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ABSTRACT This paper is concerned with the problem of channel estimation in virtual angular domain
in massive MIMO orthogonal frequency division multiplexing (OFDM) systems, in the presence of time
varying channels. The proposed channel estimator is based on dichotomous coordinate decent joint sparse
recovery (DCD-JSR) algorithm, which was well suited for massive MIMO systems with channels static
over several OFDM symbols, but it is not accurate for time-varying channels. The estimator proposed in this
paper exploits the basis expansion model (BEM) for approximation of the time-variation of the channel and
the sparsity of the channel in the virtual angular domain with a common support over OFDM subcarriers
and OFDM symbols for joint estimation of the BEM expansion coefficients. It is shown that, when using
the Legendre polynomials as the BEM and depending on the normalized Doppler frequency, only a small
number of expansion coefficients is required to provide accurate channel estimation.

INDEX TERMS Basis expansion model (BEM), common sparsity, DCD-JSR algorithm, joint channel
estimation, massive MIMO, orthogonal frequency-division multiplexing (OFDM), time varying channels.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) has been
proposed for the next generation communication systems,
since it can provide high data rates by employing the wire-
less transmitter with a high number of antennas and provide
high spectral efficiency by utilising the additional degree of
freedom in the spatial domain [1], [2]. The massive MIMO
faces challenges such as practical system modeling, chan-
nel estimation and so on [3]. Especially, accurate channel
state information (CSI) serves as the key information for
techniques such as coherent detection, therefore, an accurate
channel estimation is necessary for practical applications of
massive MIMO systems [4].

In [5], experimental results have shown that massive
MIMO channels exhibit sparsity, due to the relatively small
angle spread perceived from a base station (BS) between
user and BS. According to [6], [7], and [8], the common
sparsity is shared by different subcarriers due to the spatial
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propagation property of the wireless channel, such as the
number of scatterers is remaining nearly unchanged over
the system bandwidth, which is referred to as the spatially
common sparsity over multiple subcarriers. Besides, since
the angle variation from the user to the BS is relatively slow,
we can consider the channel support is static over a sequence
of OFDM symbols [7], [8]. Thus, in this paper, we consider
that the channel exhibits sparsity, and shares common support
over several OFDM symbols.

Sparse recovery techniques are attractive for channel
estimation [9], [10], [11]. The channel estimation deals
with estimation of complex-valued parameters. In [12], the
dichotomous coordinate descent (DCD) algorithm is pro-
posed for solving complex-valued sparse problems. It has
been indicated in [12] and [13] that the computational com-
plexity of the algorithm is dominated by the computational
complexity of a small number of successful iterations, while
most of the operations of the DCD algorithm are addi-
tions and bit-shifts. The algorithm provides accurate channel
estimation and is computationally efficient [14], however,
it does not suit massive MIMO channel estimation in the
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virtual angular domain. In [15], by employing the DCD
algorithm and considering that the channel is statistic over
several OFDM symbols, the DCD-JSR algorithm is proposed
for the channel estimation in massive MIMO in the virtual
angular domain; the simulation results have shown that the
DCD-JSR algorithm outperformes the distributed sparsity
adaptive matching pursuit (DSAMP) algorithm [7], however,
it cannot provide accurate channel estimation when the chan-
nel is time-varying.

In [16] and [17] and many other publications, it has been
shown that, the time-varying channel can be approximated
accurately by employing the basis expansion model (BEM).
Consequently, estimation of a realization of random process
describing the time-varying channel is transformed into esti-
mation of time-invariant expansion coefficients [18]. In [19],
the Karhunen-Loeve BEM has been proposed for estimating
the time-varying channel, however, it is very sensitive to the
variations of the channel statistics. In [20] and [21], algebraic
polynomial BEMs have been employed to estimate the time-
varying channel, where the channel vectors can be approxi-
mated as a linear combination of a set of polynomials. In [17],
the experimental results have indicated that, by employing
the Legendre polynomials as the BEM, the channel varia-
tion could be accurately approximated. Thus, in this paper,
we consider employing the Legendre polynomials to approx-
imate the time-variation of the channel in the virtual angular
domain.

