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ABSTRACT Hyperspectral images captured by remote-sensing satellites are easily corrupted by various
types of noise. Generally, hyperspectral signatures appear to be scattered in spatial-spectral domain, as well
as noise. In transform domain, however, the principal components of a image are often centralized in the
low-frequency band, while noise and some details are mainly contained in high-frequency components. The
traditional transformation domain based smoothing methods take no account of the respective information
distribution carried by different frequency bands. Hyperspectral image restoration aims to remove mixed
noise for clean data, which usually amounts to an ill-posed inverse problem. Moreover, the matrix-
decomposition-based model needs to reshape hyperspectral datacube into matrix form, which will lead
to certain loss of spatial structure information. In order to address these issues, this paper incorporates
piecewise weighted smoothing regularization in tight framelet domain to reformulate a novel convex
model for hyperspectal image restoration, which maintains image signature to a great extent. Based on
the noise-perturbed degradation model, the smoothing regularizer in tight framelet domain is imposed
on abundance signature, in which the transformation matrix, as well as the weighted coefficient, is well
designed for different frequency bands. As a surrogate of sparsity, the lq-norm is employed to denoise for
the enhancement of hyperspectral signatures. To the end, an efficient solver is carefully designed to derive the
closed-form solutions by proximal alternating optimization. The experimental results on several synthetic
and real datasets, not only demonstrate that the performance of proposed method is better than that of the
current state-of-the-art approaches, but also verify the validation of regularization terms for hyperspectral
image restoration.

INDEX TERMS Hyperspectral image restoration, tight framelet domain, piecewise weighted smoothing,
degradation model, mixed noise.

I. INTRODUCTION
Hyperspectral imagery is a data cube, which contains rich
spatial geometric information and spectral signatures. It is
widely used in environmental monitoring, material classi-
fication [1], target detection [2] and others [3]. However,
in the course of data acquisition and processing, hyperspectral
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images (HSIs) are easily contaminated by different noise,
such as Gaussian noise, salt and pepper noise and stripe
noise [4]. This will seriously affect the quality and appli-
cation of hyperspectral data [5], [6], [7]. Therefore, image
restoration has become a hot topic to reconstruct high-fidelity
hyperspectral data in remote sensing.

In recent years, there have been a large number of
hyperspectral image restoration methods, which generally
fall into three categories in terms of models, including
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deep learning [8], tensor decomposition [9] and matrix
factorization [10]. With the rapid development of artificial
intelligence, deep learning based on unsupervised [11] or
supervised [12] mechanism, is leveraged to reconstruct the
super-resolution images, in which the unsupervised tech-
niques don’t need a large number of pure hyperspectral image
datasets for training. For example, Sidorov et al. [13] devel-
oped a convolutional encoder-decoder network to implicitly
induce a image prior in denoising. In the aspect of super-
vised methods, Xie et al. proposed a convolution neural
network with trainable nonlinear functions for hyperspectral
image restoration [14]. Zhuang et al. [15] adopted a fast and
flexible denoising convolutional neural network to capture
high local correlation in spatial subspace. However, deep
learning based methods often involve a great deal of data
training, as well as hyperparameters, which will lead to an
increase in computational burden [16], [17]. Hyperspectral
datacubes can be viewed as third-order tensors, so tensor
decomposition and approximation are applicable for image
restoration [18]. Recently, the widely-used tensor decompo-
sition methods mainly include Tucker decomposition [19],
tensor ring decomposition [20], BTD decomposition [21],
Mode-3 decomposition [22] and so on. Ma et al. [23]
incorporated graph smoothing and low-rank regularization
into the model of Tucker tensor decomposition. Chen [24]
constructed a low-rank tensor decomposition model to cap-
ture global spatial–spectral correlation. On the basis of low-
rank Mode-3 decomposition, Zheng et al. [25] proposed a
denoising method by introducing weighted group sparsity
and total variation for spatial-spectral smoothing. Using low-
rank approximation functions such as γ norm [26], weighted
Schatten p-norm [27], [28] and tensor nuclear norm [29],
the low-rank approximation of hyperspectral images can be
realized. Specifically, Fan et al. [30] developed a low-rank
hyperspectral image restoration model based on tensor singu-
lar value decomposition. The rank of a tensor, however, is not
unique, which is different from that of a matrix. Furthermore,
the tensor based methods also take much heavy computation.
Another popular method is based on matrix factorization,
in which hyperspectral cubic data needs to be reshaped into
matrix form. Thus, the transformed two-dimensional hyper-
spectral data can be factorized into the product of endmember
matrix and abundance signature, but the reconstruction is an
ill-posed inverse problem that can be solved by the regulariza-
tion method [31]. Zhang et al. [32] proposed a two-dimension
HSI restoration method by establishing the framework of
low-rank matrix restoration. Cao et al. brought forward a
method by utilizing successive singular value decomposition
to similar 3-D patches, based on low-rank matrix factoriza-
tion [33]. Chen et al. [34] achieved spatial smoothness on the
basis of low-rank nonnegative matrix factorization. In addi-
tion, total variation regularization is also an efficient method
to explore the spatial-spectral local smoothness of HSI [35].
For example, Peng et al. [36] firstly introduced a enhanced
3-D total variation into HSI denoising model. Although
spectral and abundance signatures have respective explicit

