
Received 15 December 2022, accepted 25 December 2022, date of publication 3 January 2023, date of current version 9 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3233922

3-D Analytical Model of Axial-Flux Permanent
Magnet Machine With Segmented
Multipole-Halbach Array
TAISHI OKITA AND HISAKO HARADA
Department of Research and Engineering, Seiko Epson Corporation, Nagano 399-0293, Japan

Corresponding author: Taishi Okita (Okita.Taishi@exc.epson.co.jp)

ABSTRACT This paper presents a 3-D analytical model of an axial-flux permanent magnet (AFPM)
machine with a segmented multipole-Halbach PM array. Closed-form solutions are self-consistently derived
in terms of modified Bessel functions of the first- and the second-kind by solving analytically Laplace and
Poisson equations by the method of magnetic scalar potential subject to the appropriate boundary conditions.
In the preceding studies, their formulations are based on a 2-D or quasi 3-D geometry, and their discussions
are often limited to the magnetic fields with low-poles of the regular PM. The proposed model successfully
provides more rigorous and widely applicable expressions for magnetic fields, back-electromotive force,
Lorentz torque and torque constant without limitations on the number of poles and the arrangements of
the PM. Behavior of the torque constant is then shown against the number of poles ranging widely from
low-poles to high-poles of the regular PM, the standard-Halbach PM and the multipole-Halbach PM for
changeable geometrical parameters. The obtained results are of much use in understanding intrinsically the
performance characteristics of the AFPM.

INDEX TERMS Axial flux, permanent magnet, Halbach array, multipole, magnetic field,
back-electromotive force, Lorentz force, torque constant.

I. INTRODUCTION
The axial-flux permanent magnet (AFPM) machine has
potentially attractive features of high torque density, high
efficiency and high magnetic poles due to its flat geom-
etry in comparison to the ordinal radial flux permanent
magnet (RFPM) machine. The AFPM machine has thus
recently attracted great attention as a powerful candidate
for a next generation driving source in many applications,
e.g. robotics [1], [2], [3], [4], electric vehicles [5], [6], [7],
[8] and power generation [9], [10], [11], [12]. In particular,
industrial robots involving actuators have been researched
and developed in the world by academic institutes [13], [14]
and leading companies [15], [16], [17]. Thanks to them,
man-powered heavy works have increasingly been replaced
and automated by the robots. In multi-jointed robots, the
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performance required for servomotors ranges widely from
high-revolution to high-torque, depending on the role of
each joint. Specifically, a quick response is demanded for
the joint close to the point of action, where low-pole and
high-revolution RFPM would be suitable. On the other hand,
a large load is inevitably applied on the joint corresponding
to the point of effort, where multipole and high-torque AFPM
would be effective. In either case, the basic performance of
the PM machines is almost characterized by the torque con-
stant. It is therefore very important to understand characteris-
tics of the torque constant of the AFPM as well as the RFPM
over a global range of the various designing parameters.

In order to generate high torque in electric machines,
a Halbach PM array has so far been suggested and studied in
various areas by many researchers [18], [19], [20], [21], [22],
[23], [24]. The Halbach array is superior to ordinal one in
several ways; First, the Halbach PM produces an about twice
stronger magnetic flux density than ordinal one. Second,
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the magnetic field distribution is approximately sinusoidal.
Third, the leakage flux from back side is almost negligi-
ble. These advantages are expected to be enhanced for a
multipole-Halbach array with higher poles by the interaction
of magnetic fields in the adjacent magnets. However, charac-
teristics of the AFPM with a multipole-Halbach PM has not
yet sufficiently been studied in comparison with those of the
RFPM, and most of previous studies have been confined to
the low number of poles because of the facility in modeling,
designing and manufacturing.

In designing high performance machines, it is of intrinsic
importance to study magnetic field structures in the air-gap
and their Fourier spectra, since the fundamental amplitude
of the fields produces the net Lorentz force by interacting
synchronously with the alternating electric current of the
coil, while the harmonics results in the ineffective force
such as cogging torque and/or torque ripple. Most preced-
ing works utilize commercially available simulation pro-
grams, in which electromagnetic (EM) fields are numerically
solved by, e.g. the finite element method (FEM) [25], [26],
[27]. However, such a numerical method requires enormous
computation time for a 3-D structure of the AFPM, and
makes the principle governing underlying physics unclear.
Furthermore, the FEM analysis forces us to remodel every
time the geometrical parameters, e.g. the number of poles
and/or the arrangements of the PM change, and the computa-
tion accuracy becomes unstable for higher poles. For these
reasons, the FEM is not suitable for a global parametrical
study on the 3-D AFPM model. This work therefore adopts
an analytical approach, which makes it possible to investi-
gate EM problems not only quickly, but also flexibly, and
then to provide deep physical insight through mathematical
formulations.