In this paper, by combining the DCD-JSR algorithm [15]
and the BEM, we show that the modified DCD-JSR algo-
rithm can estimate the channel in OFDM system operating
over frequency selective and highly mobile wireless time-
varying channels. Simulation results show that, compared
to the original DCD-JSR algorithm, the modified DCD-JSR
algorithm could provide better MSE performance when esti-
mating time-varying channels.

The paper is organized as follows. Section II describes the
system model. In Section III, channel model for time varying
channel is introduced. In Section IV, the processes of employ-
ing the basis functions, and estimating the time-varying chan-
nel are described. In Section V, numerical examples are
analysed and, finally, Section VI presents the conclusion.

In this paper, capital and small bold fonts are used to
denote matrices and vectors, respectively, (x)n denotes the
nth element of the vector x, Rq denotes the qth column of
the matrix R, and Rn denotes the nth row of the matrix R,
Rm,n denotes an element of the matrix R. The transpose
operator is given by (.)T, (.)∗ denotes the conjugate operator,
(.)† denotes the Moore-Penrose inversion, and (.)H denotes
the Hermitian transpose operator. The `0-norm and `2-norm
are represented by ||.‖0 and ||.‖2, respectively. We use I to
denote a support, |I| is the cardinality of the support I, Ic is the
complement of I, RI is a matrix obtained from R, and which
only contains rows corresponding to support I. RI,I is an
|I| × |I| matrix obtained from R by collecting elements from
columns and rows corresponding to I, and xI is the subset
of x that includes non-zero elements from x corresponding

to I. We use h to denote a channel vector and h̃ to denote the
channel vector in the virtual angular domain, h̃n denotes the
channel vector corresponding to the nth subcarrier.R denotes
the real part of a complex number, and j =

√
−1.

II. SYSTEM MODEL
A. CHANNEL MODEL
In a massive MIMO system, consider a time interval consist-
ing of J OFDM symbols. M antennas are employed at the
BS to serve K single-antenna users simultaneously, where
M � k. At the tth OFDM symbol, 1 ≤ t ≤ J, for the
nth subcarrier, 1 ≤ n ≤ N, the received signal model for the
kth user, 1 ≤ k ≤ K, in the frequency domain is given by

ytk,n =
(
htk,n

)T xtn + wt
k,n, (1)

where htk,n ∈ CM×1 represents the downlink channel between
the M BS antennas and the kth user, xtn ∈ CM×1 is the vector
of transmitted symbols (data or pilot symbols) and wt

k,n is the
corresponding additive white Gaussian noise (AWGN). For a
single user, we can drop the index k , thus we can write

ytn =
(
htn
)T xtn + wt

n. (2)

Matrix AB is used to modify the channel vector htn into
a channel vector h̃tn in the virtual angular domain, and it
is determined by the geometric structure of the antenna
array. We consider a uniform linear array with the antenna
spacing λ/2, where λ is the wavelength, then AB becomes
the discrete Fourier transform (DFT) matrix. Thus we obtain

ytn =
(
h̃tn
)T

A∗Bx
t
n + wt

n, (3)

where
(
htn
)T
=

(
h̃tn
)T

A∗B. The channel vector in the angular
domain divides the covering area of the BS into angular
intervals, and the mth element of h̃tn corresponds to the mth
virtual angle, where 1 ≤ m ≤ M.
In massive MIMO systems, the BS is often positioned at a

high elevation with a small number of scatterers (in contrast
to the number of antennas) [5], [22], but the scatterers on the
user side are relatively rich. Thus, we can consider for the kth
user, in the virtual angular domain, only a small number |I| of
multipath arrivals contains themajority of the channel energy.
Hence, we have |I| ≤ M, and the channel vector exhibits
sparsity in the virtual angular domain.

We consider that the channel is static over one OFDM
symbol, furthermore, as indicated in [7], [8], and [15], since
the spatial propagation characteristics such as scatterers are
almost unchanged over the system bandwidth, as shown in
Fig.1, we can consider that in the same OFDM symbol,
for different subcarriers, the subchannel exhibits common
sparsity.