physical meaning, reshaping hyperspectral datacube into
matrix form will cause certain loss of structure
information [37].

Generally, the image signatures are scattered in spatial-
spectral domain, while they are centralized in transform
domain. Furthermore, the principal components are often
contained in the low-frequency bands while the details usu-
ally occur in the high-frequency parts [38]. The process-
ing method in transform domain is then introduced into
hyperspectral image restoration for better reconstruction per-
formance [39]. For example, Zheng et al. [40] exploited
the smoothness prior in third modes of the underlying ten-
sor by introducing smoothness constraints to abundance
matrix in transform domains and total variation regularizer
to spectral library. Xu et al. [41] adopted the spatial-spectral
joint weighting regularization on abundance matrix in the
transform domains to promote the sparsity. The above
transform-based smoothing method imposed same weight to
the image in all frequency bands, which neglected the dis-
tribution characteristics of information signature in different
frequency.

To address the above problems, this paper proposes a
novel method by incorporating piecewise weighted smooth-
ing regularization in tight framelet domain (PWSR-TF). The
main contributions in this paper are described below. Firstly,
using the noise-perturbed degradation model, the piecewise
smoothing regularization is exerted on abundance matrix in
tight framelet domain, and the weighted coefficient matrix is
constructed to refine the information of different frequency
bands. Secondly, lq-norm regularization is used to promote
the sparsity expression of sparse noise and framelet-based
abundance matrix. Finally, an efficient solving algorithm is
scrupulously designed by alternating optimization to obtain
the closed-form solutions. In addition, the experimental tests
demonstrate that the proposed PWSR-TF produces better
performance than the state-of-the-art approaches for hyper-
spectral image restoration.

The remaining chapters of this paper are arranged as fol-
lows: Section II comes up with the noise-perturbed degra-
dation model and the relevant regularization terms. Then,
the detailed solution of the proposed algorithm is given
in Section III. Nextly, Section IV is utilized to conduct the
experimental test and performance analysis. Finally, the con-
clusion is drew in Section V. Besides these, some key nota-
tions are listed in the following sections. R, Rn and Rm×n

denote the set of real number, n-vector and m × n matrices,
respectively. ‖·‖1 stands for l1-norm. ‖·‖F denotes Frobenius
norm. I stands for the identity matrix with proper dimensions.
⊗ represents the Kronecker product.� denotes the dot prod-
uct. � stands for the componentwise inequality operation.

II. SIGNAL MODELS AND REGULARIZATION TERMS
A. RESTORATION MODEL
HSIs are easily contaminated by noise in the process of
acquisition and transmission. Assume that Y ∈ RL1×L2×M

denotes the hyperspectral cubic data, where L = L1 × L1
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represents the number of spatial pixels, and M denotes the
number of spectral bands. Using matrix factorization, the
hyperspectral datacube Y can be reshaped as a matrix Y =
[y1, . . . , yi, . . . , yL], where yi ∈ RM is the spectral vector
of the ith pixel. Suppose that the additive mixed noise is
considered, the noise-perturbed degradation model [42] can
be signified as Y = C + S + N, where C ∈ RM×L

is the clean image; S ∈ RM×L denotes the sparse noise
(i.e., salt and pepper noise and stripes noise); N ∈ RM×L

is the Gaussian noise or error residual. Since the pure hyper-
spectral data can be factorized into the product of endmem-
ber and abundance matrices using the linear mixed model
(LMM), i.e., C = AX [43], then the noise-perturbed degra-
dation model is presented as

Y = AX+ S+ N (1)

where A ∈ RM×N represents the endmember matrix, con-
taining N endmembers and M spectral bands; X ∈ RN×L

is the abundance matrix, each column of which repre-
sents the fractional proportions of N endmembers in each
pixel. Following the minimization rule of error residual,
Equation (1) can be reformulated as an unregularized opti-
mization problem.

min
A,X,S

1
2
‖Y− AX− S‖2F

s.t. A � 0,X � 0 (2)

where two constraints require that each element in both end-
member and abundance matrices is non-negative. However,
it is an ill-posed inverse problem to reconstruct a clean image
by the degradation data, which can be addressed by intro-
ducing prior information or regularization. Thus, this paper
incorporates the piecewise weighted smoothing and sparse
regularization to redefine the restoration model as

min
A,X,S

1
2
‖Y− AX− S‖2F + λxθx(X)+ λsθs(S)

s.t. A � 0,X � 0 (3)

where θx(X) and θs(S) correspond to the regularization terms
imposed on abundance matrix X and sparse noise S, respec-
tively; λx and λs are the weights.

