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ABSTRACT Compared with natural images, remote sensing targets have small and dense target shapes
as well as complex target backgrounds. As a result, insufficient detection accuracy and target location
cannot be accurately identified. So, this paper proposes the YOLO-extract algorithm based on the YOLOv5
algorithm. Firstly, The YOLO-extract algorithm optimized the model structure of the YOLOv5 algorithm.
The YOLO-extract algorithm not only deleted the feature layer and prediction head with poor feature
extraction ability but also a new feature extractor with stronger feature extraction ability was integrated into
the network. At the same time, YOLO-extract borrowed the idea of residual network to integrate Coordinate
Attention into the network. Secondly, the mixed dilated convolution was combined with the redesigned
residual structure to enhance the feature and location information extraction ability of the shallow layer of
the model and optimize the feature extraction ability of the model for different scale targets. Finally, drawing
on the idea of α-IoU Loss, Focal-α EIoU Loss was designed to replace CIoU Loss, which makes the model
bounding box regression faster and the loss lower. The experimental results on the test data set show that
compared with the YOLOv5 algorithm, the YOLO-extract algorithm has a faster convergence speed, reduces
the calculation amount by 45.3GFLOPs and the number of parameters by 10.526M, but increases the mAP
by 8.1% and the detection speed by 3 times.

INDEX TERMS Remote sensing aircraft target, YOLOv5, structure optimization, dilated convolution,
focal-α IoU loss.

I. INTRODUCTION
In recent years, with the development of remote sens-
ing technology, the information content of satellite remote
sensing images has increased dramatically, which plays an
in-creasingly obvious role in military applications. So in
object detection, remote sensing object detection has become
one of the key topics. As an important means of transportation
and military equipment, the use of target detection algorithms
to locate and identify aircraft is of great significance to airport
monitoring and management, military intelligence analysis,
and military action decision making. However, the remote
sensing targets are collected at high altitudes, so the target size
is usually small and easily affected by various factors such
as weather, illumination, sea conditions, sensor parameters,
etc. In addition, aircraft targets in remote sensing images are
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usually densely arranged, which makes it difficult to sepa-
rate the targets in satellite remote sensing images from the
surrounding background, resulting in more difficult feature
extraction, low detection accuracy, and failure to meet the
requirements of real-time detection.

Several solutions have been proposed for the above target
detection problems. Traditional target detection is mainly
based on machine learning, but with the development of
deep learning, the field of computer vision has brought
new changes and developments to target detection and
image classification. There have also been great advances
in object detection in the above remote sensing images.
At present, the mainstream target detection algorithms are
mainly divided into two categories: two-stage algorithms
and one-stage algorithms. Typical two-stage algorithms are
R-CNN (Region Convolutional Neural Networks) [1], Fast
R-CNN (Fast Region-Based CNN) [2], and Faster R-CNN
(Faster Region-Based CNN) [3]. The two-stage algorithm has
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higher accuracy but a slower speed and loses the spatial infor-
mation of local objects in the whole image. Typical one-stage
algorithms include SDD (Single ShotMultiBoxDetector) [4],
YOLO (You Only Look Once) series [5], [6] [7], [8] etc.
The accuracy of the one-stage algorithm is average, but the
detection speed is high.

At present, in the detection of satellite remote sensing
images, great progress has been made in both detection accu-
racy and speed. Reference [9] proposed to use DenseNet [10]
to improve YOLOv3 [7] and improve the detection accu-
racy of remote sensing images by improving the structure
in Backbone, but the structure of DenseNet is too complex
and the number of parameters is too large, which leads
to a decrease in detection speed. Reference [11] made a
lightweight improvement on the structure of YOLOv3 [7] and
introduced Res2Net [12] to improve the detection accuracy
and speed of remote sensing targets. Reference [13] added the
PPM(Pyramid Pooling Module) [14] based on YOLOv4 [8]
and used the Mish function to replace the original activation
function, which improved the detection accuracy and recall
rate of aircraft and dockyard in remote sensing images. Refer-
ence [15] proposed YOLOv5-aircraft based on YOLOv5, the
smooth Kullback-Leibler divergence loss function was used
to replace the cross entropy loss function, and the CSandGlass
module was designed to replace the residual module, which
improved the accuracy and speed of aircraft targets in remote
sensing images.