According to [23], in time-varying scenarios, the variation
of the arrival angles is usually much slower than that of
channel gain, thus, we can consider that during J successive
OFDMsymbols, the channel exhibits common sparsity. Thus,
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FIGURE 1. The channel vector exhibits common sparsity within the
system bandwidth in the virtual angular domain.

we can obtain

I11 = Ijn = IJN = I, 1 ≤ j ≤ J, 1 ≤ n ≤ N, (4)

where Ijn is the support set for the Jth OFDM symbol at the
nth subcarrier.

In this paper, we consider the pilot-aided channel estima-
tion. For the tth OFDM symbol, a part of subcarriers is used
for transmitting pilot symbols stp ∈ CM×1, and the received
signal at the pilot subcarrier n(p) is given by:

ytn(p) =
(
h̃tn(p)

)
TA∗Bs

t
p + wt

n(p), (5)[
stp
]
m
= ejθt,m,p , (6)

1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ t ≤ J

where θt,m,p are independent random numbers uniformly dis-
tributed in (0, 2π ].

B. CHANNEL ESTIMATION APPROACH
The conventional method to acquire the channel state infor-
mation (CSI) in frequency-division-duplexing (FDD) sys-
tems is as follows: the BS transmits downlink pilot symbols to
a user, so the user can estimate the downlink CSI locally and
then feed it back to the BS via an uplink channel [24]. If we
are employing conventional CSI estimation techniques (such
as the minimummean square error (MMSE) estimator), since
the number of pilot symbols required at the BS has to scale
linearly with the number of transmit antennas [22], it would
cause prohibitively large overhead for both pilot training
(downlink) and CSI feedback (uplink). Hence, to solve the
overhead issue, as suggested in [7], the channel estimation
is performed at the BS. The channel estimation scheme is
summarized as follows.
1 . In each OFDM symbol, every BS antenna broadcasts

pilot symbols to users, the kth user receives the signal
yk ∈ CM×1 and feeds it back to the BS. The BS recovers
the CSI for each user based on the feedback signals yk,
k = 1, . . . ,K. As shown in Fig. 2, each OFDM symbol
contains N subcarriers, while P subcarriers are used to
transmit pilot symbols. The user feeds back the received

FIGURE 2. Each OFDM symbol contains N subcarriers of which P
subcarriers are used to transmit pilot symbols.

signal to the BS without performing downlink channel
estimation.

2 . At the BS, by employing the BEM to approximate the
time variation of the channel, the DCD-JSR algorithm
can jointly estimate the common support I for multi-
ple sparse virtual angular domain channels. The least
squares (LS) algorithm [25] is then employed to acquire
the CSI based on an estimate of the common support I.

C. RECEIVED SIGNAL
For the tth OFDM symbol, at the pth pilot subcarrier, the
signal received at the BS is given by:

rtp = φ
t
ph̃

t
n(p) + vtp, 1 ≤ p ≤ P, 1 ≤ t ≤ J. (7)

Here, φtp =
(
stp
)T (

A∗B
)T
∈ C1×M is the sensing vector

defined by the DFT matrix and the pilot symbols. ˜htn(p) ∈
CM×1 is the sparse channel vector for the n(p)th subcarrier,
and vtp is the corresponding noise, which contains both down-
link and uplink channel noise.

III. TIME VARYING CHANNEL
In practice, due to the user mobility, the propagation of
wireless signals would face the time-varying environment [1].
Due to the simple implementation and the orthogonality
between columns of the basis-expansion matrix, using the
Legendre polynomials as basis functions on the investigated
time interval has been considered in the literature [17]. In this
paper, we consider that for the pth pilot subcarrier, the
time-varying channel vector can be approximated by Nb basis
functions:

ĥtn(p) =
Nb∑
i=1

bi(t)ci,p,

1 ≤ t ≤ J, (8)

where bi(t) is the tth element of a vector bi ∈ CJ×1 repre-
senting samples of the basis function bi(t), ci,p ∈ CM×1 are
expansion coefficients for the ith basis function at the pth pilot