B. SPARSE REGULARIZATION
According to sparse representation theory, the non-convex
function l0-norm represents the number of non-zero elements,
but it is a NP-hard problem. As the surrogate of l0-norm,
l1-norm and lq-norm (0 < q < 1) are usually employed
to promote sparsity. When lq-norm is not less than 1/2, the
smaller the value of q is, the sparser the results are. On the
contrary, it’s not sensitive to the sparsity of the solutions when
q lower than 1/2. Therefore, l1/2-norm is utilized as the sparse
regularization in this article [44], defined as

min
X

λ‖X‖1/2 + ρ‖X− B‖2F (4)

Although problem (4) is non-convex, it can be solved by half
thresholding operator to obtain the solution as follows.

X∗ = shrink(B, λ/ρ)

=

{
2
3B(1+ cos( 2π3 −

2
3φλ(B))), |B| >

3√54
4 (λ/ρ)2/3

0, otherwise
(5)

where φλ(B) = arccos(λ8 (
|B|
3 )−3/2).

C. PIECEWISE WEIGHTED SMOOTHING REGULARIZATION
ON ABUNDANCE MATRIX
Owing to local similarity, there exists a mass of redundant
information scattered in the spatial subspace, which often
results in the performance degradation of restoration image.
However, it is relatively concentrated in transform domain,
which can be easily handled to suppress the redundant infor-
mation. Compared with traditional wavelet transform, tight
framelet have higher redundancy, direction selectivity, shift
invariance and robustness. Therefore, tight framelet trans-
form is leveraged to handle the image restoration. More
specifically, the analysis operator of discrete linear B-spline
tight framelet transform for 1-D data can be defined as

W =

W1
W2
W3

 (6)

where W1 represents the linear convolution operator of
low-pass framelet filter h1 under Neumann boundary con-
dition [45]; W1 and W2 denote linear convolution operator
of band-pass filter h2, and high-pass filter h3, respectively.
The framelet filters for 2-D data can be constructed via tensor
product of 1-D framelet filters (i.e., h(1,1) = h1 ⊗ h1).
On this basis, a transform matrixW for 2-D image is denoted
as W = [WT

(1,1),W
T
(1,2), . . . ,W

T
(3,3)]

T , where W(p,q) is the
convolution operator of filter h(p,q), and (p, q) denote the
coordinates of different frequency components. Meanwhile,
the synthesis transform of tight framelet is defined as the
transpose of W. A specific framelet domain based numer-
ical example is shown below. For digital data B ∈ RN ,
its corresponding framelet transform is WB ∈ R9N , where
W ∈ R9N×N . Furthermore, the most important property of
tight framelet isWTW = I [46].

After tight framelet transformation, the results of hyper-
spectral image in frequency domain are distributed in Fig. 1.
We can observe that the principal components are mainly
gathered in the low-frequency band, while the noise and
details are presented in the high-frequency part. Furthermore,
the higher frequency, the less detail there is in the figure.
Meanwhile, in order to highlight the information in different
frequency, the piecewise weighted coefficient is defined as

λx(p,q) = αe
dist(p,q) (7)

where α is the baseline weight of low-frequency compo-
nent; dist(p, q) = 1√

(p−1)2+(q−1)2
denotes the Euclidean

distance between two sub-blocks W(p,q) and W(1,1) in tight
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framelet domain. In addition, the weights of the matrices
on each subdiagonal are uniformly set to the Euclidean
distance between the matrix on the edge of the subdiag-
onal and the low-frequency component. So the piecewise
weighted smoothing regularization on abundance matrix can
be defined as ‖λx � WX‖1/2, where λx = [λx(1,1) ×
1W(1,1) , λx(1,2) × 1W(1,2) , . . . , λx(3,3) × 1W(3,3)]

T denotes the cor-
responding weight matrix of the different frequency compo-
nents in tight framelet, and l1/2-norm is utilized to achieve
piecewise smoothing in transform domain.

III. SOLVING ALGORITHM
The restoration model (2) is nonconvex for (A,X,S), but it
is a convex problem of single variable when the other two
are fixed. Therefore, the model can be decoupled into three
convex univariate subproblems using proximal alternating
optimization (PAO), which are then updated iteratively until
convergence.