Pioneering analytical studies on the AFPM can be found
in the literature [28], [29], in which magnetic fields in the
air-gap have been investigated by integrating the free-space
Green function. Magnetic fields of the disk-type PM have
also been analyzed by taking the Hankel transformation [30].
However, these preceding papers are limited to the study only
on the magnetic field structure itself of the regular PM array
with low-poles. 2-D analytical studies of theAFPMhave been
reported in [31] and [32], which provide the relevant solutions
formulated in terms of a vector potential by introducing an
artificial correction function in the radial direction. Such a
2-D approximate model would be valid only when the inner
radius is close to the outer one. 3-D analytical models of
the ironless AFPM machine have been suggested in [33],
[34], in which magnetic fields are studied only for the regular
PM array with low-poles, and torque characteristics is not
reported. In a similar paper [35], magnetic fields and the
relevant torque have also been analyzed on the basis of a 3-D
AFPM model with a standard-Halbach PM, but high-order
space harmonics are neglected in their torque formula, and
the results are limited to a single case of low-poles. A com-
plete 3-D model of the AFPM is therefore highly required
in order to investigate systematically magnetic fields, back

electromotive force(EMF) and torque characteristics without
limitation on the regular PM with low-poles.

From a theoretical point of view, in the existing papers, e.g.
[33] and [34] basic solutions have been given in the single
form of the first-kind Bessel function under the open-circuit
condition in order to avoid complicated formulations. Their
formulae actually include only one unknown quantity to be
determined by the boundary condition. This work is differ-
ent from the preceding ones in that general solutions have
more rigorously been derived and expressed in the com-
bination of the first- and the second-kind modified Bessel
functions by solving straightforwardly Laplace and Poisson
equations in the air-gap and the magnet regions, respec-
tively. Our formulae thus involve six unknowns to be deter-
mined by the appropriate boundary conditions. The nov-
elty of this work lies in the fact that the proposed model
successfully provides more rigorous and widely applicable
mathematical expressions for magnetic fields, back-EMF,
Lorentz torque and torque constant without limitations on
the number of poles and the arrangements of the PM. To the
best of the authors’ knowledge, such a rigorous formula
for the torque constant based on the 3-D multipole-Halbach
AFPM has not been found in the preceding papers. The
objective of this paper is to derive analytically an expression
for the torque constant, and to show its dependence on the
number of poles ranging widely from low-poles to high-
poles for geometrical parameters of the multipole-Halbach
AFPM. In addition, the proposed model enables us to study
rapidly EM characteristics of the AFPM, incorporating the
effect of high-order space harmonics without sacrificing a
degree of accuracy, even if the number of poles is as high
as ∼ 100.

This paper is organized as follows. In Section II, geome-
tries of the proposed model are presented. In Section III,
basic equations are self-consistently formulated, and then
the rigorous expressions for magnetic fields, back-EMF,
Lorentz torque and torque constant are successfully derived.
Section IV focuses on the validity, results and discussion.
Finally, Section V summarizes this work.

II. MODEL
Fig.1a) presents the analytical 3-D model of the AFPM
machine developed in this work, where Ro and Rs are inner
and outer radii of the stator core,Rr andRm are inner and outer
radii of the rotor magnet, respectively, g is a mechanical air-
gap, zm is a thickness of the magnet in the axial direction,1 is
an angle spread by a segment arc, θc is an angle spread by a
coil arc, and θs is a coil-pitch. This model comprises of four
assembly: a rotor magnet, a back yoke, three-phase (U,V,W)
coils, and a slotless stator.

This figure is illustrated for changeable parameters p = 2,
Q = 6 and l = 2 as one of the examples, where p is
the number of pole-pairs, Q is the number of coils, and l
is the number of segments per pole. Throughout the paper,
the machine is driven by three-phase sinusoidally alternat-
ing electric currents, and the ratio of the pole-pairs and the
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number of coils is chosen to be the most popular combination
Q/(2p) = 3/2. All of the magnet pieces are sequentially
assigned with number i = 1, 2, · · · , 2pl, and all of the coils
are similarly numbered as j = 1, 2, · · · ,Q in the order of U,
V and W phases. The analysis regions are divided into three
regions,�1,�2 and�3, as shown in the figure. In this model,
l = 1 corresponds to an ordinal PM, l = 2 to a standard-
Halbach PM, l ≥ 3 to segmented multipole-Halbach PMs,
and l � 1 approaches an ideal Halbach PM, as shown in
Fig.1b).

This work is based on the following assumptions; First,
permeability of the stator yoke and the magnet yoke is infi-
nite, in other words magnetic saturation in the yoke is neg-
ligible. Second, thickness of the coil is neglected, that is
to say, delta-function coil is adopted. Third, effects of the
eddy current, e.g. Joule heat in the yoke and/or magnetic
coupling between the rotor and the stator, are not incorpo-
rated. Fourth, secondary magnetic fields coming from the
electric current of the coil is much weaker than those of
the magnet. Fifth, the PM has a linear magnetization char-
acteristics with a constant remanence and a constant recoil
permeability. The effect of demagnetization is thus not con-
sidered in the model. It is also important to study such
nonlinear complicated effects in a practical stage of design-
ing and/or manufacturing, but is beyond the scope of this
paper.

III. FORMULATION
A. MAGNETIC FIELDS
The governing equations for magnetostatic fieldsB andH are
self-consistently formulated as

∇ · B = 0 in all regions (1)

∇ ×H = 0 in all regions (2)

B = µ0H in �1 and �3 (3)

B = µ0µrH + µ0M in �2 (4)

where M is a magnetization vector of the PM, µ0 = 4π ×
10−7H/m is a permeability of the vacuum, andµr is a relative
recoil permeability of the PM.