VOLUME 11, 2023 1925



M. Liao, Y. Zakharov: Estimation of Time-Varying Channels in Virtual Angular Domain for Massive MIMO Systems

subcarrier. This approximation is valid if the channel varia-
tion are slow enough over one OFDM symbol, so that we can
ignore the intercarrier interference between the OFDM sub-
carriers. Thus, we mostly deal with variation of the channel
over a sequence of J OFDM symbols. In such scenarios, the
channel approximation in (8) can be made arbitrary accurate
by choosing a large enough number of basis functions Nb.
In our numerical investigation below, we consider scenarios
with a limited product fdT of the Doppler frequency fd by the
(orthogonality) duration of the OFDM symbol T, specifically,
fdT ≤ 0.05.

In this paper, we consider employing the Legendre poly-
nomials as the basis functions [26], defined as:

bi(t) =
1

2i−1i!
di−1

dti−1
[(t2 − 1)i−1], i ≥ 1. (9)

For the tth OFDM symbol at the pth pilot subcarrier,
by substituting (8) into (7), we can obtain:

rtp = φ
t
p

Nb∑
i=1

bi(t)ci,p + vtp, 1 ≤ p ≤ P, 1 ≤ t ≤ J. (10)

Since ˜htn(p) ∈ CM×1 exhibit common sparsity, the expansion
coefficient vectors ci,p ∈ CM×1 also exhibit common spar-
sity. Thus, the task of estimating JM channel coefficients is
transformed into estimating only Nb|I| expansion coefficients
with usually Nb � J and |I| ≤ M.
We collect the received signal samples rtp, 1 ≤ t ≤ J, in a

vector rp =
[
r1p, r

2
p, . . . , r

J
p

]T
∈ CJ×1, then we have:

rp =
Nb∑
i=0

Fi,pci,p + vp, 1 ≤ p ≤ P, (11)

where Ft
i,p = φ

t
pbi(t) ∈ C1×M, Fi,p = [F1

i,p,F
2
i,p, . . . ,F

t
i,p] ∈

CJ×M is a matrix whose tth row is Ft
i,p, and vp =[

v1p, v
2
p, . . . , v

J
p

]T
∈ CJ×1 is the noise vector. Since the

expansion coefficients exhibit common sparsity, we can
firstly estimate the common support and then find the expan-
sion coefficients.

IV. DCD-JSR ALGORITHM FOR TIME-VARYING CHANNEL
Here, the homotopy DCD algorithm [12] is used to esti-
mate the support of the expansion coefficients, as shown in
Table 1. First, we apply the homotopy DCD algorithm to the
`2`0 optimization problem of minimizing:

Jτ (c̃i,p) =
1
2

∥∥rp − Fi,pc̃i,p
∥∥2
2 + τ

∥∥c̃i,p∥∥0 . (12)

Here, we solve the optimization problem for the pth pilot
subcarrier of the ith expansion coefficient, and τ ∈ [0, 1) is
a regularization parameter. The second term in (12) makes
it a non-convex problem and the solution of it is NP-hard.
To solve the problem, we initially assign the support set
Ip = ∅, and by following the proposition in [12] we can
add new elements into the support or remove elements from

TABLE 1. `2`0 homotopy DCD algorithm.

TABLE 2. DCD iterations for LS minimization.

the support in several iterations, thus, the estimated expansion
coefficients ˜ci,p can be obtained.

Therefore we need to assign initially a high value to the
regularization parameter τ = τmax, so that the second term
in (12) dominates the cost function to provide an empty
support Ip = ∅. In the homotopy iterations, by gradually
reducing value of τ as τ ← γ τ , where γ ∈ [0, 1), new
elements can be added to the support or removed from the
support [12]. The algorithm stops when τ < τmin, where
τmin = µτ τmax and µτ ∈ [0, 1) is a predefined parameter.

To reduce the computational complexity [12], instead of
solving the LS problem in Table 1, step 3, we employ the
DCD iterations to solve the LS problem, as shown in Table 2,
where Nu is the number of successful DCD iterations, and a
successful DCD iteration means that the solution is updated.

