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ABSTRACT Fleet management plays a central role in several application contexts such as distribution
planning, mail delivery, garbage collection, salt gritting, field service routing. Since road congestion has
a big impact on driving times, fleet management can be enhanced by taking into account data on current
traffic conditions. Today, most carriers gather high-quality historical traffic data by using global position
system information. These data serve as an input for defining time-dependent travel times, i.e. travel times
changing according to traffic conditions throughout the day. Given a fixed-size fleet of vehicles and a graph
with arc traversal times varying over time, Time-Dependent Vehicle Routing Problems aim to select the best
routes while minimizing the travelling costs. The basic version with only one route is usually referred to
as the Time-Dependent Travelling Salesman Problem. The main goal of this work is to define tight upper
bounds for this problem by reusing the information gained when solving instances with similar features. This
is customary in distribution management, where vehicle routes have to be generated over and over again with
similar input data. To this aim, the authors devise an upper bounding technique based on the solution of a
classical (and simpler) time-independent Asymmetric Travelling Salesman Problem, where the constant arc
costs are suitably defined by the combined use of a Linear Program and amix of unsupervised and supervised
Machine Learning techniques. The effectiveness of this approach has been assessed through a computational
campaign on the real travel time functions of two European cities: Paris and London. The overall average
gap between the proposed heuristic and the best-known solutions is about 0.001%. For 31 instances, new
best solutions have been obtained.

INDEX TERMS Machine learning, path ranking invariance, time-dependent routing, travelling salesman
problem.

I. INTRODUCTION
The purpose of this article is to present a Machine Learning
(ML) enhanced upper-bound for the Time-Dependent Trav-
elling Salesman Problem (TDTSP), defined as follows. Let
G := (V ∪ {0},A, τ ) denote a time-dependent directed com-
plete graph, where V = {1, . . . , n} is the set of customers,
vertex 0 is the depot and A := {(i, j) : i ∈ V , j ∈ V }

⋃
{(0, i) :

i ∈ V }
⋃
{(i, 0) : i ∈ V } is the set of arcs. With each

arc (i, j) ∈ A is associated a travel time function τij(t),
representing the travel time of (i, j) if the vehicle leaves node
i at time t . The TDTSP amounts to determine a least duration
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tour visiting each customer once, with the vehicle leaving the
depot at time 0.

In recent years there has been a flourishing of scholarly
works in time-dependent routing. In routing problems, travel
time is a non linear function of average travel speed, which
may vary exogenously or endogenously. Today, most carriers
gather high-quality historical traffic data by using global
position system information. These data serve as an input for
defining travel times modelling travel speed changes due to
exogenous events, like traffic congestion and weather condi-
tions. On the other hand, in routing problems travel speeds
may also vary endogenously whenever the decision maker
can prescribe the vehicles’ speeds, e.g. in order to take into
account energy consumption [1] or CO2 emissions [2]. The
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present contribution deals with time-dependent routing prob-
lems where time-varying travel time aims to model traffic
conditions throughout the day. In the following, it has been
presented a brief review of contributions related to TDTSP.
For a complete survey see [3]. Reference [4] represented the
first one to address the TDTSP and devised a Mixed Inte-
ger Programming (MIP) model. An approximate dynamic
programming algorithm was proposed in [5], whereas two
heuristics has been developed in [6]. A simulated annealing
heuristic was proposed in [7] and some metaheuristics were
proposed in [8]. In [9] the authors exploited some properties
of the TDTSP, in order to develop a lower and upper bounding
algorithm. Moreover the authors proposed a MIP model for
which they devised valid inequalities. The separation pro-
cedures for the proposed inequalities were then embedded
into a branch-and-cut algorithm that solved instances with up
to 40 vertices. In [10], some properties of the problem are
derived as well as a branch-and-bound algorithm. The com-
putational campaign showed that the proposed approach out-
performs the branch-and-cut procedure by [9]. Reference [11]
proposed a Constraint Programming solution approach. This
algorithm, thanks to new global constraints, was able to solve
instances with up to 30 customers. Recently, a parameterized
family of lower bounds has been proposed by [12], where the
setting of parameters are carried out by fitting the traffic data.
The performance of lower bounding mechanism was evalu-
ated by embedding it in a branch-and-bound procedure. The
computational campaign showed that it was possible to deter-
mine the optimal solution for a larger number of instances
than [10]. Several contributions studied a variant of TDTSP
with Time Windows (TDTSPTW). The approach proposed
in [13] is based on a transformation of the TDTSPTW into an
Asymmetric Generalized TSP and then into an Asymmetric
Graphical TSP, solved by a known exact algorithm for the
Mixed General Routing Problem. Contribution [14] aims to
extend results provided in [9] to deal with time windows. The
authors demonstrated that a lower bound and an upper bound
for the original TDTSPTW can be derived from the optimal
solution of an Asymmetric TSPTW with suitably defined
travel times and time windows. The proposed bounds are
integrated into an exact branch-and-bound algorithm. A new
formulation and branch-and-cut algorithm is devised in [15].
Reference [16] proposed a solution approach relying on a
dynamic discretization discovery framework, which is based
on integer programming formulations defined on (partially)
time expanded networks. Reference [17] deals with a heuris-
tic solution algorithm for the TDTSPTW, named Iterated
Maximum Large Neighborhood Search. The algorithm starts
from a given solution, which tries to improve iteratively by
applying destroy and repair operators. Some customers are
then randomly shifted during a perturbation phase. Other con-
tributions examine other variants of the TDTSP. In [18] exact
and approximate algorithms are proposed for the Moving-
Target TSP, where a set of targets, moving at constant speed,
has to be intercepted in minimum time by a pursuer. Ref-
erence [19] addressed the Robust TSP with Interval Data,