Xk+1
∈ argmin

X�0

1
2
‖Y− AkX− Sk‖2F + ‖λx �WX‖1/2

+ι+(X)+
ρ

2

∥∥X− Xf
∥∥2
F (8a)

Ak+1
∈ argmin

A�0

1
2

∥∥∥Y− AXk+1
− Sk

∥∥∥2
F
+ ι+(A)

+
ρ

2

∥∥A− Af
∥∥2
F (8b)

Sk+1 ∈ argmin
S

1
2

∥∥∥Y− Ak+1Xk+1
− S

∥∥∥2
F
+ λs‖S‖1/2

+
ρ

2

∥∥S− Sf
∥∥2
F (8c)

where k represents the number of alternate iterations;
Xf ,Af and Sf indicate the values of X,A and S in the
previous iteration, respectively; ι+(A) is an indicator function
of non-negative variable, defined as

ι+ (A) =
{

0, all Ai1,i2 ≥ 0
+∞, otherwise .

(9)

To sum up, the procedure of HSI restoration based on piece-
wise weighted smoothing in tight framelet domain is exhib-
ited in Algorithm 1.

Algorithm 1 Piecewise Weighted Smoothing Regularization
in Tight Framelet Domain

Input: Y, λx , λs, ρ, β;
Initialize: A0, X0, S0, k = 0;
while the stopping criterion is not met do

update Xk+1 by (8a);
update Ak+1 by (8b);
update Sk+1 by (8c);
k = k + 1;

end while
Output C = AX.

A. SOLUTION OF ABUNDANCE MATRIX
In the convex subproblem (8a) of abundance matrix,
it contains piecewise weighted smoothing and non-negative
regularization in tight framelet domain. Using ADMM,
the equation constraints of X are set to conduct vari-
able splitting. Thus, subproblem (8a) can be reformulated
as

min
X,U,η

1
2
‖Y− AX− S‖2F + ‖λx � U‖1/2 + ι+(η)

+
ρ

2

∥∥X− Xf
∥∥2
F (10)

s.t. U =WX, η = X

The augmented Lagrangian function is given as

L (X,U,η,D,3)

=
1
2
‖Y− AX− S‖2F + ‖λx � U‖1/2 + ι+(η)

+
β

2

∥∥∥∥WX− U+
D
β

∥∥∥∥2
F
+
ρ

2

∥∥X− Xf
∥∥2
F

+
β

2

∥∥∥∥X− η + 3β
∥∥∥∥2
F

(11)

where D,3 are dual variables, and β is the augmented
Lagrangian coefficient. Via convex optimization tools, the
closed-form solutions of all primal and dual variables can be
obtained as

Xj+1
=

(
ATA+ (ρ + 2β)I

)−1 [
β(WTUj

+ ηj)

+AT (Y− S)+ ρXf −WTDj
−3j

]
(12a)

Uj+1
= shrink(WXj+1

+
Dj

β
,
λx

β
) (12b)

ηj+1 = max(Xj+1
+
3j

β
, 0) (12c)

Dj+1
= Dj

+ β(WXj+1
− Uj+1) (12d)

3j+1
= 3j

+ β(Xj+1
− ηj+1) (12e)

where j represents the iteration number (called inner loop).

B. SOLUTION OF ENDMEMBER MATRIX
Similar to abundance matrix, the equality constraint is used
via ADMM to split the variable of endmember matrix. Thus,
the subproblem (8b) of variable A is rewritten as

min
A,V

1
2
‖Y− AX− S‖2F + ι+(V)+

ρ

2

∥∥A− Af
∥∥2
F

s.t. V = A (13)

We can also obtain the closed-form solutions of primal and
dual variables, which are presented as

Aj+1
=

[
(Y− S)XT

+ ρAf + βVj
−Mj

]
(
XXT

+ (ρ + β)I
)−1

(14a)
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FIGURE 1. Tight framelet decomposition results at 100th band of Pavia University dataset: (a) Low
frequency approximation in tight framelet domain, (b)-(i) High frequency in tight framelet domain.

Vj+1
= max

(
Aj+1
+

Mj

β
, 0
)

(14b)

Mj+1
= M+ β

(
Aj+1
− Vj+1

)
(14c)

whereM represents the dual variable.