Following is an example of how we estimate the
common support for the expansion coefficients. For the
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FIGURE 3. Average of normalized energy of elements of the vector c̃1,1,
for the expansion coefficient of the first basis function (zero-order
Legendre polynomial) for the first pilot subcarrier against the angular
intervals. SNR = 20 dB, J = 100, |I| = 8.

FIGURE 4. Average of the normalized energy of elements of the
vector q1, for the expansion coefficients of two basis functions
(zero-order and first order Legendre polynomials) and all pilot
subcarriers against the angular intervals. SNR = 20 dB, J = 100, |I| = 8.

simulation scenario, we consider a massive MIMO sys-
tem, SNR=20 dB, M = 128,P = 64, J = 100, the normal-
ized Doppler frequency fdT = 0.05 and Nb = 3, |I| = 8.
Fig. 3 shows the normalized energy of the elements of

the estimated expansion coefficient c1,1, for the first basis
function (zero-order Legendre polynomial) at the first pilot
subcarrier in the angular intervals. It is easy to see that, due to
the large variance of the energy of the elements in the angular
intervals, we can not clearly identify the support.

Since all expansion coefficients share a common support,
for the pth pilot subcarrier, we can compute another vector
with contribution from all the expansion coefficients:

qp =
Nb∑
i=1

∣∣c̃i,p∣∣2 , (13)

q̃p = qp/(max(qp)Nb). (14)

FIGURE 5. Average of the normalized energy of elements of the vector q,
for all basis functions and all pilot subcarriers against the angular
intervals. SNR = 20dB, J = 100, |I| = 8.

Here, as shown in Fig. 4, q̃p is a vector that contains nor-
malized energy of elements for all expansion coefficients
at the pth pilot subcarrier in the angular intervals. The new
plot shows clearly 4 of 8 non-zero directions. However, the
variance is still large and we can not estimate reliably the
support at this step.

As indicated in the previous section, since the expansion
coefficients ci,p share the common support among P subcar-
riers, we can compute a new vector, which takes this into
account:

q =
Nb∑
i=1

P∑
p=1

∣∣c̃i,p∣∣2 , (15)

q̃ = q/(max(q)NbP). (16)

As shown in Fig.5, here, q̃ ∈ CM×1 is a sparse vector with
elements averaging contribution from all pilot subcarriers and
all expansion coefficients. We can acquire now the common
support Ĩ by using the hard thresholding

˜I = {k : [q]k > ξ max [q]}, (17)

where ξ is a predefined thresholding parameter.
Based on the support estimate Ĩ, the MMSE approach [25]

is employed to estimate the expansion coefficients c̃p:

c̃p = Rpp(Rgg + σ
2w)−1 (18)

Rpp = FH
p rp (19)

Here, w is the identity matrix with size of |Ĩ| × |Ĩ|, c̃p ∈
C1×MNb is a vector containing c̃i,p for Nb basis functions,
and Fp ∈ CJ×MNb is the matrix containing Nb vectors Fi,p,
and σ 2 is the noise variance, which is assumed to be known.
The estimation of noise variance is a well known problem
(e.g., see [27], [28], [29]) and it is not considered here.
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FIGURE 6. MSE performance of the DCD-JSR algorithm against the number of employed basis functions; SNR = 20 dB, |I| = 3. (a) fdT = 0.02,
(b) fdT = 0.05.

V. SIMULATION RESULTS
The mean squared error (MSE) of the channel estimation will
be used to asses the algorithm performance. First, we com-
pute the MSE for the tth OFDM symbol at the pth subcarrier:

MSEt
p =
||ĥtp − h̃tn(p)||

2
2

||h̃tn(p)||
2
2

, (20)

||h̃tn(p)||
2
2 = (h̃

t
n(p))

H(h̃
t
n(p)), (21)

where ĥtp is the estimated channel vector obtained from (8),
and h̃tp is the true channel vector. Then the overall MSE for
the channel estimation is computed by:

MSE =
1
JP

P∑
p=1

J∑
t=1

MSEt
p. (22)

TheMSE in (22) is further averaged over the simulation trials.
We consider simulation scenarios corresponding to a