Given the problems of the YOLOv5 algorithm in iden-
tifying aircraft targets in remote sensing images, such as
low accuracy, slow detection speed, and difficulty in target
feature extraction, this paper proposes the YOLO-extract
algorithm based on the analysis of the model structure of the
YOLOv5 algorithm. The YOLO-extract algorithm optimizes
the YOLOv5 model structure and introduces a coordinate
attention mechanism to improve the detection accuracy of
aircraft targets. Secondly, the dilated convolution and residual
structure are introduced to improve the feature extraction
capabilities of the model, and finally, the improved loss func-
tion is used to accelerate the convergence speed of the model.
In the second part of this paper, based on the analysis of
the model structure of YOLOv5, the design scheme of the
YOLO-extract algorithm is described; in the third part, the
composition of the experimental data set, the experimental
environment, and the comparative analysis of the simulation
results are described; the final discussion research conclu-
sions and future research directions are presented.

II. MODEL INTRODUCTION AND IMPROVEMENT
A. YOLOv5 MODEL INTRODUCTION
YOLOv5 is a one-stage target detection algorithm with five
versions of n, s, m, l, and x, and each version has a different
network depth and width. The YOLOv5 algorithm model
includes four parts: input, backbone extraction network, neck,
and detection head. Its network structure diagram is shown
in Fig.1. Due to its deep network structure, the YOLOv5
model has a large loss of semantic information and position

FIGURE 1. YOLOv5 model.

information of the target, resulting in a large loss in the
bounding box regression and a slow detection speed, which
is not suitable for remote sensing aircraft target detection.
Therefore, this paper designs a YOLO-extract algorithm
based on the analysis of the YOLOv5l 6.0 algorithm.

B. MODEL STRUCTURE IMPROVEMENT
1) SIMPLIFIED MODEL STRUCTURE
In CNN, low-level feature maps have high resolution,
rich location information, and less semantic information.
High-level feature maps have a small resolution, less loca-
tion information, and rich semantic information. In the
YOLOv5 model, Backbone reduces the original image from
640 × 640 to 20 × 20 after three down-sampling for fea-
ture fusion. Although continuously shrinking the feature map
can make the neuron have a larger receptive field and rich
semantic information, for the aircraft target in the remote
sensing image in this paper, because it occupies fewer pixels
in the image, the features after continuous down-sampling of
the location information in the figure is greatly lost, causing
the model to fail to notice the target. Moreover, the seman-
tic loss caused by continuous down-sampling will have the
opposite effect on the feature learning and detection tasks of
aircraft targets. as shown in Fig.2.

As shown in Fig.2, the first line is the attention of the
80 × 80 resolution prediction head in the YOLOv5 model
to the aircraft target, the second line is the attention of the
40 × 40 resolution prediction head, and the third line is
the 20 × 20 resolution prediction head. It can be seen from
Fig.2 that only the prediction head of 80 × 80 resolution in
the YOLOv5 model can pay attention to the aircraft target.
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FIGURE 2. The attention of different detection heads to the targets.

Due to the large multiple of down-sampling, the aircraft
target in the feature map is seriously lost, and the other two
prediction heads cannot identify the aircraft target and detect
the position of the aircraft, resulting in a poor detection effect
of the YOLOv5 model for small targets. In addition, in the
feature fusion based on multi-scale, due to the irreversibility
of down-sampling, the lost information cannot be recovered
by up-sampling, so the model is disturbed by the feature layer
with lower resolution, and the prediction accuracy is low.

Therefore, the prediction head with a resolution of
40 × 40 and a resolution of 20 × 20 is pruned in the model,
and the number of down-sampling in Backbone is reduced
at the same time, the feature extractor with 32 times down-
sampling and 16 times down-sampling is deleted. To prevent
the low-resolution feature maps in Neck from interfering
with the model during feature fusion and reduce semantic
loss, the low-resolution convolution module and up-sampling
module in Neck are deleted. It not only reduces the loss of
down-sampling in target feature extraction but also greatly
reduces the number of model parameters.