C. SOLUTION OF SPARSE NOISE
For the convex subproblem of sparse noise S, the correspond-
ing closed-form solutions are expressed as

Sj+1 = shrink(
Y− AX+ ρS

1+ ρ
,
λs

1+ ρ
) (15)

D. STOPPING RULE
The stopping rule satisfies the relative difference value
between the successive updates of the objective function
f (X,A) is less than 0.01, that is,

f (X,A) =
‖Ak+1Xk+1

− AkXk
‖F

‖AkXk‖F
< 0.01 (16)

The error setting for stopping the iteration is usually noise
dependent, for example, 0.01 for a SNR of 20dB. Besides
these, it is found that the inner loop iterations of X, A and
S does not need to run exhaustively for convergence, which

has almost no impact on the overall performance. Therefore,
the iterations of inner loops is set to within 5 times.

IV. EXPERIMENTAL SIMULATIONS AND PERFORMANCE
ANALYSIS
To evaluate the performance of our algorithm for hyper-
spectral image restoration, several typical synthetic and real
datasets are leveraged to perform the experimental simula-
tions. Among them, synthetic datasets need to artificially
add mixed noise, while real data has no extra noise. Fur-
thermore, several performance metrics are adopted to esti-
mate the quality, including PSNR (Peak signal to noise
ratio) [47], SSIM (Structural similarity) [48], SAM (Spectral
angle mapping) [49] and ERGAS (Relative dimension-
less global error) [50]. In addition, the runtime (seconds)
is also considered as the index to compute complex-
ity. Especially, five state-of-the-art methods are employed
as the baselines to conduct performance comparison,
including deep-learning-based HySuDeep (Subspace
representation and deep CNN Image prior) [15], tensor-
decomposition-based LRTDGS (Weighted group
sparsity-regularized low-rank tensor decomposition) [24],
matrix-factorization-based E-3DTV (Enhanced 3-D total
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variation) [36], SNLRSF (Subspace-based nonlocal low-
Rank and sparse factorization method) [33] and F-LRNMF
(Framelet-regularized low-rank nonnegative matrix factor-
ization method) [34].

A. EXPERIMENTAL SIMULATIONS
1) SYNTHETIC DATASETS
There are two synthetic datasets with mixed noise in the
experiments. To be specific, the first dataset is Washington
DCMall, acquired by hyperspectral digital image acquisition
sensor. A sub-scene of size 191 × 256 × 256 is selected as
the region of interest (ROI) in this experiment. The second
dataset was obtained at Pavia University, in northern Italy,
in which a block of size 103 × 200 × 200 was used in the
experiment. Meanwhile, the values of parameter α, λS , ρ, β
in the proposed algorithm are set to 10, 0.07, 0.1, and 10,
respectively. The details are given in (IV-C).

2) NOISE SETTING
Generally, in the process of hyperspectral acquisition, it is
inevitable to be polluted by a variety of noise, including
Gaussian noise, sparse noise (i.e., salt and pepper noise,
stripes noise), and others. To evaluate the restoration per-
formance, four cases are set to simulate different noise
environments by grouping sparse noise and Gaussian noise
with different parameters (i.e., proportions or standard devia-
tions). Then, in each case, two subcases are further designed
to test the performance by fixing one kind of noise as
follows.
Case I (Gaussian noise & different proportions of sparse

noise): In two subcases, zero-mean Gaussian noise with stan-
dard deviation of 0.05 is added to all bands (i.e., σ = 0.05),
while the proportions of salt and pepper noise are set to
0.2 and 0.3, separately (i.e., Ψ = 0.2).
Case II (Different standard deviations of Gaussian noise &

sparse noise): The standard deviation of zero-mean Gaussian
noise in two subcases are set to σ = 0.05, 0.1, separately.
Meanwhile, the proportion of salt and pepper noise is fixed
to Ψ = 0.1.
Case III (Random Gaussian noise & sparse noise): In one

subcase, the standard deviation σ of zero-mean Gaussian
noise is randomly generated from 0.05 to 0.1. Meanwhile, the
proportion of salt and pepper noise is set to Ψ = 0.1; In the
other one, the random standard deviation σ of Gaussian noise
varies from 0.075 to 0.15 for all bands, while the proportion
of salt and pepper noise is set to Ψ = 0.1.
Case IV (Gaussian noise & mixed sparse noise): In two

subcases, the zero-mean Gaussian noise is fixed to σ = 0.05,
and the proportion of salt and pepper noise is prescribed
as Ψ = 0.1. Moreover, stripes noise is utilized to corrupt
the randomly selected bands of synthetic dataset, where the
distribution ratios of bands randomly polluted by 1 to 3 stripes
noise are set to 0.1 and 0.5 separately (i.e., � = 0.1
and � = 0.5).