As shown in Fig.2, the magnetization vectorM i for the i-th
segment of the PM with an array variable l can be expressed
in a cylindrical coordinates system (r, θ, z) as

M i = Mi,rer +Mi,θeθ +Mi,zez (5)

where

Mi,r = Mi cosϕi sin(θ − ϑi) (6)

Mi,θ = Mi cosϕi cos(θ − ϑi) (7)

Mi,z = Mi sinϕi (8)

and ϕi ≡ π(i − 1)/l + π/2 is an elevation angle of the
magnetization vector, ϑi ≡ π(i − 1)/(pl) is an azimuthal
angle measured from the x-axis to the line extended radi-
ally from the origin O through the center Gi, er , eθ and ez
are unit vectors in the radial, azimuthal and axial direction,

respectively. It is worth noting that magnetization pattern of
the PM can exactly be realized through the elevation angle ϕi
and the azimuthal angle ϑi by substituting integers into the
array parameter l.

Magnetic scalar potential φ = φ(r, θ, z) can now be
introduced because of the curl-free relation (2) as

Hr = −
∂φ

∂r
, Hθ = −

1
r
∂φ

∂θ
, Hz = −

∂φ

∂z
. (9)

Taking divergence of (3) and (4) in combination with (1)
provides Laplace and Poisson equations, respectively

∂2φ

∂r2
+

1
r
∂φ

∂r
+
∂2φ

∂θ2
+
∂2φ

∂z2
= 0 in �1 and �3 (10)

∂2φ

∂r2
+

1
r
∂φ

∂r
+
∂2φ

∂θ2
+
∂2φ

∂z2
=

1
µr
∇ ·M in �2. (11)

General solution for the Laplace equation (10) can be
expanded in the form of double-Fourier series in the manner
of separation of variables as

φ =

∞∑
n=odd

∞∑
k=1

Xnk (x) cos(νθ) sin(λz) (12)

where ν ≡ np, λ ≡ 2kπ/τ , τ ≡ 2zs, and Xnk are the specific
functions to be determined below in each region in terms of
the normalized radial coordinate, x ≡ λr .
Components of the magnetization vector can similarly be

expressed as

Mr ' 0 (13)

Mθ =

∞∑
n=odd

∞∑
k=1

Mθnk sin (νθ) sin (λz) (14)

Mz =

∞∑
n=odd

Mzn0 cos (νθ)

+

∞∑
n=odd

∞∑
k=0

Mznk cos (νθ) cos (λz) (15)

where

Mθnk =
8p
πτ

∫ π/p

0
dθ
∫ τ/2

0
dzMθ (θ, z) sin(νθ) sin(λz)

=
2Nθn
kπ

{
1− cos

(
αqkπ

)}
(16)

Nθn ≡
M
2

{
sincψνn + sincψ−νn

}
(δn,2κl−1 − δn,−2κ ′l+1)

(17)

ψνn ≡ (1+ ν)1/2 (κ = 1, 2, · · · ; κ′ = 0,−1, · · · )

(18)

and

Mznk =
8p
πτ

∫ π/p

0
dθ
∫ τ/2

0
dzMz(θ, z) cos(νθ) cos(λz)

=
2Mzn

kπ
sin(αqkπ ) (19)

Mzn ≡ Msincχνn (δn,2κl−1 + δn,−2κ ′l+1) (20)
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FIGURE 1. a) Top view and side view of the analytical AFPM model is illustrated for changeable parameters
2p = 4, Q = 6 and l = 4 as one of the examples. b) Arrangements of the PM with l = 1(regular),
l = 2(standard-Halbach), l = 3, 4(multipole-Halbach) and l � 1(ideal Halbach).

FIGURE 2. Magnetization vector M i of the i -th PM segment with an
arbitrary array parameter l . The vector M i is uniform in each segment.
See also equations (5) to (8) for more strict definitions.

χνn ≡ ν1/2 (κ = 1, 2, · · · ; κ′ = 0,−1, · · · ) (21)

with αq ≡ zm/zs and δnm = 1 (n = m) or 0 (n 6= m)
a Kronecker delta notation. The radial component Mr can
safely be dropped because it does not contribute to the net
Lorentz torque.

The Laplace and Poisson equations (10) and (11) can
therefore be rewritten in terms of the specific functionsXnk (x)
as

∂2Xnk
∂x2

+
1
x
∂Xnk
∂x
−

(
1+

ν2

x2

)
Xnk = 0 in �1,3 (22)

×
∂2Xnk
∂x2

+
1
x
∂Xnk
∂x
−

(
1+

ν2

x2

)
Xnk

=
1
λ

(
νMθnk

x
−Mznk

)
in �2. (23)

The general solutions in the regions �1, �2 and �3 can now
respectively be expressed by

X1,nk = Ank Iν (x)+ BnkKν (x) (24)

X2,nk = C̃nk (x) Iν (x)+ D̃nk (x)Kν (x) (25)

X3,nk = Enk Iν (x)+ FnkKν (x) (26)

where Iν(x) and Kν(x) are modified Bessel functions of the
first- and the second-kind for the ν-th order, respectively, and
other notations are defined by

C̃nk (x) ≡ Cnk + fnk (x) (27)

D̃nk (x) ≡ Dnk + gnk (x) (28)

and

fnk (x) ≡
1
λ

∫ x

xr
dx ′

(
νMθnk − x ′Mznk

)
Kν(x ′) (29)

gnk (x) ≡ −
1
λ

∫ x

xr
dx ′

(
νMθnk − x ′Mznk

)
Iν(x ′) (30)

with xr ≡ λRr. See also Appendix A for the relevant deriva-
tions.