where travel times correspond to ranges of possible values.
Finally, it is worth noting that there are contributions dealing
with a scheduling problem referred to as TDTSP. Given a
single machine and a set of jobs, it aims to determine a
sequence of jobs, where the processing times are position-
dependent. Such contributions are not relevant for the present
contribution.

The contribution of this paper also lies at the boundary
between machine learning and combinatorial optimization.
Following the classification introduced in [20], there are dif-
ferent algorithmic structures, where learning components and
OR algorithms can be laid out. It is worth noting that solving
the TSP throughML is not new. Several contributions follows
the end-to-end learning algorithmic structure, i.e. determine
approximate TSP solution in a pure data-driven fashion by
training the ML model to output solutions directly from the
input instance. Reference [21] tackles Euclidean TSP with
deep learning and introduces the pointer network wherein
an encoder, namely a recurrent neural network, is used to
parse nodes in the input graph and produces an encoding
(a vector of activations) for each of them. Then a decoder
predicts a policy for prescribing the next possible move so
that to sample a permutation of visited cities. This method
makes it possible to use the network over different input
graph sizes. The authors train the model through supervised
learning with precomputed TSP solutions as targets. A sim-
ilar model is used in [22] and trained with reinforcement
learning using the negative tour length as a reward signal.
The authors discuss some limitations of supervised learning,
such as the need to determine optimal TSP solutions (the
targets), that in turn, may be ill-defined when those solutions
are not optimal, or when there are multiple solutions. Ref-
erence [23] devised a three-step procedure, starting with a
semantic feature extraction from the MIP model of the TSP.
The extracted features are then exploited to derive a neigh-
bourhood design mechanisms. Finally an automatic configu-
ration phase finds the proper mix of such mechanisms taking
into account the instance distribution. The contribution [24]
provides a comparative analysis of ML-based heuristics for
the classical (time-invariant) Travelling Salesman Problem.
To the best of these authors’ knowledge, contribution [25]
is the only attempt to use ML to solve a time-dependent
routing problem. In particular, the authors showed how to
embed ML techniques in a simple constructive heuristic
for the TDTSP. Computational results of [25] demonstrated
that the proposed algorithmic approach is promising in real-
time settings, where speed updates and/or arrivals of new
requests may lead to re-optimization of the planned route.
As thoroughly discussed in Section VI, the upper bounding
procedure outperforms the heuristic proposed in [25], in those
non-real-time settings where it is considered reasonable to
wait half a minute to obtain high quality TDTSP solutions.
Following the classification of [20], the algorithmic struc-
ture adopted in this contribution is refereed to as learning
to configure algorithms, where machine learning is used
to augment an operation research algorithm with valuable
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pieces of information. In particular, it is proposed an upper
bounding technique inspired by the new findings of the recent
paper [26], where the authors studied a property of time-
dependent graphs, dubbed path ranking invariance. Given
a time-dependent graph if the ordering of its paths (w.r.t.
travel time) is independent of the start travel time, then the
graph is path ranking invariant. The authors showed that,
when a graph is path ranking invariant, a relevant class of
time-dependent vehicle routing problems (with continuous
piecewise travel times), including the TDTSP, can be solved
by determining the optimal solution of their (simpler) time-
independent counterpart. The authors demonstrated that the
ranking invariance property can be checked by solving a
(large) Linear Programming (LP) problem. If the ranking
invariance check fails, they proved that a tight lower bound
can be derived from the obtained LP solution.

This paper shows how the new findings of [26] can be
further generalized for determining tight upper bounds for the
TDTSP, with time-dependent travel times satisfying the FIFO
property, but not (necessarily) continuous-piecewise linear.
The main idea is to determine a heuristic solution by solving
the TDTSP on an auxiliary time dependent graph, which
satisfies the path ranking invariant property. The travel time
functions of the auxiliary graph are determined by generaliz-
ing the LP-based approach proposed in [26]. In order to obtain
a fast computation of the auxiliary travel time functions, the
predictive component of a supervised ML technique has been
exploited. Indeed, the ultimate goal is the fast computation of
tight upper bounds, in those settings, customary in distribu-
tion management, in which similar instances are solved over
and over again. As stated in [20], a company does not care
about solving all possible TSPs, but only theirs. Therefore,
instead of starting every time from scratch in the definition of
the auxiliary graph, a learning mechanism has been inserted
in such a way the upper bounding procedure can take advan-
tage from previous runs on other (similar) instances. To this
aim, the LP-based approach of [26] is boosted with a mix of
supervised and unsupervised techniques.