3) ANALYSIS OF RESTORATION IMAGES
The datasets of Washington DC Mall and Pavia Univer-
sity are utilized to test the visualization performance of the
proposed PWSR-TF and the baselines, where the close-ups
of restored images are shown in a red box. On the one
hand, the reconstructed images of Washington DC Mall in
Cases II and IV are shown in Figs. 2 and 3. One can obviously
observe that the reconstructed image of proposed PWSR-TF
retains more clear details than that of the baselines. On the
other hand, Figs. 5 and 6 are the restored images of Pavia
University in Case I and III. Distinctly, F-LRNMF and the
proposed PWSR-TF have high similarity with the original
image, which demonstrates the effectiveness of these meth-
ods in denoising. Besides restoration images, the further per-
formance comparison between the reconstruction methods
can also be illustrated in the following tables and curves. In a
nutshell, the proposed PWSR-TF preserves more essential
structures of clean hyperspectral image than the baselines.

4) ANALYSIS OF PERFORMANCE METRICS
The overall performances of two datasets under four noise
conditions for all algorithms are shown in Tables 1, 2 and 3, 4.
In addition, the item ‘‘Noisy’’ in tables denotes the perfor-
mance of noise-corrupted image versus clean data without
any processing. For the dataset of Washington DC Mall, the
proposed PWSR-TF distinctly outperforms the benchmark
algorithms. To be specific, compared with F-LRNMF, PSNR
of our PWSR-TF is increased by more than 1dB, and ERGAS
decreases approximately by 10%. In addition, other met-
rics can also be ameliorated outstandingly. Regarding to the
Pavia University dataset, the proposed PWSR-TF provides
higher-quality performance than the benchmark methods in
all performance metrics, which verifies the validation of the
proposed algorithm in this article.

5) ANALYSIS OF PERFORMANCE CURVES
The curves of PSNR and ERGAS with respect to spectral
bands are drew in Figs. 4 and 7. It’s obvious that the proposed
PWSR-TF yields higher PSNR than the baseline methods in
almost all bands. Meanwhile, one can see from Figs. 4 and 7
that the ERGAS of our PWSR-TF is more closed to 0 (ideal
value) than that of the benchmarks for Washington DC Mall
and Pavia University datasets. In conclusion, the proposed
PWSR-TF makes significant improvements over the baseline
algorithms in different bands for all cases.

B. REAL DATASETS
Two real datasets directly obtained in the practical applica-
tion, are employed to verify the restoration performance of
proposed PWSR-TF without artificially adding noise. One is
the Urban dataset1 acquired by the HYDICE (Hyperspectral
Digital Imagery Collection Experiment ) sensor, which has
the size of 300 × 300 × 210. The other is the Indian Pines

1http://www.tec.army.mil/hypercube
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TABLE 1. Performance comparison of reconstructed images on Washington DC Wall (the best result highlighted in bold).

TABLE 2. Performance comparison of reconstructed images on Pavia University (the best result highlighted in bold).

FIGURE 2. Restored images at the 50th band of Washington DC Mall in Case II (σ = 0.1, Ψ = 0.1), including: (a) Original
image, (b) Noisy image, (c) HySuDeep, (d) LRTDGS, (e) E-3DTV, (f) SNLRSF, (g) F-LRNMF, (h) Proposed.
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FIGURE 3. Restored images at the 70th band of Washington DC Mall in Case IV (σ = 0.05, Ψ = 0.1, ω = 0.5), including:
(a) Original image, (b) Noisy image, (c) HySuDeep, (d) LRTDGS, (e) E-3DTV, (f) SNLRSF, (g) F-LRNMF, (h) Proposed.

FIGURE 4. The PSNR and ERGAS curves with respect to spectral bands on Washington
DC Mall under second subcase of different Case: (a)-(b) for Case II, (c)-(d) for Case IV.

dataset2 obtained by the AVIRIS (Airborne Visible Infrared
Imaging Spectrometer) sensor, containing 162 spectral bands
and 145 × 145 pixels. Especially, both of datasets are liable
to some noise during the course of image acquisition. The

2https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html

parameter settings in the real dataset experiment are identical
to those in the synthetic dataset.

1) URBAN DATASET
The reconstructed images are shown in Fig. 8 by the proposed
PWSR-TF and the benchmark algorithms. From the close-ups
in red box of Fig. 8, we can observe that the benchmark
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FIGURE 5. Restored images at the 100th band of Pavia University in Case I (σ = 0.05, Ψ = 0.3), including: (a) Original
image, (b) Noisy image, (c) HySuDeep, (d) LRTDGS, (e) E-3DTV, (f) SNLRSF, (g) F-LRNMF, (h) Proposed.