2) NEW FEATURE EXTRACTOR AND PREDICTION HEAD
After the above mentioned simplification of the model struc-
ture, only the 80 × 80 resolution feature extractor in the
model extracts the target features, and more comprehen-
sive location information and semantic information cannot
be extracted. Therefore, a 4 times down-sampling feature
extractor is added to the model Backbone to enhance the
feature extraction of aircraft targets. An up-sampling module
is added to the feature fusion device to perform feature fusion
with the new feature extractor, Conveying richer semantic
information and location information. And a new prediction
head is added to the fused feature map to enhance the detec-
tion of aircraft targets. As shown in Fig.3.

FIGURE 3. The new feature extractor.

The YOLOv5 model uses a combination of FPN (Feature
Pyramid Network) [16] and PAN (Path Aggregation Net-
work) [17]. FPN transfers high-level semantic features and
PAN transfers low-level location information to the deep.
Therefore, adding a new feature extractor can not only better
extract the features of aircraft targets but also transfer more
semantic information and location information. The opti-
mized YOLOv5-extract model structure is shown in Fig.4.
The optimized model uses a more sensitive feature extractor
to extract the features of the aircraft target during the training
process, which can more accurately predict the position of
the target and reduce the difficulty of detection. Parameters
dropped from 46.117M to 35.518M, the detection accuracy
increases from 0.878 to 0.922.

3) COORDINATE ATTENTION MECHANISM
After the above modification of the model structure, the
accuracy of the detection of small targets and dense targets
in the model has been improved significantly. To further
improve the detection accuracy of the model in com-
plex backgrounds, Coordinate Attention [18] (referred to
as CoordAttention, hereinafter referred to as CA) is inte-
grated into the network model. Allowing the network to
focus on a larger area reduces computational overhead
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FIGURE 4. The improved model structure.

while improving the model’s recognition accuracy for air-
craft targets with complex backgrounds. CA uses the tensor
M = [m1,m2, . . . ,mc] ∈ RC∗H∗W to embed coordinate
information and generate coordinate attention, and outputs
the tensor N = [n1, n2, . . . , nc] ∈ RC∗H∗W with enhanced
representation ability. It can not only capture cross-channel
information but also capture direction perception and position
perception information, which can help the model locate and
identify aircraft targets more accurately. Therefore, before
the model performs feature fusion, we draw on the idea of a
residual network and integrate CA into the model, as shown
in Fig.5. It can not only fuse the original feature information
in Backbone but also pay more attention to dense aircraft
targets and aircraft targets in complex backgrounds so that
the detection accuracy is further improved. Moreover, it is
more accurate for the detection of dense aircraft targets
and complex backgrounds, the detection accuracy increases
from 0.922 to 0.928, and the number of parameters hardly
increases.

The improved model uses two detection heads to detect
aircraft targets in remote sensing images. The attention to
aircraft targets is shown in Fig.6. The model can better extract
the features of aircraft targets in remote sensing images and
can pay attention to a larger area for dense targets, and reduce
a lot of semantic loss so that the model is reduced by the
influence of high-level feature maps.

C. DILATED CONVOLUTION AND RESIDUAL
Dilated convolution [19] was originally proposed to solve
the problem of image segmentation, specifically to expand
the receptive field to obtain denser data and aggregate
multi-scale context information. Dilated convolution elimi-
nates down-sampling and up-sampling in the network and
expands the receptive field by expanding the convolution
kernel. However, in the YOLOv5 algorithm, to detect targets
of different scales, it is necessary to down-sample through
convolution operations to reduce the feature map to increase
the receptive field, and then up-sample to restore the image
size. The process of shrinking and enlarging the feature map

FIGURE 5. Yolo-extract model structure diagram.

results in a loss of accuracy, and the position information of
many aircraft targets will be lost, resulting in low accuracy
of aircraft target detection. After the above improvement of
the model structure, the semantic loss of the model is greatly
reduced and the detection accuracy is improved. However, the
semantic information of the upper layer feature extractor is
relatively less, and the location information is rich. Therefore,
to balance the contradiction between multi-scale target detec-
tion and accuracy loss, this paper redesigns a new structure
that combines mixed dilated convolution and residual [20]
to expand the receptive field of the shallow feature extractor
in Backbone, which can extract more target features while
passing shallow rich location information. It makes up for
the disadvantage that the shallow feature extractor in the
CNN network has rich location information but insufficient
semantic information, and does not suffer from the grid effect
caused by single dilated convolution. At the same time, The
model can not only extract the detailed features of the target,
but also detect the target with different scales. Its structure is
shown in Fig.7.