The main contributions can be summarized as follows.

• An upper bounding procedure is proposed based
on a combinatorial relaxation of the TDTSP, where
time-dependent travel times satisfy the FIFO property,
but are not (necessarily) continuous-piecewise linear.

• It is devised an automatic procedure for determining the
parameters of the combinatorial relaxation, based on the
combined use of a Linear Program and a mix of super-
vised and unsupervised Machine Learning techniques.

• It is generated a set of problem instances based on a
real road network to show how the proposed heuristic
approach can learn from past data to solve the TDTSP
in an efficient and effective manner.

The paper is organized as follows. Section II provides a
problem definition and some background information on the
study area. Section III gives an overview of the whole solving
method. Section IV introduces a parameterized family of

upper bounds computed by solving the TDTSP on suitably
defined auxiliary time-dependent graphs. Such family of
upper bounds gives rise to an optimization problem aiming to
determine the parameter providing the best (minimum) upper
bounds. Section V proposes a ML-based heuristic approach
for solving such optimization problem. Section VI discusses
computational experiments on instances derived from the
graphs of two European cities (London and Paris). Finally,
Section VII draws some conclusions.

II. PROBLEM DEFINITION AND BACKGROUNDS
Let [0,T ] denote the time interval associated to a single
working day. Without loss of generality it is supposed that
the travel time functions are constant in the long run, that is
τij(t) := τij(T ) with t ≥ T . Furthermore, it is assumed that
first-in-first-out (FIFO) property holds for the traversal time
τij(t), i.e., leaving the vertex i later implies arriving later at
vertex j. For the sake of notational convenience, τ (i, j, t) is
also used to designate τij(t).

For any given path pk := (i0, i1, . . . , ik ), the corresponding
duration z(pk , t) can be computed recursively as:

z(pk , t) := z(pk−1, t)+ τik−1ik (z(pk−1, t)), (1)

with the initialization z(p0, t) := t . Therefore, a compact
formulation of the TDTSP is:

min
p∈P

z(p, 0).

where P denotes the set of Hamiltonian tours on the time
dependent graphG := (V ∪{0},A, τ ). Algorithms developed
for the classical time-invariant TSP requires essential struc-
tural modifications in order to take into account time-varying
travel times. Although time-dependent travel times have an
impact on the ranking of solutions, they pose a difficulty for
checking feasibility of solutions, only for those variants of
TDTSP where it is required the fulfillment of time windows.
Therefore, a quite natural way of defining a heuristic solution
approach is to determine the optimal solution of a classical
Asymmetric TSP (ATSP), defined on a graph Gc = (V ∪
{0},A, c) where c : A→ R+ is a time-invariant (dummy) cost
function. The main issue in this approach is how to determine
a time-invariant (dummy) cost function that mimics in an
effective manner the solutions ranking of the original TDTSP.
In this respect, it can be proved that there always exists a time-
invariant (dummy) cost function such that a least duration
route of TDTSP is also a least cost solution of the TSP defined
on the time-invariant graphGc, whichmotivates the following
definition.
Definition 1 (Valid Cost Function): A time-invariant cost

function c : A→ R+ is valid for the TDTSP defined on G =
(V ∪ {0},A, τ ), if the least duration solution p∗ = min

p∈P
z(p, 0)

corresponds to a least cost solution of the time-invariant ATSP
defined on Gc = (V ∪ {0},A, c), that is:

argmin
p∈P

∑
(i,j)∈P

c(i, j) = argmin
p∈P

z(p).
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Given a cost function valid for an instance of the TDTSP,
the least duration solution p∗ can be determined by exploiting
algorithms developed for (classical) time invariant ATSP.
In [26] the authors studied the relationship between the con-
cept of valid cost function and a property of time-dependent
graphs called path ranking invariance.
Definition 2 (Path ranking invariance): A time-dependent

graph G is path ranking invariant, if for any pair of paths p′

and p′′ of G holds either:

z(p′, t) ≥ z(p′′, t) ∀t ≥ 0,

or

z(p′′, t) ≥ z(p′, t) ∀t ≥ 0.

Since travel time functions are constant in the long run, if a
time-dependent graph G = (V ∪ {0},A, τ ) is path ranking
invariant then a valid cost function is c(i, j) = τij(T ).

