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ABSTRACT Recent developments in drone technology have led to the widespread use of unmanned aerial
vehicles (UAVs). In particular, UAVs are often used in reconnaissance to detect objects such as missing
persons in large areas. However, traditional systems use only one UAV to search for missing persons in
a large area. In addition, object detection is performed after flight or manually because detection requires
high computing power. In this paper, a reconnaissance drone system using multiple UAVs is proposed. The
proposed multi-UAV reconnaissance system performs real-time object detection on each UAV. The real-time
object detection results from each UAV are received by the ground control system (GCS) to stitch the images.
To enable real-time object detection in individual UAVs, the filter pruning method is applied to the YOLOv5
model, and themodel uses 40% fewer parameters than the existing baselinemodel. The lightweight YOLOv5
model achieves approximately 11.73 FPS on the Jetson Xaiver NX using a mission computer. Moreover, the
proposed image stitching method enables image stitching by effectively matching features using additional
information generated by UAVs. The UAV flight tests show that the proposed reconnaissance system can
monitor and detect objects in real time over large areas.

INDEX TERMS Image stitching, network pruning, real-time object detection, swarm flight system.

I. INTRODUCTION
With the recent development of drone technology, drones
are now used in various applications, such as reconnaissance
systems in large, dangerous areas that are difficult for humans
to directly search and analyze. Advances in artificial intelli-
gence have dramatically improved object detection technol-
ogy to find people or cars. However, since most missions are
operated with a single drone, the scope and time of operation
are limited. In addition, due to the performance limitation of
unmanned aerial vehicles (UAVs), detecting objects in real
time is difficult, making an immediate response impossible.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo .

These limitations have spurred research on swarm flights
using multiple drones, which allow missions to be performed
by dividing a large area and achieve cooperation by assigning
drones different missions.

For a swarm reconnaissance system, a swarm operation
system that simultaneously controls and manages multiple
drones is needed. Based on the system, an image stitching
algorithm that synchronizes the images received from the
drones and merges them into a single matched image is
necessary. The integrated image helps the user effectively
understand and make decisions about the overall situation.
Then, a real-time object detection algorithm is needed to
detect missing persons or intruders. For object detection, deep
learning algorithms have been used. However, the processing
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FIGURE 1. Proposed swarm reconnaissance drone system overview.

is performed outside the UAV or as postprocessing because
of its high computational cost.

In this paper, a data distributed service-based swarm recon-
naissance drone system is proposed in which the system
simultaneously controls and operates multiple drones using
safe and integrated commands, as shown in Fig. 1. The pro-
posed system receives independent images from each drone
and stitches the images while detecting objects inside the
drones in real time. As a result, the ground control system
(GCS) provides full situational awareness in real time. The
proposed systemwas verified through an object detection test
based on a stitched image obtained by drones.

The main contributions of this paper can be summarized as
follows:

1) A real-time object detection method based on UAV
images is proposed. A proposed swarm reconnaissance
drone system is designed with the goal of processing
10 frames per second (fps) for the execution time of
real-time object detection. To achieve the requirement
of 10 fps in the Jetson Xavier NX system used in
the drone, the proposed filter pruning method for the
lightweight network is applied to achieve object detec-
tion performance.

2) Real-time image stitching is proposed for the swarm
drone system. The proposed image stitching method
effectively matches features using additional informa-
tion generated by the UAVs.

3) Flight experiments of UAVs are conducted to verify the
feasibility of the proposed methods.

The remainder of this paper is structured as follows.
In Section II, related research on swarm UAV systems and
object detection for UAV imagery is described. Section III
describes the overall architecture of the proposed swarm
reconnaissance UAV system with aerial image stitching and
real-time object detection. Section IV briefly describes the
experimental setup and results. In Section V, the conclusions
of this paper are discussed.

