω1)+ (RF2×ω2)+ . . .+ (RFn×ωn). According to the HFPR
matrix given by this study for the S, O, and D metrics, the
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FIGURE 5. MHG-FMEA vs. Hybrid FMEA score line chart.

fuzzy RPN and ranking results are calculated by appropriate
transformation, as shown in Table 12.

To visualize the differences between the MHHG-FMEA
and hybrid FMEA results, a three-metric score line graph and
a risk score line graph for seven failure modes between the
two methods are drawn, as shown in Fig. 5. The Figure shows
that the hybrid method, which further processes the risk
priority operator through the predicted value of O, has greatly
changed in FM3, FM4 and FM5. From the ranking of the
results, we can also find that the main changes are reflected in
FM4 and FM5, especially FM4, which was down from fourth
to last place, indicating that the objective prediction of the
historical data proves that FM4 is not of much concern. The
hybrid FMEA method combines the results of expert scoring
with the predicted value, which fully removes the impact of
subjectivity on the results and makes the risk ranking more
objective. In Table 11, although FM3 attaches great impor-
tance to the detection rate, its maintenance cost is not high.
However, the detection difficulty of FM3 is underestimated
in the actual scoring, leading it to be ranked last. This can be
adjusted by estimating O. Afterward, its final ranking shifted
from last to third to last, which reduces the risk of FM3
occurring due to insufficient attention of the project team. The
assessment of FM2 is the same as that of FM5.

As shown in Fig. 6, the results of the research method in
this paper are compared with the CEV-FMEA method, and
it is found that except for the FM6 ranking, the rankings
of the other failure modes are different. This is because
the combination of expert score and the predicted O value
weakens the subjectivity of the expert group, which has a
certain impact on the results. Comparing the MHHG-FMEA
method to the CEV-FMEA method, we find that FM6 is the
same, with FM7 ranks first and FM3 ranks last. It should be
noted that the ranking from theMHHG-FMEAmethod is still
different from the CEV-FMEA method because the research
content of this paper considers not only the fuzzy set, but
also the incomplete hesitation fuzzy set matrix, this further
improves the accuracy of the experts’ preference information,

as well as extending the uncertainty handling function. Com-
pared with the ability of the CEV-FMEA, ZFB-FMEA and
fuzzy-FMEA methods to only read linguistic information,
the research method in this paper can read heterogeneous
information, and by compatibility with incomplete prefer-
ence information, the restriction on experts to better receive
expert information is alleviated. Therefore, the final result
is closer to the original expert information. In addition, the
CEV-FMEAmethod requires experts to give the reliability of
semantic information while determining semantic informa-
tion. The degree of subjectivity is too high. The method in
this paper determines the reliability of the preference matrix
through multiplicative consistency, which is determined by
objective data. This method is obviously more reliable.

Similarly, Fig. 6 shows that the results obtained by this
method proposed in this paper and the fuzzy-FMEA method
are only consistent in their ranking of FM6. The compari-
son of the results of the MHHG-FMEA and fuzzy-FMEA
methods also shows that the rankings of FM1, FM2 and
FM4 are different. This is because the traditional hesitant
fuzzy set method only has a good function when dealing
with fuzzy sets but cannot deal with uncertainty and the
H-HFPR matrix. In addition, the semantic scope of this
method is only seven, which is smaller than the nine scopes
utilized in the method proposed in this paper. These deficien-
cies cause the method’s acceptance rate of expert original
information to be lower than the acceptance rate of method
proposed in this paper, and when receiving semantic infor-
mation, it is easy to confuse the similar original information
of experts, which eventually lead to deviation in the results.
Thus, the research approach of this paper involving a hetero-
geneous group decision environment and a study of objective
data modify scores based on the consensus of the group is
clearly more reasonable and reliable.