The above structure is applied to the Backbone of
YOLOv5, and the model structure is shown in Fig.8.

As shown in Fig.8, R6 has six groups of residual struc-
tures fused with dilated convolution, and the receptive field
of the second layer is expanded from 3 in YOLOv5 to 3,
7, and 15. Since the receptive field of the fourth layer has
been expanded compared with that of the second layer,
a smaller expansion rate is used to expand the receptive field
from 3 to 3, 7, and 11. The receptive field is calculated as
follows:

Fk = Fk−1 +

{
(fk − 1)×

k−1∏
i

Si

}
(1)

Fk represents the receptive field of the kth layer, Fk−1 repre-
sents the receptive field of the (k − 1)th layer, fk represents
the size of the convolution kernel of the kth layer, and Si
represents the step size of the ith layer. The receptive field
changes of the second and fourth layers in the model are
shown in Fig.9.
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FIGURE 6. The attention of the two detection heads to the targets.

FIGURE 7. The module that fuses the mixed dilated convolution and
residual structures is named Rx, and x represents the use of x groups of
bottleneck residual structures. For the input feature map, first reduce the
dimension through 1 × 1 convolution, and then input it into the residual
structure of the x group. In each group, the dimension is reduced again
through 1 × 1 convolution, and then through 3 × 3 dilated convolution is
used for feature extraction and dimension enhancement, and finally
fusion.

FIGURE 8. R6 is used in the Backbone of YOLOv5,the dilated convolution
with expansion rates of 1, 2, 4, 1, 2, 4 is used in the second layer, the
dilated convolution with the expansion rate of 1, 2, 3, 1, 2, 3 is used in the
fourth layer.

D. FOCAL-α EIoU LOSS
In object detection, bounding box regression is a key step
to determine the performance of object localization. In the
YOLOv5 model, CIoU Loss is used as the loss function of
bounding box regression. Although CIoU [21] increases the
Loss for the scale of the predicted box based on DIoU [21],
that is, further increases the penalty term of the ratio of length
to the width between the predicted box and the real box,

FIGURE 9. Receptive field after using dilated convolution.

as shown in the formulas (2), (3):

LCIoU = 1−IoU+
ρ2(b, bgt )

c2
+

(
ν

(1− IoU )+ ν

)
ν (2)

ν =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

(3)

b and bgt represent the center point of the predicted box
and the real box, and ρ represents the Euclidean distance
between the predicted box and the center point of the real box.
c represents the diagonal distance of the smallest closure area
that can contain both the predicted box and the real box, wgt

and hgt are the width and height of the real box, and w and h
represent the width and height of the predicted box. However,
CIoU describes the relative value of the aspect ratio, the
width and height of the prediction box cannot be increased or
decreased at the same time, and the balance of difficult and
easy samples is not considered. EIoU [22] separated the ratio
of length to width on the basis of CIoU, and clearly measured
the difference of three geometric factors, namely overlapping
area, center point, and side length. Focal Loss [23] was
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FIGURE 10. The same situation of IoU.

also introduced to solve the problem of imbalanced diffi-
cult and easy samples. The calculation method is shown in
formulas (4), (5):

LEIoU = 1− IoU +
ρ2(b, bgt )

c2

+
ρ2(w,wgt )

c2w
+
ρ2(h, hgt )

c2h
(4)

LFocalEIoU = IoUγ LEIoU (5)

Although EIoU fully considers various geometric charac-
teristics between the prediction frame and the real frame, for
remote sensing images, the aircraft target is not only small in
scale and high in density, it will lead to the same situation of
IoU, is shown in Fig.10. Resulting in no improvement of the
convergence speed of the model.