II. RELATED WORKS
A. UAV SWARM
Swarm flight technology has the advantage of being able to
quickly complete a mission by dividing the mission into a
large number of smaller areas. As a result, many swarm flight
studies are being actively conducted. Early swarm flight stud-
ies were mostly conducted through simulations because flight
validation was difficult due to the high cost [1], [2], [3]. With
the development and miniaturization of drone technology,
swarm flight technology has been researched indoors. In par-
ticular, an image-based marker, a motion capture sensor, or a
UWB sensor has been used to estimate the position indoors
without GPS [4], [5]. However, indoor swarm flight technol-
ogy cannot be expanded and developed outdoors due to the
narrow operating range of the sensor. For outdoor position
estimation, an extended Kalman filter that combines a GNSS
sensor and an IMU sensor is generally used. However, in the
case of outdoor swarm flight, GNSS sensors are insufficient
because position accuracy within 1 m is required to avoid
collisions between drones. Moon et al. [6] proposed an RTK-
GPS-based position estimation algorithm to improve position
accuracy and built a system that allows hundreds of drones to
operate within 1 m of each other without colliding.

Additionally, robust communication is required for stable
swarm flight. Moon et al. [6] proposed a passive approach
that minimizes the amount of communication by inputting
the missions to the drones in advance for stable commu-
nication with hundreds of drones. However, the passive
approach is not suitable for a swarm reconnaissance sys-
tem because performing a dynamic mission is difficult.
Cho et al. [7] proposed an efficient network configuration
method based on a distributed network according to the mis-
sion to increase communication efficiency. However, their
proposed method was only verified by simulations and only
considered two dimensions, which is insufficient for applica-
tion to a real environment. Moreas et al. [8] proposed proac-
tive link maintenance mechanisms to create a self-organizing
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FIGURE 2. Proposed swarm reconnaissance drone system architecture.

flying network capable of providing network support for the
UAV nodes already engaged in exploration and targeting
tasks in surveillance missions.

In addition, a method that avoids drone collisions and
minimizes the energy usage for swarm reconnaissance sys-
tems is needed. Kopfstedt et al. [9] performed optimization
using the mixed integer quadratic programming (MIQP)
method. However, since verification was performed through
simulations, verification in a real environment is necessary.
Moon et al. [6] used the Fair Hungarian method considering
the battery condition to ensure that the battery consumption
of the drones was even and verified their approach with
100 drones. However, this method is not suitable for a swarm
reconnaissance drone system because performing a dynamic
mission is difficult due to the passive mission approach. The
Defense Advanced Research Projects Agency (DARPA) is
developing a swarm collaboration system through the offen-
sive swarm-enabled tactics (OFFSET) project [10]. However,
OFFSET is not suitable for use in a swarm reconnaissance
system that performs search missions for missing persons
because it has focused on the development of a collaborative
method involving both humans and unmanned vehicles.

When a swarm reconnaissance system is deployed, a vari-
ety of missions over a large area can be performed.
An image stitching algorithm is necessary for full situa-
tional awareness. Yahyanejad et al. [11] proposed a hybrid
approach that combines inaccurate information on the cam-
era’s position and orientation with image data using tradi-

tional approaches. Lucier et al. [12] tried image registration
with satellite images and unprocessed aerial images captured
with a UAV. However, these approaches stitch images with
postprocessing. In addition, when a missing person is in the
forest, traditional approaches are not sufficient to find image
features.

B. OBJECT DETECTION FOR UAV IMAGERY
Recently, deep learning-based object detection algorithms
have been extensively studied in the drone field. Object
detection algorithms for drones are different from those for
tasks such as autonomous driving. In the drone internal object
detection algorithm, the object to be detected generally has
a very small object size in the image. The small size of
the object to be found means that there is little information
about the characteristics of the object that can be expressed
in the image, which makes training the deep learning network
difficult.

To solve this problem, various studies have been conducted
to detect small objects in object detection used in drones.
Chen et al. [13] proposed an anchor-free-based RRNet net-
work detector including a re-regression module. The pro-
posed regression module creates a more accurate bounding
box. They also proposed an adaptive resampling technique
to increase the amount of training data. Yang et al. [14] pro-
posed the ClusDet network to better detect small objects by
classifying images based on clusters and performing object
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FIGURE 3. Proposed image stitching method.

detection on the clustered images. In addition, Liu [15] pro-
posed multibranch parallel feature pyramid networks (MPF-
PNs) based on the Cascade-RCNN [16] network to improve
the accuracy of detection of small objects in drone images.

Another important characteristic of drone object detection
is that high-performance processing is impossible due to the
performance limitations of the internal system of the drone.
Therefore, to enable object detection within the drone device,
the complexity of the deep learning-based network should
be low. Wu et al. [17] proposed a lightweight YOLOv3
network [18] for real-time object detection. Zhang et al. [19]
proposed SlimYOLOv3, which balances the number of
parameters, memory usage, and inference time for YOLOv3.