A. THE AUXILIARY GRAPH
The proposed heuristic algorithm is based on the definition of
an auxiliary path ranking invariant graph G = (V ∪{0},A, τ )
where each τ ij(t) is an approximation of τij(t), with (i, j) ∈ A.
Each continuous piecewise linear function τ ij(t) is generated
by the travel time model proposed in [27] (IGP model for
short), in which each arc (i, j) ∈ A is characterized by a
constant stepwise speed function vij(t) and a length Lij. It is
supposed that the horizon is partitioned into H subintervals
[Th,Th+1] (h = 0, . . . ,H − 1), with T0 = 0 and TH = T .
Furthermore, it is assumed that all arcs of the auxiliary graph
G share a common speed function, such that

vij(t) = vh,

with t ∈ [Th,Th+1], h = 0, . . . ,H−1 and (i, j) ∈ A. Accord-
ing to the IGP model, given a start time t the travel time value
τ ij(t) is computed by the following iterative procedure.

Algorithm 1 Computing the Travel Time τ ij(t)

1: q← h : th ≤ t ≤ th+1
2: `← Lij;
3: t ′← t + `/vq;
4: while t ′ > Tq+1 do
5: `← `− vq(Tq+1 − t);
6: t ← Tq+1;
7: t ′← t + `/vq+1;
8: q← q+ 1
9: return t ′ − t

In the IGP model the speed of a vehicle is not a constant
over the entire length of arc (i, j) ∈ A but it changes when the
boundary between two consecutive time periods is crossed.
Since the travel speed is a constant stepwise function, equal-
ity (2) represents a compact formulation of the relationship
between the input parameters and the output value of the IGP

model.

Lij =
∫ t+τ ij(t)

t
v(µ)dµ. (2)

z(pk , t) denotes the duration of a path pk on the
time-dependent graph G, with t representing the start travel
time, that is

z(pk , t) = z(pk−1, t)+ τ ik−1ik (z(pk−1, t)), (3)

with the initialization z(p0, t) = t .
Proposition 1: ( [26] ) The time dependent graph G =

(V ∪ {0},A, τ ) is path ranking invariant.
Proof: It is worth noting that from (2) it follows that

given a path p it happens that:∑
(i,j)∈p

Lij =
∫ t+z(p,t)

t
v(µ)dµ,

where the notation (i, j) ∈ p means that the arc (i, j) ∈ A is
traversed by the path p. This implies that if a path p′ is shorter
than a path p′′ then p′ is also quicker than p′′ for any start time
t ∈ [0,T ]:∑

(i,j)∈p′
Lij ≤

∑
(i,j)∈p′′

Lij ⇔ z(p′, t) ≤ z(p′′, t),

which proves the thesis.
The main implication of Proposition 1 is that an upper

bound on the TDTSP defined on the original graph G can
be obtained by solving a classical time invariant ATSP with
cost coefficients c(i, j) = τ ij(T ). Clearly the quality of the
obtained upper bound is correlated with the fitting deviation
between the original travel time function τ and its approx-
imation τ . Minimizing such fitting deviation is the main
idea underlying the family of parameterized upper bounds
presented in the following sections.

III. PROBLEM-SOLVING METHOD
As illustrated in the previous section, given an instance of
the TDTSP defined on G and the corresponding valid cost
function, the optimal solution can be determined by solving a
(classic) time-invariant ATSP. As stated in [26], the valid cost
function is unknown and inaccessible except for path-ranking
invariant graphs. The main goal is to construct an approxima-
tor of the valid cost function by combining machine learning
and operations research (OR) algorithms, according to the
learning to configure paradigm [20]. The basic underlying
idea is to approximate the valid cost function with the valid
cost function of an auxiliary (path-ranking invariant) graph.
Algorithm 2 reports a general description of the proposed
approach. The main components are an Artificial Neural
Network (ANN), a Linear Program and an ATSP solver.

Artificial Neural Network. During a preprocessing step,
the territory (and accordingly the customers) is partitioned in
K zones using an unsupervised learning technique. A dataset
of similar TDTSP instances (previously solved to optimality)
is the training set of the ANN. Given the cardinalities of the
set of customers for each zone, the ANN is trained to estimate

2004 VOLUME 11, 2023



T. Adamo et al.: Learned Upper Bounds for the Time-Dependent Travelling Salesman Problem

the vector ZETA consisting of the mean expected arrival time
at each zone in an optimal solution. Algorithm 2 receives as
input the time-dependent graph G augmented with the coor-
dinates of the K zones. The procedure starts with extracting
from the time-dependent graph G the customer distribution
n w.r.t. the set of K zones (Algorithm 2 - line 2). Then the
ANN estimates the ZETA values of the TDTSP instance to
be solved (Algorithm 2 - line 3). The estimated ZETAs are
then exploited to determine the set 3 of time instants, then
provided as input to the linear program (Algorithm 2 - line 4).
Linear Program.The approximated valid cost function c3

corresponds to the valid cost function of an auxiliary (time-
dependent) graph G3, where the travel time functions are
determined by solving the linear program LP(G,3), i.e. the
linear problem (7)-(14) defined on G and 3 (Algorithm 2
- line 5). The LP problem minimizes the expected fitting
deviation between the original travel time functions τ and the
auxiliary ones τ3. In particular the fitting deviations refers to
the set of time instants3 generated from the neighbourhoods
of the ZETA values determined by the ANN. The intuition is
that, by taking a snapshot around the optimal arrival times (of
similar instances previously solved), there is a good chance
that the auxiliary graph mimics the arc ranking associated to
the original (unknown and inaccessible) valid cost function.