Therefore, in this paper, α-IoU [24] is combinedwith Focal
EIoU, and the Euclidean distance between the calculated
prediction box and the center point of the real box in the Focal
EIoU Loss is introduced into a larger power transformation
(α = 3), to The length and width introduce a smaller power
transformation (β = 2), named Focal-α EIoU Loss. This
loss not only retains the advantages of Focal EIoU Loss but
also improves the loss of Hight IoU target and the accuracy
of gradient adaptive weighted bbox regression, providing
stronger robustness for small target datasets. The calculation
method is shown in formula (6):

LEIoU = IoUγ

(
1− IoU +

ρ2α(b, bgt )
c2

+
ρ2β (w,wgt )

c2w
+
ρ2β (h, hgt )

c2h

)
(6)

cw and ch respectively represent the width and length of the
closure region formed by the predicted box and the ground
real box.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL DATA
The remote sensing images studied in this paper come from
the aircraft target images in the DOTA dataset, including

FIGURE 11. (a) dense target, occlusion target; (b) dense target;
(c) complex background, small target, sparse target.

FIGURE 12. Target centroid position distribution and target size
distribution.

300 remote sensing images and 7302 aircraft targets, and use
Make Sense for data annotation. The image contains aircraft
targets in complex backgrounds, dense small aircraft targets,
and occluded aircraft targets. A typical remote sensing image
in the dataset is shown in Fig.11, Fig.12 shows the distribution
of centroid positions of aircraft targets in remote sensing
images and the distribution of image sizes.

B. EVALUATION INDICATORS
In this paper, loss function curve, mAP, Recall, FPS(Frames
Per Second), Parameters, and FLOPs (Floating Point of
Perations) are used as evaluation metrics to describe the
performance of each network.

Precision represents the proportion of the number of targets
that are correctly predicted among all targets and is calculated
by the formula (7):

P =
TP

TP+ FP
(7)

Recall represents the number of correct samples detected in
the prediction results, is calculated by the formula (8):

R =
TP

TP+ FN
(8)

But Precision and Recall are often a contradictory pair of
performance metrics. Therefore, the mAP parameter is intro-
duced to inherit two parameters to detect the algorithm per-
formance of the network. It is calculated by the formula (9):

mAP =

∑N
k=1 P(k)1R(k)

C
(9)

In the above formulas, TP represents the number of aircraft
that are correctly predicted, FP represents the number of air-
craft targets that are predicted but are actually backgrounds,
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FN represents the number of wrong predictions,C represents
the total number of aircraft targets, and P(k) is the number of
simultaneous recognition of k samples The size of the correct
rate,1R(k) represents the change of Recall when the number
of detection samples changes from (k − 1) to k .

C. EXPERIMENTAL RESULTS AND ANALYSIS
This paper mainly improves the YOLOv5 algorithm and
obtains the YOLO-extract algorithm. To compare the
YOLOv5 algorithm with the improved algorithm proposed
in this paper and ensure the reliability of the experiment,
all training and test data are trained in the same training
environment, and the epoch of each training is guaranteed to
be 300. After the training is completed, use the optimal model
weights for testing.

In the training process of the model, the loss value of
the model can directly reflect the convergence speed of
the model and the accuracy of detection. There are con-
fidence loss and localization loss in YOLO-extract. The
confidence loss is used to calculate the confidence of the
network, and the localization loss is used to calculate the gap
between the predicted box and the true box. In this paper,
the confidence loss and localization loss of the YOLOv5
model and the YOLO-extract model are compared, as shown
in Fig.13.

As shown in Fig.13, compared with the YOLOv5 model,
both the confidence loss and the localization loss decrease
with the increase of training times, and the loss value is closer
to 0.

This paper also compared the positioning losses of the
YOLO-extract model before and after using Focal EIoU Loss
and Focal-α EIoU Loss, as shown in Fig.14. In addition,
the loss curves of the YOLO-extract model were com-
pared with the FE-YOLO model proposed in [11] and the
YOLOv5-Aircraft model proposed in [15], as shown
in Fig.15.

As shown in Fig.14, YOLO-eiou indicates that Focal EIoU
Loss is used as the localization loss. The YOLO-extract
model has a faster loss convergence speed and a smaller final
loss value, which verifies the effectiveness of the improve-
ment.As shown in Fig.15, the YOLO-extract model has a
better convergence rate than existing methods and a lower
loss value.

The mAP indicator is used to measure the quality of the
detection algorithm. The larger the mAP, the higher the aver-
age detection accuracy and the better the performance of the
algorithm. The Recall metric is used to represent the number
of objects that the model can correctly detect. During the
training process, the mAP value and Recall value of the val-
idation set of the two algorithms during the training process
is shown in Fig.16. The abscissa represents the number of
training sessions, and the ordinate represents the mAP and
Recall values.