MIMO system with a uniform linear array. For the massive
MIMO system, in most simulation scenarios, we consider the
number of antennasM = 128, the number of pilot subcarriers
P = 64, the sampling frequency fs = 15.36 MHz, the time
interval for one OFDM symbol T = 66.7 µs, the carrier
frequency fc = 2.5 GHz and the number of simulation trials
Ns = 500. The performance of the oracle LS algorithm [27]
with known support is adopted as the performance bound.
In most scenarios, we consider two cases, SNR = 10 dB and
SNR = 20 dB, and the user mobility with v = 120 km

h and
v = 300 km

h . The Doppler frequency fd can be obtained by
using:

fd = fc
v
vc
, (23)

where vc = 3× 108 m/s is the light speed.

The channel estimation performance is investigated in sev-
eral ways. First, we investigate the MSE performance of
the proposed algorithm with different number of employed
OFDM symbols, then we compare the MSE performance
against the number of basis functions, with normalized
Doppler frequencies fdT = 0.02, fdT = 0.05, where
the Doppler frequency is approximately fd = 300 Hz,
fd = 700 Hz, respectively. After that, we compare the MSE
performance for different SNR, considering the normalized
Doppler frequency fdT = 0.05. The MSE performance
against the number of DCD-iterations is investigated to show
the convergence of the proposed algorithm, and the MSE
performance against the number of employed antennas is
also investigated. Furthermore, we compare the MSE perfor-
mance of the DCD-JSR algorithm and the distributed spar-
sity adaptive matching pursuit (DSAMP) algorithm from [7]
against the number of non-zero virtual angles, the oracle LS
algorithm with known support is adopted as the performance
bound [25]. At last, the computational complexity of the
DCD-JSR algorithm is analyzed.

In Fig. 6, we show the MSE performance of the DCD-JSR
algorithm for different number of employed OFDM symbols,
for SNR = 20 dB, |I| = 3, fdT = 0.02 and fdT = 0.05. It can
be seen that, as the number of OFDM symbols increases,
the better MSE performance is provided by employing more
basis functions. Thus we can conclude that, with longer data
packets, more basis functions are required for the DCD-JSR
algorithm to provide the best MSE performance, and the
minimum MSE is also reduced.

In Fig. 7, we compare the MSE performance for different
normalized Doppler frequencies, fdT = 0.02 and fdT = 0.05.
The number of employed OFDM symbols is set to J = 100,
and the number of non-zero virtual angles |I| = 3. It can
be seen that, for the higher normalized Doppler frequency,
we need to employ more basis functions to obtain the best

1928 VOLUME 11, 2023



M. Liao, Y. Zakharov: Estimation of Time-Varying Channels in Virtual Angular Domain for Massive MIMO Systems

FIGURE 7. MSE performance of the DCD-JSR algorithm against the
number of employed basis functions; SNR = 20 dB, J = 100, |I| = 3.

FIGURE 8. MSE performance of the DCD-JSR algorithm against the
number of employed basis functions; fdT = 0.02, J = 100, |I| = 3.

MSE performance. In other words, to provide the best MSE
performance, the number of basis functions to be employed
increases with the normalized Doppler frequency, which
means that with higher user mobility, themore basis functions
is required to provide accurate channel estimation.

In Fig. 8, we investigate the number of basis functions
required to provide the bestMSE performance under different
SNR scenarios, for the case fdT = 0.02, J = 100, |I| = 3.
It can be seen that, as the SNR increases, the number of basis
functions required to provide the best MSE performance is
increased. This is because when the SNR is low, the main
issue for channel estimation is the noise, a small number of
basis functions is required to approximate the channel. When
the SNR is high, the algorithm can focus more on the time
variation of the channel, thus the number of basis functions
required will be larger. Hence, we can say that, the number
of basis functions required to approximate the time-varying
channel should be higher for higher SNR.

FIGURE 9. MSE performance of the DCD-JSR algorithm against the hard
thresholding factor ξ ; fdT = 0.05, Nb = 3, J = 40.