ATSP solver. The heuristic solution p∗
3

is determined
by solving the TDTSP on the time-dependent (path-ranking
invariant) graphG3. Therefore the sequence of customers p∗

3
is determined by solving an ATSP instance with the same
number of customers of the TDTSP instance, and the distance
matrix filled with the values of the approximated valid cost
function c3 (Algorithm 2 - lines 6-7).

The output of Algorithm 2 is the sequence of customers
determined by the ATSP solver along with its duration w.r.t.
the original travel time functions. Subsequent sections will
provide all required insights following a bottom-up approach.

Algorithm 2 Problem-Solving Method
1: function Run(G)
2: n←Extract customer distribution of G
3: ZETA←ANN(n)
4: Generate the set 3 from ZETA
5: G3← Solve to optimality LP(G,3)
6: c3← τ3(T )
7: p∗

3
←Solve ATSP(c3)

8: z
3
← evaluate p∗

3
w.r.t. G

9: return z
3
,p∗
3

IV. A FAMILY OF PARAMETERIZED UPPER BOUNDS
The bounding procedure is based on the combinatorial relax-
ations for TDTSP proposed in [26], where (original) travel
times are required to be piecewise linear. This section dis-
cusses how such approach can be generalized to account for
time-dependent travel times τ not (necessarily) continuous
piecewise linear. To this aim it is defined a family of param-
eterized upper bounds z

3
, where parameters 3 constitute

an ordered set of time instants. Given set 3, upper bound
z
3

is determined by solving the TDTSP on an auxiliary
path ranking invariant graph G3 = (V ,A, τ3). The travel
time function τ3 is an approximation of the original travel
function τ . In particular τ3 is generated by the IGP model
and satisfies relationship (2). Recall that the IGP parameters
are: the set of speed breakpoints, the speed values and the
length of the arcs. The given upper-bound parameter 3 is
used to model the set of IGP speed breakpoints, i.e. 3 =
{T0, . . . ,TH }, with H = |3| − 1 (Algorithm 2 - line 4).
Then speed values and length of arcs are prescribed by a
linear program, which aims to minimize the fitting deviation
between the original τ and its parameterized approximation
τ3 (Algorithm 2 - line 5). Themain idea underlying the linear
program is that the equalities (2) imply that the travel time
functions τ and τ3 are perfect fit if the following relationship
holds for each arc (i, j) ∈ A and time instant t ∈ T :

Lij −
∫ t+τij(t)

t
v(µ)dµ = 0. (4)

The objective function aims to minimize a fitting deviation
given by the violations of equality constraints (4). Due to
the continuous time nature of (4), a surrogate of the fitting
deviation is defined by evaluating (4) only for time instants
belonging to a set 3ij, that is:

Lij −
∫ Th+τij(Th)

Th
v(µ)dµ = 0, (5)

with h = 0, . . . , |3ij| − 1 and (i, j) ∈ A. The set 3 is defined
as the union set of 3ij, with (i, j) ∈ A, i.e. 3 =

⋃
(i,j)∈A

3ij.

Let aijkh define the coefficient representing time spent on
arc (i, j) during period h when departing at Tk , that is:

aijkh =
{
min(Th+1 − Th,max(0,Tk + τij(Tk )− Th)) k ≤ h

0 otherwise

with (i, j) ∈ A, h, k = 0, . . . , |3ij| − 1.
Since v(t) is constant stepwise, relationship (5) can be

expressed by the following linear equality:

|3ij|−1∑
h=0

aijkh · vh = Lij + sijk , (6)

where the free-sign variable sijk models the violation of the
right-hand-side of (5) with respect to Lij, with (i, j) ∈ A, k =
0, . . . , |3ij| − 1. The proposed linear program determines a
speed function v(t) and the corresponding right-hand-sides
of (6), which is denoted with xijk : since it represents a length
it is required that xijk ≥ 0, with (i, j) ∈ A, k = 0, . . . , |3ij| −

1. The maximum fitting deviation between the original travel
time function τ (i, j, t) and τ3(i, j, t) is modelled as

ζij = max
k∈[0,...,|3ij|−1]

xijk − min
k∈[0,...,|3ij|−1]

xijk ,

with (i, j) ∈ A. Quantity ζ3 =
∑

(i,j)∈A
ζij represents an approx-

imatedmeasure of the total fitting deviation associated to the
auxiliary graph G3. The auxiliary graph G3 is determined
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in such a way that the corresponding travel time function
τ3 minimizes the value of ζ3. To this aim, it is formu-
lated the following linear program (7)-(14), where x ij and
x ij model, respectively, the minimum and maximum value of
the variables xijk , with (i, j) ∈ A and k = 0, . . . , |3ij| − 1.
A solution of such linear programming model also prescribes
the parameters of a stepwise function y(t). In particular,

y(t) = yh,

that is during the h − th time interval y(t) assumes the value
prescribed by the continuous variable yh, with t ∈ [th, th+1]
and h = 0, . . . , |3| − 1.