Six unknown coefficients Ank , Bnk , Cnk , Dnk , Enk and Fnk
have to be determined subject to the following boundary
conditions:

B1r (Rs, θ, z) = 0 (31)

H1θ (Rm, θ, z) = H2θ (Rm, θ, z) (32)
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B1r (Rm, θ, z) = B2r (Rm, θ, z) (33)

H1z (Rm, θ, z) = H2z (Rm, θ, z) (34)

H2θ (Rr, θ, z) = H3θ (Rr, θ, z) (35)

B2r (Rr, θ, z) = B3r (Rr, θ, z) (36)

H2z (Rr, θ, z) = H3z (Rr, θ, z) (37)

B3r (Ro, θ, z) = 0. (38)

The boundary condition (34) is intrinsically equivalent to
(32), and (37) to (35) likewise. The number of equations to
be solved therefore amounts to six. It should also be noted
that the relations (31) and (38) provide Dirichlet boundary
conditions at the outer edge r = Rs and the inner edge r = Ro
of the yoke, while that the form of the solution (12) naturally
satisfies Neumann boundary conditions φ(x, θ, z = 0) =
φ(x, θ, z = zs) = 0 at the upper surface z = 0 of the lower
yoke and the lower surface z = zs of the upper yoke. After
algebraic manipulation, the above relations (31) to (38) yield

Cnk = −d−1
(
β ′νKν,r + βνK̃ν,r

) (
α′νRnk,m − αν R̃nk,m

)
(39)

Dnk = d−1
(
β ′νIν,r − βν Ĩν,r

) (
α′νRnk,m − αν R̃nk,m

)
(40)

d ≡
(
α′νIν,m − αν Ĩν,m

) (
β ′νKν,r + βνK̃ν,r

)
+

(
α′νKν,m + ανK̃ν,m

) (
−β ′νIν,r + βν Ĩν,r

)
(41)

where

αν ≡ K̃ν,s Ĩ−1ν,s Iν,m + Kν,m, α′ν ≡ K̃ν,s Ĩ−1ν,s Ĩν,m − K̃ν,m
(42)

βν ≡ Iν,r + Ĩν,oK̃−1ν,oKν,r, β ′ν ≡ Ĩν,r − Ĩν,oK̃−1ν,o K̃ν,r
(43)

Rnk,m ≡ fnk,mIν,m + gnk,mKν,m (44)

R̃nk,m ≡ fnk,mĨν,m − gnk,mK̃ν,m (45)

Ĩν,i ≡ Iν−1,i + Iν+1,i, K̃ν,i ≡ Kν−1,i + Kν+1,,i (46)

Iν,i ≡ Iν(xi), Kν,i ≡ Kν(xi) (47)

fnk,i ≡ fnk (xi), gnk,i ≡ gnk (xi) (48)

with xi ≡ λkRi(i = o,r,m,s). Other coefficients are given by

Bnk = α−1ν
(
Cnk Iν,m + DnkKν,m + Rnk,m

)
(49)

Enk = β−1ν
(
Cnk Iν,r + DnkKν,r

)
(50)

Ank = Bnk K̃ν,sĨν,s−1 (51)

Fnk = Enk Ĩν,oK̃−1ν,o . (52)

Practical technique for numerically computing the coeffi-
cients Cnk and Dnk is given in Appendix B.
The resultant magnetic fields in the air-gap can conse-

quently be expressed as

Br = −µ0
∂φ

∂r

= −µ0

∞∑
n=odd

∞∑
k=1

λ
∂X2,nk
∂x

cos(νθ ) sin(λz) (53)

FIGURE 3. Reference geometry of the AFPM with l = 2 for calculating
back-EMF, Lorentz force and torque.

Bθ = −µ0
∂φ

r∂θ

= µ0

∞∑
n=odd

∞∑
k=1

νλ
X2,nk
x

sin(νθ ) sin(λz) (54)

Bz = −µ0
∂φ

∂z

= −µ0

∞∑
n=odd

∞∑
k=1

λX2,nk cos(νθ ) cos(λz). (55)

B. BACK-EMF
When the PM rotor revolves around a z-axis with a uniform
angular frequency ω, the axial component Bz of the magnetic
field permeating a coil surface located at z = zs is given by

Bz(r, θ, z = zs, t)

= µ0

∞∑
n=odd

∞∑
k=1

(−1)k+1λX2,nk cos ν(θ − ωt).

(56)

As shown in Fig.3, the linkage flux 8j for the j-th coil can
straightforwardly be obtained by taking the surface integral
for Bz over the area Sj of the coil as

8j ≡

∫∫
Sj
dSBz(r, θ, z = zs, t)

= µ0

∞∑
n=odd

∞∑
k=1

(−1)k+1

λ
Ink

∫ θ+j

θ−j

dθ cos ν(θ − ωt)

= 2µ0

∞∑
n=odd

∞∑
k=1

(−1)k+1

νλ
Ink sin

(
νθc

2

)
× cos ν(θj − ωt) (57)

where θ±j ≡ θs(j − 1) + π/(2p) ± θc/2 correspond to both
edges oriented in the radial direction of the j-th coil, and the
specific integral Ink defined by

Ink ≡

∫ xm

xr
xdxX2,nk (58)

reflects the magnetic field structure in the radial direction.
The back-EMF Ej in the j-th coil is now induced by the
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time-varying flux according to the Lenz’s law

Ej = −Nc
∂8j

∂t

= −2µ0Ncω

∞∑
n=odd

∞∑
k=1

(−1)k+1

λ
Ink sin

(
νθc

2

)
× sin ν(θj − ωt) (59)

where Nc is the number of turns in a coil, and hereafter Nc =

1 for simplicity. The relevant line back-EMF between the U-
andV-phase is then obtained by taking difference between the
phase back-EMFs with j = 1 and 2

E2 − E1 = −4µ0ω

∞∑
n=odd

∞∑
k=1

(−1)k+1

λ
Ink

× sin
(
νθc

2

)
sin
(
nπ
q

)
cos

(
2+ q
2q

nπ − νωt
)

(60)

where q(= 3) represents the number of phases.