By comparing the research results for the method proposed
in this paper with the ZFB-FMEA method results, it can be
found that the results obtained by the ZFB-FMEA method
are more similar to the results obtained using the research
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FIGURE 6. Comparison of risk priority ranking results of different
methods.

method in this paper but are completely inconsistent with the
results obtained using the MHHG-FMEA method. This can
be explained by the following reasons: in the ZFB-FMEA
method, experts determine the weights of S, O, and Dmetrics
directly by linguitic variables (rating or reliability) and do
not establish group consensus. This, coupled with the fact
that the weights of experts are directly equalized, which
leads to the fact that the final result is not a good group
consensus result; that is, some experts who give high scores
are weighted too high. The research method in this paper
still has a certain feedback connection with the expert when
iteratively processing the preference matrix, which further
eliminates the arbitrariness of an expert’s one-time decision.
However, repeated group consensus building is likely to lead
to more conservative or radical experts. Therefore, it is clear
that the final results are most reliable when the expert scores
are corrected by the predicted occurrence values with the
group consensus.

The above comparative analysis shows that this research
method can obtain a more accurate, more realistic and more
reliable failure mode risk ranking.

VII. SUMMARY
In this paper, a group decision theory for H-HFPR based on
extended MC is proposed, and a hybrid FMEA method is
constructed through this improved theory combined with the
principle of occurrence predictable. In addition to optimizing
the original FMEAmethod, which further eliminates ambigu-
ity and randomness as well as the possible influence of uncer-
tainty on FMEA results, this method relaxes the constraints
of expert scoring, supporting the H-HFPR group decision
environment. To verify the effectiveness and advanced nature
of the method, an example of a submarine pipeline in the
Chengbei oilfield was presented, and the result of risk ranking
after failure mode analysis was obtained to compare with
other feasible methods. This result confirmed that the risk
priority results provided by this research method are more
reasonable. Themain contributions of themethod proposed in
this paper are obtained through the analysis and verification
described above as follows:

1) Through the extended MC theory to deal with fuzzy
sets, the HFPR matrix can allow the existence of fuzzy
sets with different numbers of evaluation values and
can calculate the possible consensus offset value caused
by fuzzy sets to make the obtained expert consistency
level more reliable.

2) A new mathematical model is established to calculate
the weights and CL, which supports the solution of
H-HFPR group decisions. The model does not limit the
number of metrics in the fuzzy set, which will make it
easier for the expert group to give scoring preferences.
The model can more effectively obtain the original
information of experts, which enhances the flexibility
and applicability of FMEA in complex environments.

3) The model is applied to FMEA assessment, which
improves the accuracy and reliability of FMEA
assessment.

4) The hybrid FMEA assessment method is established
through occurrence prediction theory, which can effec-
tively remove the subjectivity of the expert group and
make the results more objective, efficient and reliable.

In conclusion, while this research method has been vali-
dated in the case of the ChengBei submarine pipeline, atten-
tion must still be given to the limitations of the method. These
will be our future studies and topics.

1) In Many linguistic GDM problems which decision
makers may have personalized individual semantic
(PIS) [72], [73]. One direction that can be explored
in the future is how to improve the hesitant fuzzy
linguistic conversion algorithm proposed in this study
in conjunction with current research related to the PIS,
so that the method can be better applied to complex
heterogeneous group decision-making environments.

2) For occurrence prediction problems, if there is no simi-
lar products or historical products, and the products are
too innovative or complex, the accuracy of occurrence
prediction values for the products will be less than per-
fect, which may limit the method of correcting FMEA
based on occurrence prediction values to occurrence
predictable products. Future research directions, such
as deep learning and accelerated test models, will be
pursued with the goal of breaking such limitations.

3) The structure of our consensus feedback mechanism is
a traditional mechanism for ’’central’’ purposes, which
does not take into account the demands of subgroups
and the cohesion among subgroups, which may lead
to the modified original opinion of each member and
increase the cost of consensus. The existing group con-
sensus framework based on the social relationship net-
works of themembers can be a future research direction
to address this issue.
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