ζ ∗3 := min
∑
(i,j)∈A

x ij − x ij (7)

s.t.
|3ij|−1∑
h=0

aijkh · yh = xijk k = 0, . . . , |3ij| − 1 (i, j) ∈ A

(8)

x ij ≤ xijk k = 0, . . . , |3ij| − 1, (i, j) ∈ A (9)

x ij ≥ xijk k = 0, . . . , |3ij| − 1, (i, j) ∈ A (10)

xijk ≥ 0, k = 0, . . . , |3ij| − 1, (i, j) ∈ A (11)

x ij ≥ 0 (i, j) ∈ A (12)

x ij ≥ 0 (i, j) ∈ A (13)

yh ≥ ρ h = 0, . . . , |3| − 1 (14)

Objective function (7) aims to determine a step function
y∗(t) that minimizes the total maximum fitting deviation
between the original travel time function τ and its approx-
imation τ3. Constraints (8) state the relationship between
y(t) and x variables. Constraints (9) and (10) model the rela-
tionship between x ij, x ij and continuous variables xijk . Con-
straints (11), (12), (13) and (14) describe the non-negative
conditions on the decision variables. In particular, con-
straints (14) cut off the trivial (pointless) solution y(t) = 0 for
t ≥ 0. Let y∗(t) and x∗ denote, respectively, the step function
and the x values associated with the optimal solution of the
linear program (7)-(14). Moreover, x̃∗ij denotes the average of
the x values associated to arc (i, j) ∈ A in the optimal solution,
that is:

x̃∗ij =
|3ij|−1∑
h=0

x∗ijh
|3ij|

.

It is observed that the linear program does not directly pre-
scribe the IGP parameter Lij, with (i, j) ∈ A. Indeed, accord-
ing to (6) it follows that:

x∗ijk = Lij + sijk ,

where, recal that, sijk quantifies the violation of equality (5),
with (i, j) ∈ A and k = 0, . . . , |3ij|− 1. Since Lij denotes the
IGP length associated with τ3, from (6) it follows that∫ tk+τ (i,j,tk )

tk
v(µ)dµ−

∫ tk+τ3(i,j,tk )

tk
v(µ)dµ = sijk ,

that is the lower the absolute value of equality (5) violation
(i.e. |sijk |), the lower the absolute errormade by approximat-
ing τ (i, j, tk ) with τ3(i, j, tk ), with tk ∈ 3ij and (i, j) ∈ A.
Since x̃∗ij minimizes the mean squared violation of equal-
ity (5), i.e.

x̃∗ij = argmin
Lij

|3ij|−1∑
k=0

(x∗ijk − Lij)
2

|3ij|
,

such travel time approximation errors are (heuristically) min-
imized by generating the travel time function τ3(i, j, t) with
the following IGP input parameters:

v(t) = y∗(t), Lij = x̃∗ij,

with (i, j) ∈ A. Finally, remind that the travel time function
τ3(i, j, t) satisfies relationship (2), and, therefore, the auxil-
iary graph is path ranking invariant. Summing up, given a set
of time instants 3 =

⋃
(i,j)∈A

3ij and a time dependent graph

G, the proposed upper bounding procedure is made up three
main steps.
• STEP 1. Compute the optimal solution of the linear
program (7)-(14). Set the travel speed function v(t) equal
to y∗(t). Similarly set Lij to x̃∗ij for each (i, j) ∈ A
(Algorithm 2 - line 5).

• STEP 2. Determine the optimal solution p∗
3

of the
following time-independent ATSP (Algorithm 2 -
lines 6-7):

min
p∈P

∑
(i,j)∈p

τ3(i, j,T ).