Ammar et al. [20] proposed a network operating at
approximately 12 fps at 608 × 608 resolution using
the YOLOv4 [21] network. Additionally, various YOLO
series, such as YOLOX [22] using decoupled heads and
YOLOv7 [23] using model reparameterization techniques,
have appeared. Based on the YOLOv5 [24] network, a strip
bottleneck module was proposed to enable real-time object
detection, and the SPB-YOLO [25] network was proposed.
As in previous research, when the network complexity
decreases, the accuracy generally decreases, so an object
detection network that optimizes complexity and accuracy
is needed. In this paper, a filter pruning method based on
YOLOv5 is applied to improve the detection accuracy of
small objects and enable real-time object detection.

III. PROPOSED SWARM RECONNAISSANCE DRONE
SYSTEM
The swarm reconnaissance drone system consists of a GCS,
UAVs, an image stitching server, and an RTK-GPS base
station, as shown in Fig. 2. The UAV system is divided into
a flight control computer and a mission computer. For the
flight control computer (FCC), a PX4 is used, which is based
on open source software running on the NuttX real-time
operation system. In the PX4, each module communicates
with other modules through the micro object request bro-
ker (uORB) message-driven method. The uORB is designed
following a publish-subscribe model. The FCC estimates
and controls the position and attitude using various sensors,
including RTK-GPS, which enables more precise position

estimation than the GPS sensors. Using this system, position
estimation at the centimeter level can be realized. The PX4
client module transmits messages to the mission computer
(MC) by packet serialization. The PX4 agent receives a PX4
message from the PX4 client in theMC. TheMC is developed
based on ROS2, which is a distributed middleware system
running on the Linux operating system. The mission com-
puter focuses on image processing for object detection. The
image sender module receives video streaming data from the
camera and transmits it to the object detection module and
image stitching server. For object detection, the data are trans-
mitted without any image quality downgrade. However, when
the image data are transmitted to the image stitching server,
the image quality is downgraded because of the limitations of
the LTE bandwidth.

The communication between a UAV and other parts of
the system uses the data distribution service (DDS) of ROS2
to increase robustness. Therefore, the system can monitor
the status and give commands with duplicate GCSs. The
GCS receives many monitoring messages, including objects,
to check the UAV status. In addition, the GCS receives
the stitched image from the image stitching server. Users
can check the current status and objects using the registered
image. To increase the operating time, the proposed system
uses the UAV shift algorithm. The algorithm replaces the
UAV with another UAV on the ground if the battery status of
the UAV is too low. All commands are passed through ROS2
messages via a commander module. The image stitching
server collects video streaming data from the UAVs through
gstreamer. After converting the video streaming data to an
image, the image stitching module stitches the images.

A. AERIAL IMAGE STITCHING
Since each image is received separately from the different
drones, it should be synchronized and integrated as a merged
image through an image stitching algorithm for full situ-
ational awareness. The image stitching algorithm extracts
feature points from an image, matches the feature points with
those in the images of the other drones, and then registers the
image through homography estimation.

The homography matrix indicates a relationship between
the points of a reference image and the points of a target
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image. The homography is defined as follows:

X ′ = HX (1)

X denotes the feature points as X = (x, y, 1)T , and X ′

denotes the feature points of the target images. The homog-
raphy is basically estimated by applying 4 feature points of
a reference image and 4 points of a target image via direct
linear transformation (DLT). However, an error occurs when
extracting feature points between the reference image and the
target image, so an accurate homography cannot be extracted.
Therefore, to extract the correct feature points and estimate
the optimal homography, the outlier feature points must be
removed using the RANdom SAmple Consensus (RANSAC)
algorithm [26].

To extract image features in general, traditional feature
extractors such as the SIFT [27] or SURF [28] algorithm are
used. However, these algorithms are not sufficient to extract
the features of images received from drones. When a drone
is used to detect a missing person in a river or a forest,
the image received from the drone has few feature points.
Particularly in the case of swarm reconnaissance, the over-
lapping area required for matching is relatively small because
reconnaissance must be performed over a wide area. There-
fore, the feature points required for matching are insufficient.
In addition, real-time image stitching from a high-definition
image cannot be used because the extraction of feature points
sharply increases the computational burden.