C. LORENTZ FORCE AND TORQUE
Let us now formulate Lorentz force and torque. In this paper,
the Lorentz torque is defined as the moment of force that
purely derives from the Lorentz force oriented in the circum-
ferential (θ) direction. As shown in Fig.3, the Lorentz force
dfj exerted on an infinitesimal current element Ijdr of the j-th
coil is given by

dfj = (B+j − B
−

j )Ijdr, (61)

where B±j ≡ Bz(r, θ
±

j , z = zs, t) are axial magnetic fields
at both edges of the j-coil, and Ij ≡ I0 cos p(ωt − δj) is an
electric current in the j-th coil with I0 a peak current and
δj ≡ 2π (j − 1)/(pq) a phase shift. The Lorentz force df per
pole-pair is driven by a set of the U-, V- and W-phase coils,
and is expressed as

df ≡
q∑
j=1

dfj

= −2µ0I0dr
q∑
j=1

∞∑
n=odd

∞∑
k=1

(−1)k+1λX2,nk

× sin
(
νθc

2

)
cos p(ωt − δj) sin ν(θj − ωt). (62)

Noticing the explicit relation

sin ν(θj − ωt) = (−1)
n−1
2 cos ν(θ ′j − ωt) (63)

one obtains

df = 2µ0I0dr
q∑
j=1

∞∑
n=odd

∞∑
k=1

(−1)
2k+n+1

2 λX2,nk

× cos p(ωt − δj) cos ν(ωt − θ ′j ) (64)

with θ ′j ≡ θs(j − 1). Taking the following identity of the
summation in terms of j

2
q∑
j=1

cos pωt cos ν(ωt − θ ′j )

= cosφn

q∑
j=1

cosψn,j + cosφ−n

q∑
j=1

cosψ−n,j (65)

the formula (64) reduces to

1
µ0I0q

df
dr

=
1
q

q∑
j=1

∞∑
n=odd

∞∑
k=1

(−1)
2k+n+1

2 λX2,nk sin
(
νθc

2

)

×

cosφn

q∑
j=1

cosψn,j + cosφ−n

q∑
j=1

cosψ−n,j


(66)

where φn(t) ≡ (1+n)pωt andψn,j ≡ 2π (1+n)(j−1)/q. The
Lorentz torque T can finally be obtained by the integration
with respect to dT ≡ rdf as

T =
∫
dT

= µ0I0
∞∑

n=odd

∞∑
k=1

(−1)
2k+n+1

2 λ−1

×Ink (ξn cosφn + ξ−n cosφ−n) sin
(
νθc

2

)
(67)

where we have used the relation

ξn ≡

q∑
j=1

cosψn,j

= 1− (−1)n
(
cos

nπ
q
−
√
3 sin

nπ
q

)
. (68)

Eigen modes and eigen frequencies are summarized in
Table 1, where nontrivial modes are indicated by bold letters.
Trivial modes do not generate the net Lorentz force. The
Lorentz torque can therefore be expanded in terms of the
nontrivial modes as follows

1
µ0I0q

T

=

∞∑
k=1

(−1)k+1

λ
I1k sin21

+

∞∑
k=1

(−1)k+3

λ
(I5k sin25 −I7k sin27) cosφ5

+

∞∑
k=1

(−1)k+6

λ
(I11k sin211 −I13k sin213) cosφ11

+

∞∑
k=1

(−1)k+9

λ
(I17k sin217 −I19k sin219) cosφ17

+ · · · (69)
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TABLE 1. Eigen modes and eigen frequencies.

where 2n ≡ νθc/2. The first term represents a uniform
Lorentz torque independent of time, the second, third and
fourth terms correspond to torque ripples of the 6th, 12th and
18th order harmonics, respectively. In a compact form, one
can rewrite (69) as

1
µ0I0q

T =
∞∑
k=1

(−1)k+1

λ
I1k sin21

+

∞∑
m=1

∞∑
k=1

(−1)k+3m

λ

× (I6m−1,k sin26m−1 −I6m+1,k sin26m+1)

× cosφ6m−1. (70)

The torque constant Kt is defined as the uniform Lorentz
torque T0 per current as

Kt ≡
T0
I0
= µ0pq

∞∑
k=1

(−1)k+1

λ
I1k sin21 (71)

where T0 corresponds to the first term of eq.(70).