• STEP 3. Determine upper bound z
3
as the duration of

p∗
3
evaluatedw.r.t. the original travel time function τ that

is (Algorithm 2 - line 8):

z
3
= z(p∗

3
, 0)

Finally, it is worth noting that in order to find the least
upper bound, the following optimization problem has to be
solved:

min
3

z
3
, (15)

where z
3
is evaluated according to the proposed three-steps

procedure. A simple heuristic for solving (15) is to set each
3ij equal to a discretizationD of the planning horizon. In this
case, the three-steps procedure computing the upper bound
zD is referred as PL-enhanced heuristic (PL-HTSP for short).
The main drawback of the PL-HTSP heuristic is that the
computation of a tight upper bound value zD might require
the solution of a large Linear Program. Next section shows
a machine learning based heuristic for solving (15) aiming
to overcome this drawback. In particular, the predictive capa-
bilities of machine learning is exploited in order to carefully
select3 as a (quite small) subset of time instants inD. In this
case, the three-steps upper bounding procedure computing z

3

is referred to as MLPL-enhanced heuristic (MLPL-HTSP for
short).
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FIGURE 1. Comparing the τ functions determined by, respectively, the
approximation procedure and [26].

V. LEARNING TO ENHANCE UPPER BOUNDS
This section proposes a learning mechanism for determining
set 3 (deepening the above Algorithm 2 - line 4). Then
upper bound z

3
is computed according to the three-steps

upper bounding procedure illustrated in the previous section.
As stated in Section I, the goal is to determine ‘‘good’’ upper
bounds, by reusing the information gained when solving
instances with similar features. To this aim, instead of starting
every time from scratch in the definition of the auxiliary
graph G3, a learning mechanism is devised so that the upper
bounding procedure can benefit from previous runs on other
instances with similar features.

The idea of bounds based on an auxiliary path ranking
invariant graph is inspired by [26], where the authors devised
a family of parameterized combinatorial relaxations for the
TDTSP. They proposed a procedure to determine auxiliary
travel times which are ‘‘good’’ lower approximations of the
original ones. Then a lower (dual) bound is determined by
solving the TDTSP on the less congested auxiliary graph.
This research work is aimed to devise a procedure for deter-
mining an upper (primal) bound by solving a TDTSP on
an auxiliary path ranking invariant graph. As shown in the
example reported in Fig. 1, by applying this approach, the
aim is to get a travel time approximation that fits the original
τ better than the lower approximation determined by [26].
In particular this paper proposes a mechanism for learning
the relationship between set 3 and the optimal solutions of
the TDTSP defined on the original time-dependent graph G.
First of all, it is observed that there exists a finite and discrete
set 3∗, consisting of all (feasible) arrival times: if t belongs
to 3∗, then there exists on G a feasible tour p ∈ P with t
corresponding to the arrival time at a node i ∈ V . That such
set 3∗ exists is based on the observation that there is a finite
number of feasible tours.
Remark 1: If ζ ∗3∗ = 0, then for each arc (i, j) ∈ A and time

instants t ∈ 3∗, it follows that:

τ3∗ (i, j, t) = τ (i, j, t)

and therefore, upper bound z
3∗

is optimal, that is z
3∗
=

min
p∈P

z(p, 0).

The main limit of the sufficient optimality condition stated in
Remark 1 is that determining the entire3∗ is computationally
challenging. To overcome this drawback, the predictive capa-
bilities of supervised ML techniques have been exploited,
in order to determine a set 3 such that the arrival times
associated to optimal solutions have a good chance of being
included in 3. Let fi denote a prediction (obtained through
a supervised ML method) of the expected time of arrival
(ETA) at customer i in an optimal solution. It is observed
that the ranking among arcs might deeply change during the
planning horizon on the original graph G. On the other hand,
the path ranking invariance of the auxiliary graph G3 holds
for any pair of paths, each one consisting of at least one
arc. This also implies an arc ranking invariance on G3. The
intuition is that, by taking a snapshot around the optimal
arrival times (of similar instances previously solved), there
is a good chance of embedding in the auxiliary graph G3
the arc ranking associated to the set of quickest tours of
the original graph. For this purpose, the maximum fitting
deviation between the original travel time function τ (i, j, t)
and τ3(i, j, t) is minimized for each arc (i, j) ∈ A in the time
interval [fi − εi, fi + εi], where εi > 0 represents the mean
absolute error associated to fi, with i ∈ V .
In particular, let D define a discretization of the time

horizon. Then for each node i, a subset Si of D is selected
as follows:

Si = {t ∈ [fi − εi, fi + εi] ∧ t ∈ D}

In the definition of the approximation travel time τ3, all arcs
(i, j) ∈ A outgoing the node i ∈ V share a common set 3ij
corresponding to the set Si, i.e. 3ij = Si. Therefore in the
MLPL-HTSP, the travel time τ3 is determined by solving the
linear program (7)-(14), where the role of3ij is played by the
subset Si in the constraints (8)-(11), with i = 1, . . . , n.