To overcome these difficulties of image stitching during
swarm reconnaissance, a more powerful and faster image
registration method is proposed using deep learning-based
feature point extraction and drone status, as shown in Fig. 3.
The deep learning-based feature extractor can replace tradi-
tional feature extractors with convolutional neural networks
(CNNs) because they extract complex features that represent
images in much greater detail, learn task-specific features
and are much more efficient. The proposed image stitching
algorithm uses the SuperPoint [29] and SuperGlue [30] algo-
rithms.

For robust image registration, a homography estimation
method is proposed that considers the distance from the
center of the area including the feature point when extracting
the feature point. The homography matrix is estimated in the
DLT method using RANSAC in the same manner as in the
normal method. The position transformation of the reference
image feature points through the estimated homography is
expressed as follows:

X̂ ′i = ĤXi (2)

To determine the accuracy of the estimated homography,
the sum of the errors between the n estimated feature points
and the target image feature points is obtained as follows:

ε =

n∑
i=1

|η(X ′i − X̂
′
i )| (3)

Generally, the error is expressed as the Euclidean distance
between the position of the estimated feature point and the

position of the target feature point. However, in the case of
a swarm reconnaissance system operating in a small over-
lapping area within a wide area, the homography estimation
accuracy is low even if the error is small. To solve this
problem, the weight of the feature point error away from the
center is reduced as follows:

η(X ′i − X̂
′
i ) =

rmax + ri
rmax

√
(X ′i − X̂

′
i )
T (X ′i − X̂

′
i ) (4)

where ri is the distance between the ith matched feature point
and the center of the overlapping region and m represents the
maximum value of rmax .

Additionally, in the case of a swarm reconnaissance sys-
tem, image registration is incorrectly estimated because the
number of feature points and the overlapping area are small.
Therefore, the homography matrix must be analyzed and
corrected. The homography can be represented inmatrix form
as follows:

H =

h11 h12 h13
h21 h22 h23
h31 h32 1

 , (5)

where the 2 × 2 matrix that has h11, h12, h21, h21 elements
contains rotation and scale information. h13 and h23 contain
information regarding translations along the x-axis and y-
axis, respectively. h31 and h32 contain the perspective trans-
formation information. In addition, (6) can detect distortion,
inversion, and concavity issues during image registration
when D is negative.

D = h11h22 − h12h21 (6)

Equation (7) can be used to determine the degree of pro-
jection. In the case of the proposed system, the homography
estimation was often incorrect due to the small overlapping
area, and the validity of the homography can be confirmed
through the P value. In this paper, the homography estimation
was confirmed to be incorrect when the P value was greater
than 0.002.

P =
√
h231 + h

2
32 (7)

If the transformation is judged to be an abnormal homog-
raphy transformation through the P and D values, then it is
performed as an affine transformation rather than a projective
transformation as follows:

H =

h11 h12 h13
h21 h22 h23
0 0 1

 (8)

If the UAV attitude is changed by the wind during the
reconnaissance operation, then projection transformation is
needed, but since the reconnaissance is performed from a
fixed position and the camera attitude is stabilized by the
gimbal, the affine transformation alone is sufficient to carry
out themission. Therefore, even if a slight error occurs, image
registration is possible even after the affine transformation.
In addition, if there is no overlapping region or an error
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FIGURE 4. Architecture of the object detection network of the
YOLOv5-large model.

occurs in the affine transformation, then image registration
can be carried out using only the position and direction
information of the UAV.

B. REAL-TIME OBJECT DETECTION
Deep learning-based object detection networks can be
divided into two-stage object detection networks and
one-stage object detection networks. The R-CNN [16] series
is a representative two-stage object detection network tech-
nique, whereas the YOLO [18], [21] series is a representative
one-stage object detection networkmethod. In general, a two-
stage object detection network performs better than a one-
stage network, but its inference speed is slower. In this paper,
YOLOv5 [24], which has excellent performance in one-stage
networks, is selected as the default network for real-time
object detection. To attain a fast inference time while main-
taining the detection performance of the basic network, the
weight of the network is reduced by extending the existing
filter pruning method.