IV. RESULTS AND DISCUSSION
A. VALIDITY OF ANALYTICAL MODEL
Main parameters adopted in this model are listed in Table 2.
In order to validate the model, analytical results of the mag-
netic field distributions in the air-gap, back-EMF waveform
and torque waveform are calculated by the use of the derived
formulae (55), (60) and (69), respectively, and then compared
with those of the FEM. The axial components Bz of the
magnetic flux density at the central radius r = Rc ≡ (Rr +
Rm)/2 and just below the upper yoke z = zs are plotted as a
function of the azimuthal angle θ for some typical geometries
of p = 2, 3 and 4 in Figs.4a), b) and c), respectively. The
corresponding Fourier spectra are also drawn in Figs.4a′), b′)
and c′), respectively. The magnetic field amplitudes Bz,n are
defined as Bz,n ≡

∑
k (−1)

k+1λX2,nk (xc) with xc ≡ λRc. It is
shown that magnetic field distributions of l = 1 are almost
the same irrespective of the number of poles, while those of
l = 2, 3, 4 on the d-axis corresponding to θ = π/p gradually
increase with an increase in poles. It is also found from the
Fourier spectra that the fundamental amplitudes of the fields

TABLE 2. Model parameters.

become strong with an increase in l except for the low-pole
case a′), and that the space harmonics with n = 2kl + 1(k =
1, 2, · · · ) are excited for all cases. Specifically, the third
harmonics appears only for the regular PM array. It would
be expected from the spectra that the multipole-Halbach PM
with l = 4 delivers the most superior performance in this
study since the fundamental amplitude is the highest, and the
harmonics is the lowest. The results of the analytical model
for the magnetic field distributions and their Fourier spectra
are in excellent agreement with those of the FEM.

In Fig.5, the axial components Bz in the air-gap on the
d-axis corresponding to θ = 0 are now plotted against the
radial coordinate r for the same geometrical parameters as
above. The magnetic field amplitudes increase in the order of
l = 1, 2, 3 and 4, as is expected. More interestingly, their
amplification of the fields becomes significant for higher
poles. It should also be noted that the curves have a negative
(right down) slope for l ≥ 2 since the interaction of the
magnetic fields in the Halbach PM is enhanced in the interior
region. The analytical results agree well with the FEM ones
except for some small deviations in the region close to the
outer edge of the PM.

Temporal waveforms of the line back-EMF Eu − Ev
between the U- and V-phase and the relevant Lorentz torque
T for the same parameters as above are shown in Figs.6 and 7,
respectively. As l increases, the waveforms of the back-EMF
approach sinusoidal irrespective of the number of poles.
Simultaneously, the waveforms of the Lorentz torque shift
upward decreasing their fluctuation, i.e torque ripple, for
p ≥ 2. However, amplitudes of the torque ripple increase
with increasing the number of poles for all l. The observed
improvement in the torque performance is consistent with the
behavior of the Fourier spectra discussed above. It can be
confirmed once again that the results of the analytical model
agree well with those of the FEM.
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FIGURE 4. Axial components of the magnetic field against the azimuthal coordinate in the air-gap with g = 0.5 mm and (Rr, Rm) = (20, 40) mm for a)
p = 2, b) p = 3 and c) p = 4, and their corresponding Fourier spectra a′), b′) and c′), respectively. Dotted regions are separately enlarged for clarity of error.

FIGURE 5. Axial components of the magnetic field against the radial coordinate in the air-gap with g = 0.5 mm and (Rr, Rm) = (20, 40) mm for a) p = 2,
b) p = 3 and c) p = 4. Dotted regions are separately enlarged for clarity of error.

FIGURE 6. Waveforms of the line back-EMF with g = 0.5 mm and (Rr, Rm) = (20, 40) mm for a) p = 2, b) p = 3 and c) p = 4. Dotted regions are separately
enlarged for clarity of error.

Furthermore, the validity of the proposed model can well
reasonably be explained by showing the fact that the mechan-
ical output power Tω is identical with the electrical input

power EuIu + EvIv + EwIw. Namely, energy conservation
law holds at anytime in the system of equations. It can be
demonstrated not only numerically but also analytically that
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FIGURE 7. Waveforms of the Lorentz torque with g = 0.5 mm and (Rr, Rm) = (20, 40) mm for a) p = 2, b) p = 3 and c) p = 4. Dotted regions are separately
enlarged for clarity of error.

FIGURE 8. Axial components of the fundamental magnetic field against the radial coordinate in the air-gap with
g = 0.5 mm for a) p = 5, b) p = 10, c) p = 20, and d) p = 50.

the expression for the Lorentz torque T given in (70) is
consistently reproduced by calculating straightforwardly the
formula (EuIu + EvIv + EwIw)/ω with the aid of (59). Math-
ematical proof of the energy conservation law is presented in
the Appendix C.

In the calculations of the FEM, commercial EM simula-
tion software, JMAG-designer (x64) ver.21.0 [36] has been
utilized on a high-end workstation equipped with a hexa-core
processor. In this environment it takes 5 to 6 hours for the
FEM, while only a few minutes for the analytical model to
obtain a single waveform of the back-EMF or Lorentz torque.

B. RESULTS OF ANALYTICAL MODEL
Hereafter, discussion concentrates on the results obtained by
the analytical model for globally parametrical study. In Fig.8,
the axial components B(1)z of the magnetic flux density with
the fundamental mode (n = 1) on the d-axis are plotted
against the radial coordinate r for a) p = 5, b) p = 10,
c) p = 20 and d) p = 50, changing the inner radius Rr =
20, 40, 60 and 80 mm of the PM, respectively. As shown in
Figs.8a) and b) for low-poles, the magnetic field with the
regular PM of l = 1 is distributed almost uniformly except
for both edges of the PM, while the fields with the Halbach
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FIGURE 9. Torque constants against the number of pole-pairs with Rr = 60 mm and Rm = 100 mm of the magnet for
a) g = 0.5 mm, b) g = 1.0 mm, c) g = 1.5 mm and d) g = 2.0 mm.