FIGURE 6. Restored images at the 100th band of Pavia University in Case III (σ is change from 0.075 to 0.15, Ψ = 0.1),
including: (a) Original image, (b) Noisy image, (c) HySuDeep, (d) LRTDGS, (e) E-3DTV, (f) SNLRSF, (g) F-LRNMF, (h) Proposed.

algorithms of HySuDeep, SNLRSF and E-3DTV produce the
low-quality performance in retaining local details. On the
contrary, the proposed PWSR-TF, as well as LRTDGS and
F-LRNMF, has high similarity in the aspect of clear recon-
structed images, which indicates the three methods produce
better restored results. The further comparison can employ
the below performance metric.

Owing to lack ground-truth image as the reference image,
this paper uses the horizontal mean profile as performance
metric. Fig. 10 presents the horizontal mean profiles of the
restored images for all algorithms, where the horizontal axis
denotes the row number of Urban dataset in band of 210,
and the vertical axis reflects the mean value of each row.
In Fig. 10(a), it’s pretty obvious that the original hyperspectral
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FIGURE 7. The PSNR and ERGAS curves with respect to spectral bands on Pavia
University dataset under second subcase of different cases: (a)-(b) for Case I, (c)-(d) for
Case III.

TABLE 3. Performance comparison of restoration methods on Washington DC dataset (the best result highlighted in bold).

TABLE 4. Performance comparison of restoration methods on Pavia University (the best result highlighted in bold).
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image has a rapid fluctuation, which indicates it is seriously
interrupted by noise. While, the curve of proposed PWSR-TF
is smoother than that of the benchmarks, which verifies it has
better reconstructed performance.

2) INDIAN PINE DATASET
Fig. 9 showcases the restoration results of Indian Pine dataset
yielded by all methods. One can distinctly observe that all of
methods can remove mixed noise to various degrees. Further
comparison of the details from restoration images, one can
easily obtain the conclusion that the proposed PWSR-TF can
preserve more details and image signatures. That is, it also
verifies that piecewise weighted smoothing regularization in
tight framelet domain has a certain advantage in retaining the
local details.

To evaluate the restoration performance intuitively, we also
draw the horizontal mean profiles of Indian Pine dataset.
As shown in Fig. 11, the proposed PWSR-TF performs a
smoother curve in the horizontal direction than the bench-
mark algorithms, which demonstrates our algorithm can
effectively suppress mixed noise and yield high-fidelity
restoration performance.

C. PARAMETER DISCUSSION
In this part, the parameter setting of the proposed PWSR-TF
will be discussed, including the baseline weight of
low-frequency component α, regularization parameter λS ,
proximal coefficient ρ, the estimated rank N , the augmented
Lagrangian coefficient β and iteration number. In general, the
weight is related to the noise level, for example, the weight is
fixed to 0.01 when the whole SNR is 20 dB. For convenience,
we take the second datasets in Case I as an example to conduct
the experimental test and analysis.

1) PARAMETER α
In Equation (7), α denotes the baseline weight of low-
frequency component, which has a significant effect on the
weight of different frequency bands. Fig. 12(a) shows the
performance of PSNR versus α, in which the proposed
PWSR-TF increases rapidly when α changes from 1 to 10.
With the increasing continuously of α, PSNR reduces
slightly. To sum up, the baseline weight of low-frequency
component α is set to 10.

2) PARAMETER λS
It’s no doubt that λS can be available for promoting the
sparsity of sparse noise. From Fig. 12(b), one can obtain the
conclusion that the PSNR is improved significantly when λS
varies from 0.01 to 0.07. As λS continues to increase, the
variation of PSNR trends to be stable. Therefore, the value of
λS in all experiments conducted by the proposed algorithm is
fixed to 0.07.

3) PARAMETER ρ
Our PWSR-TF adopts the proximal term to enhance the con-
vergence. Fig. 12(c) displays the performance curve of PSNR

with respect to proximal parameter lg(ρ), which presents an
obvious decrease since the value of ρ is 0.1. In consequence,
we choose 0.1 as the proximal term parameter value.

4) PARAMETER N
The parameter N denotes the rank of endmember matrix, i.e.,
the number of substances underlying in the target image. The
performance curve of PSNR with respect to N is depicted in
Fig. 12(d). It can be easily observed that PSNR is not sensitive
to N when the value of rank is not less than 10. According to
the above analysis, the value of estimated rank N is set to 10.

5) PARAMETER β
Fig. 12(e) exhibits PSNR value sensitivity analysis of the
augmented Lagrangian coefficient β. From the result, it can
be easily observed that the value of PSNR approximates ideal
result when the value of β equals to 10. Therefore, 10 is
selected for β during whole experiment.

6) ITERATION NUMBER
The experiment is conducted to test the convergence of the
proposed PWSR-TF. Fig. 13 displays the change curves of
PSNR with respect to the iteration number in Washington
DCWall and Pavia University datasets under second subcases
of Case II and Case IV, respectively. One can obviously see
that, the value of PSNR acquires the approximation of steady
result when the iterations reaches 40, which demonstrates the
proposed algorithm has ideal convergence.