As shown in Fig. 4, YOLOv5 is largely divided into back-
bone, head, and detect. The backbone and head consist of the
Conv, Focus, C3, and SPP modules. In addition, several ver-
sions of the network have been proposed for YOLOv5, such
as s(small), m(medium), l(large), and x(xlarge), depending
on the size of the network. In this paper, the large model is
adopted as the baseline network. In addition, the previously
developed filter pruning method that optimizes the amount of
computation and parameters simultaneously [31] is applied in
this study. Furthermore, by applying the quantization method
supported by the TensorRT framework to the lightweight
model for real-time object detection, the filter-pruned net-
work can be used with only INT8 integer operations.

The target capacity filter pruning (TCFP) method [31] for
real-time object detection developed in the previous study
consists of three stages, as shown in Fig. 5. A detailed descrip-
tion of the TCFP method can be found in [31]. The TCFP
method reduces both the computational cost and the number
of parameters to optimize the object detection network. The
first stage of the TCFP method, the sparsity learning stage,
is the process of learning important connections (filters) in
the network. This process is trained by adding a pruning loss
function to the original loss function used in the YOLOv5
model.

In this paper, sparsity learning was performed on a pre-
trained YOLOv5-large baseline network. The pruning pro-
cess, which is the second stage of the proposed TCFPmethod,
determines the insignificant filters from the sparsity learn-
ing results and prunes them. Finally, based on the pruned
network architecture, a retraining process is performed after
initialization. To determine the filter to be pruned in the
sparsity learning stage, the indicator function of (9) is applied.
t denotes a threshold, and γ is a scaling factor learned in
the batch normalization layer. If the value is less than the
threshold, then the channel is considered unimportant, and
the corresponding channel and filter can be removed.

θ(γ, t) =

{
0, if |γ | ≤ t
1, if |γ | > t

(9)

However, (9) is impossible to differentiate at threshold t ,
and the differential value in the remaining differentiable parts
is zero. Therefore, a straight-through estimator as in (10) is
used for backpropagation.

∂θ(γ, t)
∂γ

=

{
−1, if γ ≤ t
1, if γ > t

(10)

During pruning in the sparsity learning stage, the amount
of computation of the pruned network is given by (11).

Fpruned

=

L∑
l=1

{
Fl

(∑Cl−1
c=1 θ (γl−1,c, t)

Cl−1

)(∑Cl
c=1 θ (γl,c, t)

Cl

)}
(11)

where Fl is the amount of computation of the L-th convolu-
tional layer, L is the number of layers, and C is the number
of channels. On the right-hand side of (11), the first term
represents the effect of the FLOPs reduced by the channel
that disappeared from the previous layer, and the second term
represents the effect of the FLOPs reduced by the filter that
disappeared from the current layer. Similar to the amount of
computation, the number of parameters after pruning can be
expressed as (12).

Ppruned =
L∑
l=1

{
Pl

(∑Cl−1
c=1 θ (γl−1,c, t)

Cl−1

)(∑Cl
c=1 θ (γl,c, t)

Cl

)}
(12)
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FIGURE 5. Filter pruning pipeline using the target capacity filter pruning (TCFP) method [31] for the lightweight YOLOv5 model.

Equations (11) and (12) can be used to create a loss func-
tion for pruning, which is given by (13).

Losspruning =
(
Fpruned − Ftarget

Fbaseline

)2

+

(
Ppruned − Ptarget

Pbaseline

)2

(13)

In the above formula, Ftarget and Ptarget represent the
amount of computation and the number of parameters of
the target network, respectively. By adding the pruning loss
function to the loss function of the existing object detection
network and proceeding with sparsity learning, a network
with the desired number of parameters and FLOPs can be cre-
ated. The overall loss function in object detection of YOLOv5
is given by (14).

Loss = Lossorigin + αLosspruning (14)

Lossorigin is the loss function used in YOLOv5, Losspruning
is the loss function applied by (13), and α is a hyperparameter.
The αLosspruning is empirically set to 8 at the start of sparsity
learning.

For example, if the number of target parameters and the
number of FLOPs are set to 70% of the existing network,
then the initial Losspruning value before sparsity learning is
0.18. In this case, the α value will be 8 divided by 0.18. In a
network trained by sparsity learning, a lightweight network
can be created by pruning channels and filters according to
the batch normalization layer with γ less than the threshold
t applied in the indication function. The threshold t is set to
0.0001.