FIGURE 10. Torque constants against inner radius of the PM with g = 0.5 mm and Rm = 100 mm for a) p = 5, b)
p = 10, c) p = 20 and d) p = 50.
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FIGURE 11. Torque constant densities against inner radius of the PM with g = 0.5 mm and Rm = 100 mm for a)
p = 5, b) p = 10, c) p = 20 and d) p = 50.

PMs of l = 2, 3, and 4 increase inwardly irrespective of
the values of the inner radii. While in c) for middle-poles,
the fields are formed almost uniformly in a wide range of
the radius for all l. In d) for high-poles, all of the fields
increase outwardly contrary to the case a). It is found that
the magnetic field structure in the radial direction strongly
depends on the number of poles due to the convergence effect
of the Halbach PM. It should be mentioned that the artificial
correction function exploited in some preceding works would
potentially overestimate or underestimate the magnetic field
strength for low-poles and/or high-poles especially when the
geometry of the AFPM is radially thick. The obtained results
can be recognized by the fact that reducing Rr is intrinsi-
cally equivalent to increasing p and/or l because the distance
between the neighboring PM segments close to the inner edge
is estimated to be Rrπ/(pl).
In general, the torque constant of the RFPM machine is

proportional to the product of the amplitude of the fundamen-
tal magnetic fields and the number of poles, i.e. Kt ∝ pB(1)ρ ,
e.g., [37], where Bρ is a radial component of the magnetic
fields. On the other hand, the torque constant of the AFPM
depends not only on the number of poles, but also on the radial
structure of the magnetic fields through the integral term I1k
in (71). This is because the magnetic field in the air-gap of the
RFPM is almost independent of the axial coordinate, while
that of the AFPM is strongly dependent on the radial coor-
dinate, as already shown in Fig.8. So now, Fig.9 shows the
torque constants against the number of pole-pairs for some

typical geometries of the AFPMwith (Rr,Rm)=(60,100) mm
for a) g = 0.5 mm, b) g = 1.0 mm, c) g = 1.5 mm and
d) g = 2.0 mm. It is found that in the narrow air-gaps of
a) and b) the torque constants monotonically increase with
increasing p in the global range of 2 ≤ p ≤ 100, while that in
the large gaps of c) and d), maximum turning points clearly
appear for all l.

In Fig.10, the torque constants are then plotted against the
inner radius Rr of the PM with the fixed air-gap g = 0.5 mm
and Rm = 100 mm for a) p = 5, b) p = 10, c) p = 20 and d)
p = 50. For the low number of poles, significant difference
among array-variables l cannot be found. However, for the
high-poles p ≥ 10 enhancement in the torque constant
becomes more apparent because of the focusing effect of
the multipole-Halbach PM as the number of poles increases,
and/or as the inner radius of the PM decreases.

The torque constant per unit volume of the PM can be
defined as K̃t ≡ Kt/{π(R2m−R

2
r )zm}. Hereafter, K̃t is referred

to as the torque constant density. Fig.11 presents the torque
constant densities against the inner radius of the PMwith g =
0.5 mm and Rm = 100 mm for a) p = 5, b) p = 10, c) p =
20 and d) p = 50. As shown in the figure, the torque constant
densities increase with an increase in the number of poles,
and become higher in the order of l = 1, 2, 3 and 4 except
for the low-poles. Fig.11a) shows that the torque constant
densities of the standard-Halbach PM are weaker than that
of the regular PM since the focusing effect of the magnetic
fields would be insufficient in almost the whole range of Rr.
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For the middle-poles of b) and c), difference between the
regular and multipole-Halbach PM becomes significant. For
the high-poles of d), the torque constant densities keep high,
but moderately decrease with decreasing inner radius for all l.

V. SUMMARY
The novel 3-D analytical model of the AFPMmachine with a
segmented multipole-Halbach PM array has been proposed
in this paper. The mathematical expressions for magnetic
fields, back-EMF, Lorentz torque and torque constant have
successfully been derived in the explicit closed form, incorpo-
rating the effect of the space harmonics of the fields. Validity
of the model can reasonably be demonstrated by the fact
that the results obtained by the analytical model are in good
agreement with those by the FEM, and that the law of energy
conservation holds for the input- and output-power in the
system of equations. On the basis of this model, the torque
constant of theAFPMhas been investigated in awide range of
the designing parameters, involving the number of poles, the
number of segments per pole, air-gap and radius of the PM.
The derived formulae and the obtained results are of much
use in understanding the performance characteristics of the
AFPM, and are available especially in early-designing of the
electric machines, e.g. servomotors in multi-jointed robots
or torque-controllable in-wheel AFPM machines on-board
electric vehicles.