As shown in Fig.16, After 300 rounds of training, the mAP
of the YOLO-extract model reaches 0.968. After 300 rounds
of training for the YOLOv5 model, the mAP is only 0.874.

FIGURE 13. Loss comparison of YOLOv5 and YOLO-extract.

TABLE 1. Ablation experiment.

After 300 rounds of training, the recall of the YOLO-extract
model reaches 0.925. After 300 rounds of training, the Recall
of the YOLOv5 model is only 0.794.

During the training process, to better extract features and
distinguish the background from the target, the confidence is
set to be small, so the ablation experiment is conducted in
this paper under the condition of 0.6 confidence level. mAp,
Parameters and FLOPs of the model were tested before and
after adding structure optimization, dilated Convolution and
Residuall, and Focal-α EIoU Loss. As shown in Table 1.

As shown in Table 1, after the structure optimization of
the YOLOv5 model, the calculation amount and parameter
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FIGURE 14. Loss comparison of EIoU and Focal-α EIoU.

FIGURE 15. Loss comparison of different models.

amount of the model is greatly reduced, and the Recall and
mAP are significantly improved, indicating that the struc-
ture of the YOLO-extract model is more reasonable for the
learning of small target features and the detection of small
targets. After adding the redesigned dilated convolution and
residual structure to the network, although the number of
parameters and FLOPs are slightly increased, the mAP is
improved. Finally, Focal-α EIoU Loss was used as location
loss, and the detection accuracy could be improved without
increasing the number of parameters and FLOPs.

In addition, this paper compares the mAP, Recall,
Parameters, and FPS of YOLOv4, YOLOv4-tiny, YOLOv3,
YOLOv3-SPP, YOLOv3-tiny, SSD, Faster RCNN, YOLOv5-
Aircraft [15], FE-YOLO [11] and YOLOv7 [25] in the test
environment: CPU-i5 8300H and GPU-1050Ti. as shown
in Table 2.

As shown in Table 2, although the hardware devices in
this article are limited, the YOLO-extract model is tested on
devices with the same computing power, and it is better than
the mainstream one-stage and two-stage algorithm in terms
of mAP, Recall, Parameters, and FPS.

FIGURE 16. mAP and Recall values of YOLOv5 model and YOLO-extract
model.

TABLE 2. Comparison of different algorithms.

To further verify the effectiveness of YOLO-extract, this
paper compares the detection results of the YOLOv5 algo-
rithm with a confidence level of 0.6. As shown in Fig.17.

As shown in Fig.17, the left side is the detection result
of YOLOv5 model, and the right side is the detection result
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FIGURE 17. Comparison of YOLOv5 and YOLO-extract detection results.

of YOLO-extract model. Lines 1 to 3 compare the detection
effect of dense targets and small targets, the fourth line com-
pares the detection effect of small targets and blocked targets,
and the fifth line shows the detection effect of dense targets

and small targets against a complex background. The sixth
and seventh lines represent the image blur detection effect
caused byweather reasons such as clouds and fog. The yellow
and black circles in the figure are the detection results with
obvious contrast. The results show that the YOLO-extract
algorithm can achieve better detection accuracy under various
conditions.

IV. CONCLUSION
For the existing remote sensing image target detection algo-
rithm, the detection accuracy and speed are low, besides,
it is easily affected by the background of the images. Based
on the characteristics of aircraft targets on optical remote
sensing images, this paper optimizes the structure of the
model, introduces dilated convolution to improve the feature
extraction capability of the model for aircraft targets, and
finally optimizes the convergence speed of the loss function
plus block model, as well as improves the detection accuracy
and detection speed of the model. Experiments show that
the method in this paper can greatly improve the ability to
overcome the interference of factors such as aircraft attitude
and complex background. However, since remote sensing
satellite images are easily affected by weather factors such as
skylight conditions and clouds and fog, it is difficult to extract
different types of aircraft target features in remote sensing
images, and there are few data sets for aircraft types, so the
detection of aircraft types cannot be completed. In subsequent
experiments, relatively clear remote sensing images can be
selected to learn and detect different types of aircraft features.
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