To provide the best MSE performance, the threshold-
ing factor ξ needs to be properly adjusted. In Fig. 9,
we investigate the MSE performance of the DCD-JSR
algorithm against the hard thresholding factor ξ , for the
case Nb = 3, fdT = 0.05, J = 40. It is clear that, for both
cases SNR = 10 dB and SNR = 20 dB, as the number of
non-zero virtual angles |I| increases, the range for the thresh-
olding factor ξ which can provide the best MSE performance
decreases. However, in all the cases, the thresholding factor
can be chosen in the interval [0.30, 0.55] to provide the
minimum MSE.

Fig. 10 shows the MSE performance of the DCD-JSR
algorithm in scenarios with different number of non-zero
virtual angles against the number of DCD iterations, for the
case Nb = 2, fdT = 0.02, J = 40. It can be seen that, in all
these scenarios, after a few DCD iterations, the algorithm
converges to the best MSE. However, the smaller number of
non-zero angles, the faster is the convergence. For |I| ≤ 9,
a single DCD iteration is enough for the convergence.

In Fig. 11(a), we show the MSE performance for dif-
ferent number of employed antennas, for the case Nb = 3,
fdT = 0.05, J = 20, |I| = 4. It can be seen that, with a
small number of antennas, the MSE performance of the
DCD-JSR algorithm is poor. For SNR = 10 dB, it requires
M = 56 to approach the oracle performance, for SNR =
20dB, it requires at least M = 32. In Fig. 11 (b), we show the
probability of perfect support estimation against the number
of employed antennas, where a perfect support estimation
means the estimated support is exactly the same as the true
support, for the case |I| = 4, fdT = 0.05, J = 20. It can
be seen that, at SNR = 10 dB, with a small number of
employed antennas, we cannot estimate the support correctly
untilM = 64; this explains why theMSE performance is poor
with small number of antennas. We have run our simulations
up to M = 512 and observed that the MSE performance does
not change.

In Fig. 12(a) and Fig. 12(b), for the DCD-JSR algorithm
with Nb = 1 and Nb = 2, and the distributed sparsity
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FIGURE 10. MSE performance of the DCD-JSR algorithm against the
number of DCD iterations; fdT = 0.02, Nb = 2, J = 40.

FIGURE 11. (a) MSE performance of the DCD-JSR algorithm against the
number of employed antennas; (b) Probability of perfect support
estimation against the number of employed antennas. fdT = 0.05,
Nb = 3, J = 20, |I| = 4.

adaptive matching pursuit algorithm (DSAMP) [7], we show
the MSE performance for different number of non-zero

FIGURE 12. (a) MSE performance against the number of non-zero virtual
angles; (b) Probability of perfect support estimation against the number
of non-zero virtual angles. fdT = 0.02, J = 40, SNR = 20 dB.

virtual angles, and the probability of perfect support estima-
tion, respectively; here, the DCD-JSR algorithm with Nb = 1
corresponds to the version of the DCD-JSR algorithm pre-
viously proposed in [15] for time-invariant channels. For
simulation scenario, we consider the normalized Doppler
frequency fdT = 0.02, J = 40, SNR = 20 dB. It can be seen
that, in Fig. 12(a), when fdT = 0.02, since the time variation
of the channel is slow, we can estimate the channel quite
well using only one basis function in the DCD-JSR algorithm
or using the DSAMP algorithm, while both of them shows
the MSE performance close to the oracle performance. The
DCD-JSR algorithm with Nb = 2 also shows close to the
oralce MSE performance. In Fig. 12(b), it is seen that for
the DCD-JSR algorithm with Nb = 2, the support estimation
is slightly better than that for the DCD-JSR algorithm with
Nb = 1 and DSAMP algorithm, which explains why the
DCD-JSR algorithm with Nb = 2 can provide a better MSE
performance in this case.

In Fig. 13, a lower SNR is considered compared to Fig. 12,
SNR = 10 dB. It can be seen that, when the noise level
is higher, the MSE performance provided by the DCD-JSR
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FIGURE 13. (a) MSE performance against the number of non-zero virtual
angles; (b) Probability of perfect support estimation against the number
of non-zero virtual angles. fdT = 0.02, J = 40, SNR = 10 dB.

algorithm with Nb = 2 still shows close to the oracle perfor-
mance and provides the perfect support estimation, whereas
the DCD-JSR algorithmwith a single basis function (Nb = 1)
and the DSAMP algorithm, both developed for time-invariant
channels, show inferior MSE performance and support esti-
mation, although the DCD-JSR algorithm with Nb = 1 still
outperforms the DSAMP algorithm.