In the previous study [31], experiments confirmed that the
greatest improvement in inference speed was obtained when
the number of channels was extended by a multiple of 8 based
on the architecture of the pruned network. Therefore, in this
paper, an 8n extension that makes the number of channels a
multiple of 8 is applied based on the architecture of the pruned

network. After pruning, the network is retrained to restore the
mAP performance of the pruned network.

IV. EXPERIMENTAL RESULTS
A. REAL-TIME IMAGE STITCHING
To evaluate the performance of the image stitching method
proposed in this paper, 3 datasets were used to represent
different environments with different image feature points.
Dataset #1 was extracted from a heliport with many feature
points. Datasets #2 and #3 were drawn from a playground
with few feature points at elevations of 10 m and 30 m
from each other, respectively. Simple objects were added in
an environment lacking feature points, the overlapping area
was set to 30% or less, and stitching was then performed.
The drone used in the experiment was equipped with a DJI
Osmo Pocket 2 camera, and a built-in gimbal was used to
eliminate image blur caused by the jello phenomenon. The
image stitching server operates with an Intel(R) Xeon(R)
Silver CPU and is equipped with 4 Nvidia Titan RTX GPUs.

The image stitching was compared with the results
using the image stitching algorithm cv::Stitcher provided by
OpenCV. Each feature point extraction was performed via
SIFT, SURF, SuperGlue, and this work. In test1 (Dataset
#1), which had sufficient image feature points, all algorithms
stitched images without error, as shown in Fig. 6. However,
different stitching results were obtained in tests 2 4, which
had few feature points.

As shown in Fig. 6 (a) and (b), SIFT- and SURF-based
image stitching have difficulty in accurate extraction in an
environment lacking feature points, and inaccurate matching
frequently occurs. As shown in Fig. 6(c), when SuperGlue
was used, more than twice as many key points were extracted
than when the existing SIFT or SURF was used, and accurate
matching was possible. In addition, even though a heavy net-
work based on deep learning was constructed, the processing

VOLUME 11, 2023 23511



S. Moon et al.: Swarm Reconnaissance Drone System for Real-Time Object Detection Over a Large Area

FIGURE 6. Image stitching result.

speed was improved by using a GPU. However, the homog-
raphy estimation was often wrong due to the narrow overlap-
ping area. The method proposed in this paper enabled more
accurate homography estimation by adding feature weights
according to positions, as shown in Fig. 6(d). A comparison
of the image registration results is shown in Table 1.

B. REAL-TIME OBJECT DETECTION
The VisDrone-2019 [32] dataset was used to train the object
detection network and evaluate the performance of the net-

work. The VisDrone dataset consists of 6,471 training images
and 1,610 test images. Each image has 3 channels, and infor-
mation about the bounding box is provided in the form of a
text file.

The batch size required for training all networks, including
sparsity learning, was fixed at 32. In addition, the image size
was fixed to 1376 × 1376 during training and evaluation.
Other training and evaluation procedures were performed
following the default settings in [32]. The inference time
was measured after fixing the batch size to 1 on the Nvidia
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TABLE 1. Comparison of image stitching performance.

Jetson Xavier NX platform used as the mission computer.
The PyTorch framework was used, and an additional network
lightweighting process was performed through the TensorRT
framework, which quantizes to INT8 to improve the inference
time.

As shown in Table 2, the performance of the existing prun-
ing methods and the proposed pruning method was evaluated
for three different ratios. The first row of Table 2 shows the
baseline results of the YOLOv5model without pruning. Liu’s
method [33] cannot control the pruning ratio of the param-
eters and FLOPs at the same time. Therefore, pruning was
performed based on the parameters. The HFP method [34]
and the proposed method were trained with the target of
pruning both parameters and FLOPs by 30%, 40% and 50%
each.

When the parameters were pruned by 40% using Liu’s
method, both the number of parameters and the number of
FLOPs were greater than those for the network in which
both the parameters and FLOPs were pruned by 40% by the
proposed filter pruning method, but the mAP (0.5:0.95) was
0.2% lower. In addition, it was difficult to effectively increase
the inference speed of the network because the numbers of
FLOPs of the three networks pruned by Liu’s method were
smaller than the FLOPs of the network pruned by 30% by the
proposedmethod, and the FPSwas lower. In the HFPmethod,
the target pruning rate was meaningless, and the network
was excessively pruned. Considerable effort was required to
find the appropriate hyperparameter for obtaining a pruned
network according to the target pruning rate.