APPENDIX A: SOLUTION OF THE POISSON EQUATION
Poisson equation in the region �2 is given in the form

∂2Xnk
∂x2

+
1
x
∂Xnk
∂x
−

(
1+

ν2

x2

)
Xnk = R (A-1)

where

R ≡
1
λ

(
νMθnk

x
−Mznk

)
. (A-2)

Because independent solutions for the homogeneous differ-
ential equation with R = 0 are ϕν ≡ Iν(x) and ψν ≡ Kν(x),
general solution can be expressed as

X (0)
nk = Cνϕν(x)+ Dνψν(x) (A-3)

While special solution for the inhomogeneous equation with
R 6= 0 can be written

X (s)
nk = fν(x)ϕν(x)+ gν(x)ψν(x) (A-4)

where

fν ≡ −
∫
dx

Rψν
w
=

1
λ

∫
dx(νMθnk −Mznk )ψν (A-5)

gν ≡
∫
dx

Rϕν
w
= −

1
λ

∫
dx(νMθnk −Mznk )ψν (A-6)

and

w ≡

∣∣∣∣ϕν ψνϕ′ν ψ
′
ν

∣∣∣∣ = ϕνψ ′ν − ϕ′νψν = −1
x

(A-7)

is a Wronskians. Therefore, general solution for the inhomo-
geneous equation is given by

Xnk = X (0)
nk + X

(s)
nk

= {Cν + fν(x) }ϕν(x)+ {Dν + gν(x)}ψν(x).

(A-8)

APPENDIX B: FOURIER COEFFICIENTS
In order to avoid overflow in the numerical integration involv-
ing Bessel’s functions, the relevant coefficients Cnk and Dnk
can respectively be modified to

Cnk =
−fnk,m + K̃ν,sĨ−1ν,s gnk,m

1− K̃ν,sĨ
−1
ν,s Ĩν,oK̃

−1
ν,o

=
−fnk,m + εgnk,m

1− δ
' (−fnk,m + εgnk,m)(1+ δ)

= −fnk,m + εgnk,m − δfnk,m + O(ε2, δ2, εδ)

(B-1)

and

Dnk =
Ĩν,oK̃−1ν,o (−fnk,m + K̃ν,sĨ

−1
ν,s gnk,m)

1− K̃ν,sĨ
−1
ν,s Ĩν,oK̃

−1
ν,o

= Ĩν,oK̃−1ν,oCnk (B-2)

with ε ≡ K̃ν,s Ĩ−1ν,s and δ ≡ Ĩν,oK−1ν,oε

APPENDIX C: ENERGY CONSERVATION
It can mathematically be demonstrated on the basis of the
derived formulae for the back-EMF and the torque that the
law of energy conservation Tω = EuIu + EvIv + EwIw holds
at anytime in the system. Electrical input power Pein can be
expressed by

Pein ≡
q∑
j=1

EjIj (C-1)

where

Ej = −
∂8j

∂t

= −2µ0ω

∞∑
n=odd

∞∑
k=1

(−1)k+1

λ
Ink sin2n

× sin ν(θj − ωt) (C-2)

Ij = I0 cos p(ωt − δj) (C-3)

with δj = 2π (j− 1)/(pq) and θj = θs(j− 1)+ π/(2p). Using
the trigonometric identity, one obtains

2
q∑
j=1

sin ν(θj − ωt) cos p(ωt − δj)

= (−1)
n−1
2 cos p(n+ 1)ωt

q∑
j=1

cos$+nj
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− (−1)
n+1
2 sin p(n+ 1)ωt

q∑
j=1

sin$+nj

+ (−1)
n−1
2 cos p(n− 1)ωt

q∑
j=1

cos$−nj

− (−1)
n+1
2 sin p(n− 1)ωt

q∑
j=1

sin$−nj (C-4)

with$±nj ≡ 2π (n±1)(j−1)/3. The terms of summation with
respect to j can be dropped or simplified into the form

q∑
j=1

sin$±nj = 0 (C-5)

q∑
j=1

cos$+nj = qδn,6m−1 (m = 1, 2, 3, · · · ) (C-6)

q∑
j=1

cos$−nj = qδn,6m′+1 (m
′
= 0, 1, 2, · · · ) (C-7)

where δnm = 1 (n = m) or 0 (n 6= m) is a Kronecker delta
notation. Substitution of (C.2) and (C.3) into (C.1) with the
help of (C.5)-(C.7) leads to the following formula

Pein
µ0qI0ω

=

∞∑
m=1

∞∑
k=1

(−1)
2k+n+3

2

λ
Ink sin2n cos p(n+ 1)ωtδn,6m−1

−

∞∑
m′=0

∞∑
k=1

(−1)
2k+n+1

2

λ
Ink sin2n cos p(n− 1)ωtδn,6m′+1.

(C-8)

It is found from this result that the fundamental mode n =
1 originates from m′ = 0 only. The above formula can
therefore be rewritten in the separation form between the
fundamental m′ = 0 and the harmonic modes m′ = m =
1, 2, · · ·

Pein
µ0qI0ω

=

∞∑
m=1

∞∑
k=1

(−1)
2k+n+3

2

λ
Ink sin2n cos p(n+ 1)ωtδn,6m−1

−

∞∑
k=1

(−1)k+1

λ
I1k sin21

−

∞∑
m=1

∞∑
k=1

(−1)
2k+n+1

2

λ
Ink sin2n cos p(n− 1)ωtδn,6m+1.

(C-9)

The electrical input power can finally be given in the follow-
ing expression

Pein
µ0qI0ω

= −

∞∑
k=1

(−1)k+1

λ
I1k sin21

−

∞∑
m=1

∞∑
k=1

(−1)k+3m

λ

× (I6m−1,k sin26m−1 −I6m+1,k sin26m+1)

× cos 6mpωt. (C-10)

This formula exactly coincides with the mechanical output
power Pmout ≡ Tω.
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