In Fig. 14(a) and Fig. 14(b), for the DCD-JSR algorithm,
and the DSAMP algorithm, we show the MSE performance
for different number of non-zero virtual angles, and the
probability of perfect support estimation, respectively. For
simulation scenario, we consider the normalized Doppler
frequency fdT = 0.05, J = 40, and SNR = 20 dB. It can be
seen in Fig. 14(a) that the DCD-JSR algorithm shows close
to the oracle MSE performance, while the DSAMP algorithm
shows a poor performance. In Fig. 14(b), it is seen that the
DCD-JSR algorithmwith Nb = 3 always provides the perfect
support estimation, while the DCD-JSR algorithm with only
one basis function Nb = 1 shows inferior performance,
and the DSAMP algorithm cannot estimate the support accu-
rately. This is because the DSAMP algorithm is developed for

FIGURE 14. (a) MSE performance against the number of non-zero virtual
angles; (b) Probability of perfect support estimation against the number
of non-zero virtual angles. fdT = 0.05, J = 40, SNR = 20 dB.

static channel, and when fdT = 0.05, i.e. the time variation
of the channel is fast, the algorithm is incapable of providing
a high estimation performance.

In Fig. 15, results are shown for a higher noise level
compared to Fig. 14, we set SNR = 10 dB. It can be seen in
Fig. 15(a), that the DSAMP algorithm has again a poor MSE
performance, while the DCD-JSR algorithmwith Nb = 1 and
Nb = 3 shows close to the oracle performance. In Fig. 15(b),
it is clear that the DSAMP algorithm cannot provide an
accurate support estimation in this case. The probability of
perfect support estimation provided by the DCD-JSR algo-
rithm with Nb = 1 decreses as the number of non-zero virtual
angels increases, while the DCD-JSR algorithm with Nb = 3
can always provides the perfect support estimation. This is
because as the time variation of the channel becomes faster,
more basis functions is required to accurately approximate
the channel.

Hence, from Fig. 12 to Fig. 15, we can conclude that
the DCD-JSR algorithm outperforms the DSAMP algo-
rithm. The improvement in the performance provided by the
DCD-JSR algorithm against the DSAMP algorithm is more
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FIGURE 15. (a) MSE performance against the number of non-zero virtual
angles; (b) Probability of perfect support estimation against the number
of non-zero virtual angles. fdT = 0.05, J = 40, SNR = 10 dB.

FIGURE 16. Computational complexity of the DCD-JSR algorithm and the
DSAMP algorithm; fdT = 0.02, J = 20, SNR = 20 dB.

significant in time-varying channels. For faster time vary-
ing channels, by employing more basis functions,we can

significantly improve the performance of the DCD-JSR algo-
rithm compared to the case Nb = 1 developed in [15] for
static channels.

Fig. 16 shows the computational complexity of the
DCD-JSR algorithm and DSAMP algorithm against the
number of non-zero virtual angles, obtained for the case
fdT = 0.02, J = 20, SNR = 20 dB. It can be seen that
the DCD-JSR algorithm has significantly lower computa-
tional complexity than the DSAMP algorithm. The DCD-JSR
algorithm, when Nb = 2, has slightly higher computational
complexity than the DCD-JSR algorithm with Nb = 1, while
the increase in the number of basis functions provides a
significantly better MSE performance.

VI. CONCLUSION
In this paper, by combining the BEM approach and the
DCD-JSR algorithm, an efficient algorithm for estimation of
the fast time-varying channels in virtual angular domain for
massive MIMO systems is proposed. Simulation results have
shown that compared to the previously proposed algorithms
for channel estimation in virtual angular domain designed for
time-invariant channels, the proposed DCD-JSR algorithm
could provide significantly better MSE performance in time-
varying channels.
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