D. ABLATION STUDY
In this subsection, two ablation experiments are carefully
designed to testify the validation of transform and weighting
employed in our paper.

1) TRANSFORM DOMAIN
To objectively demonstrate the effectiveness of different
transforms, we perform an ablation experiment by employ-
ing wavelet transform and cubic B-spline framelet trans-
form(denoted as C-framelet) to replace linear B-spline
framelet transform separately. Table 5 presents the restora-
tion performances of ablation study on Washington DC Mall
and Pavia University datasets. It can be observed that the
restored results of proposed PWSR-TF is significantly better
than that of the other two under various noise environments,
which demonstrates the effectiveness of tight framelet in this
paper.

2) WEIGHTING SCHEME
To verify the rationality of weighting schemes, a compari-
son experiment of constant weighting (C-W), high-low fre-
quency weighting (H-L) and proposed piecewise weighting
(PWSR-TF) is elaborately designed. Specifically, the defi-
nition of C-W is written as λx = [λc−w × 1W(1,1) , λc−w ×

1W(1,2) , . . . , λc−w × 1W(3,3) ]
T . H-L applies different weights

(i.e., λl and λh) to low frequency and high frequency
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FIGURE 8. Restored results at 210th of Urban dataset, including: (a) Original image, (b) HySuDeep, (c) LRTDGS, (d) E-3DTV, (e) SNLRSF, (f) F-LRNMF,
(g) Proposed.

FIGURE 9. Restored results at 1st of Indian Pine dataset, including: (a) Original image, (b) HySuDeep, (c) LRTDGS, (d) E-3DTV, (e) SNLRSF, (f) F-LRNMF,
(g) Proposed.

FIGURE 10. Horizontal profile at 200th of Urban dataset, including: (a) Original image, (b) HySuDeep, (c) LRTDGS, (d) E-3DTV, (e) SNLRSF, (f) F-LRNMF,
(g) Proposed.

FIGURE 11. Horizontal profile at 1st of Indian Pine dataset, including: (a) Original image, (b) HySuDeep, (c) LRTDGS, (d) E-3DTV, (e) SNLRSF, (f) F-LRNMF,
(g) Proposed.

FIGURE 12. The performance PSNR with respect to the parameters separately, including: (a) α, (b) λs, (c) ρ, (d) N , (e) β.

separately, defined as λx = [λl×1W(1,1) , λh×1W(1,2) , . . . , λh×

1W(3,3) ]
T . Table 6 presents the optimal quantitative evaluation

values of three weighting schemes on Washington DC Mall

and Pavia University datasets under different noise settings.
Compared with the other two weighting schemes, the pro-
posed PWSR-TF achieves a more satisfactory restoration
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FIGURE 13. Relationship between iteration number and PSNR in different Case: (a) Case II,
(b) Case V.

TABLE 5. Performance comparison of different transform domain.

TABLE 6. Performance comparison of different weighted method.

TABLE 7. Runtime comparison of restored algorithms.

performance in most cases, which also certifies the rationality
of piecewise weighting.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
The main calculations of the proposed PWSR-TF are
divided into X, A, and S. Then the complexities of both
equations (12a) and (14a) are equal to O(MNL), and the

computation of (15) takes up to O(ML). Considering
aforementioned equations together, the overall computa-
tional complexity of proposed PWSR-TF algorithm is
O((2N + 1)ML). Furthermore, the complexity of algorithm
can also be effectively reflected by runtime. Specifically, the
runtime of the proposed PWSR-TF and the baselines are
shown in Table 7. We can observe that except LRTDGS and
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F-LRNMF, the proposed PWSR-TF runs faster than the other
three benchmark methods in almost all of the datasets, which
demonstrates the proposed PWSR-TF needs to be further
optimized in the future.

V. CONCLUSION
In this paper, a hyperspectral image restoration algorithm
based on piecewise weighted smoothing regularization in
tight framelet domain is proposed to remove mixed noise.
On the basis of non-negative matrix decomposition, the
abundance matrix in different frequency of tight framelet
domain is imposed by corresponding weight, and lq norm is
employed as the sparsity regularization. Moreover, to con-
struct the restoration model, we combine the tight framelet
transformation algorithm with the alternating direction mul-
tiplier method to derive the closed form solutions. Using
the synthetic and real datasets in the experiments, the test
results illustrate that the proposed algorithm generates better
performance in image restoration than the state-of-the-art
baseline methods. In future plans, we will explore the influ-
ence of other multi-scale geometric methods on the piecewise
smoothing regularization, and develop other effective solving
algorithm to reduce the runtime.
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