When training was conducted with the target of 30% prun-
ing through the proposed filter pruning method, the param-
eters and FLOPs were pruned by 32%, reaching the target.
Additionally, the inference speed was improved by 24.3%
compared with the baseline network time, and the mAP
(0.5:0.95) drop was 0.6%. When the parameters and FLOPs
were each pruned by 40%, a YOLOv5 network was obtained
in which the parameters and FLOPs were pruned by 40%,
and mAP (0.5:0.95) was decreased by 1%. In this case, the
inference speed was improved by 42.2% compared with the

FIGURE 7. Photograph of the UAV system.

YOLOv5 baseline network FPS. Last, when the parameters
and FLOPs were each pruned by 50%, a YOLOv5 network
was obtained in which the parameters and FLOPs were
pruned by 51.2% and 46%, and mAP (0.5:0.95) decreased by
0.9%. The inference speed was improved by 58.7%. In addi-
tion, the inference speed performance after quantization with
INT8 using the NVIDIA TensorRT framework improved at a
similar rate to that of the FP16 precision.

By eliminating a large number of parameters and FLOPs,
the proposed pruning method can reduce memory usage
and power consumption. In addition, the proposed pruning
method can improve the inference time performance at the
same time with minimal accuracy drop when running an
object detection network on an embedded device with hard-
ware constraints mainly used in UAVs.

C. INTEGRATED OPERATION EXPERIMENTS
The UAV platform was designed to replace the currently
employedmission board and used a general quadcopter frame
equipped with an open-source PX4 system [35] that had an
IMU (an LSM303D integrated accelerometer/magnetometer
and L3GD20 gyroscope) and a barometer (MS5611, TE Con-
nectivity), as shown in Fig. 7. In addition, it was equipped
with an RTK-GPS sensor (Piksi, Swift Navigation) for
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FIGURE 8. Experimental results of the swarm reconnaissance drone system.

TABLE 2. Comparison of mAP, the number of parameters, and inference time.

accurate positioning. As a result, the UAV was able to esti-
mate the position within 5 cm. The mission board included
an NVIDIA Jetson Xavier NX platform running the Robot
Operating System version 2 (ROS2) and a camera including
a gimbal (DJI Osmo Pocket 2). The mission board was set
to 20 W mode to deliver up to 21 TOPS (Tera Operations Per
Second) for running object detection in the UAV. To reduce

the weight, a carrier board was developed to integrate all
sensors. Table 3 shows the specifications of the drone system.

The target of the experiments was to detect people and
cars in a designated area. Once the area for the surveillance
missions and the number of drones were determined, the GCS
informed each drone where to move to cover the area. Then,
the drones moved to their fixed positions and transmitted
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TABLE 3. Specifications of the UAV system.

images and object detection results. The GCS stitched the
images and displayed the detection results.

The experiment was conducted at Daejeon Drone Park
in Korea, and 4 UAVs took off from the same location
and moved to locations designated by the ground sta-
tion to hover at an altitude of 50 m. The flight pro-
ceeded for 10 min, and people and vehicles were detected,
as shown in Fig. 8. This experimental result video is
available at [36].

Images from each UAV were stitched into the merged
image and mapped with satellite maps using latitude and lon-
gitude information. As a result of the experimental operation,
image matching was performed in real time while detecting
cars and persons even if the object was small.

V. CONCLUSION
In this paper, a swarm reconnaissance drone system was pro-
posed for real-time object detection over a large area. To opti-
mize the object detection model, a filter pruning method that
optimizes parameters and inference time simultaneously was
applied to the swarm reconnaissance system. As a result, the
lightweight model with the filter pruning method enabled
real-time object detection within the drone, and the ability
of the swarm reconnaissance system to perform missions in
a large area was confirmed. In addition, a stitching method
was proposed to stitch drone images in the GCS. The swarm
reconnaissance drone system can be used in various applica-
tions, such as monitoring forest fires or searching for missing
people. Experiments in various environments are planned to
increase the robustness of the system and stability. In future
work, a robust image stitching algorithm will be studied to
continue image stitching while moving drones. Additionally,
an autonomous movement coordination algorithm for drone
swarms in exploratory area surveillance missions can also be
explored.
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