A. ETA ESTIMATION
Given a training instance, the exact algorithm devised by [10]
has been used in order to obtain the optimal arrival times at the
customers. The estimation of ETA for each customer i in an
optimal solution for a new instance has been obtained through
an artificial neural network (ANN). Multilayer Perceptron
Regressor (MPR) is the chosen ANN reference implemen-
tation with at least three layers: one layer composed by input
nodes, one or more for hidden nodes and one for output
nodes ( [28]). A nonlinear activation function was used by
all nodes not belonging to the input layer. The ANN has K
nodes in the input layer and K nodes in the output layer. K
also represents the number of zones in which the territory
(and accordingly customers) has been partitioned using an
unsupervised learning technique. In the computational cam-
paign, K -means algorithm has been used to aggregate the
customers belonging to instances of the training set into K
clusters which minimizes within-cluster variances ( [29]).
ANN inputs are the number nk k = 1, . . . ,K of customers
in each zone (namely, the customers distribution as pointed
out in Algorithm 2 - line 2); whilst ANN outputs are ZETAk
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TABLE 1. ANN mean errors on the London instances.

TABLE 2. ANN mean errors on Paris instances.

k = 1, . . . ,K the mean zone ETA (Algorithm 2 - line 3).
Lower K implies a high variability of ETA values in a zone.
In contrast, larger K corresponds to more accurate predic-
tions, but the training set should be very huge. A preliminary
experimentation allowed the definition of an optimalK value.

VI. COMPUTATIONAL EXPERIMENTS
The quality of the proposed upper bounding procedure was
empirically assessed through a computational campaign.

The branch-and-bound scheme proposed in [10] enhanced
with the lower bound proposed in [26] has been used to solve
every training instance, imposing a time limit of an hour. The
Asymmetric TSP subproblems have been solved by means
of [30]. The linear program (7)-(14) was solved with IBM
ILOGCPLEX 12.10. Themachine learning component of the
MLPL-HTSP algorithm was implemented in Python (version
3.7). The MPR and K-means implementations were taken
from scikit-learn machine learning library. All experimenta-
tion have been conducted on a Linux machine with 4 cores
at 2.67 GHz and 8 GB of RAM installed. Instances are based
on the real travel time functions of Paris and London [25]
(available at https://tdrouting.com/instances.
zip).

A. PARAMETER TUNING
A preliminary tuning phase permitted to select the most
appropriate combination of parameters. The Paris dataset is
composed by 600 instances, whereas London one counts
700 instances; all instances have 50 customers each. For both
cities, the full dataset has been splitted into a training set
composed by 90% of the instances, and a validation set with
the remaining 10%. The ANN with the best performance in
terms of strength of caught interconnections has the following
parameters: hyperbolic-tangent as activation function, five
neurons in a single hidden layer, LBFGS optimizer with
constant learning rate. With respect to customer partitioning,
Table 1 and Table 2 reports the ANNmean errors (in minutes)

TABLE 3. Impact of approximation τ and the machine learning algorithm
on solution quality.

TABLE 4. Impact of approximation τ and the machine learning algorithm
on computing time.

for each zone. In particular, the best results in terms of coef-
ficient of determination (R2) have been obtained considering
8 clusters for the London instances and 6 zones for the Paris
instances. It is worth noting that the R2 score (= 0.53 for
London and = 0.60 for Paris) indicates a medium effect
size. Parameter εi has been set equal to the mean absolute
error of the zone, which the customer i ∈ V belongs to. A
5-minutes time unit has been considered for the discretization
D of the planning horizon. Finally, ρ has been set equal to
1/ min

h=0,...,|3|−1
(Th+1 − Th).

B. COMPUTATIONAL RESULTS
As illustrated in the previous section, the predictive capabil-
ities of the ML-techniques have been exploited for the fast
computation of two 3 sets, associated to London and Paris
respectively. Then the two testsets were solved by the MLPL-
HTSP algorithm. The computational results are presented in
Tables 5 - Table 6, under the following headings:
• the name of the test instance,
• the objective value BK in minutes of the best-known
solution determined by the exact algorithm proposed
in [10] enhanced with the lower bound proposed in [26],
with a time limit of 1 hour;

• the objective value z
3
in minutes of the MLPL-HTSP

solution;
• the deviation DEV of z

3
w.r.t. BK in percentage, com-

puted as:

DEV =
z
3
− BK

BK
;

• Time in seconds spent to determine z
3
.

The new best-known solution for z
3

are shown in bold.
The average running times are 18.28 seconds for the London
instances and 12.46 seconds for Paris instances. The average
percentage deviation between MLPL-HTSP result and the
best-known solution is 0.23% for the London instances and
−0.18% for the Paris instances. In the worst case, the per-
centage deviation is 2.15% and in 31 cases a new best-known
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TABLE 5. MLPL-HTSP results on London test instances.

solution is found. For 38 instances, theMLPL-HTSP heuristic
also obtains the best known solution, whilst for 100 out of
140 instances the absolute value |BK − z

3
| is less or equal

than 1 minute, which is the smallest time unit meaningful in
real vehicle routing problems inside large cities.

The impact of both the linear program (7)-(14) and the
machine learning algorithm have been also examined. To this
end, a baseline heuristic HTSP has been devised, where the

TABLE 6. MLPL-HTSP results on Paris test instances.
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auxiliary graph G is time-independent, with the constant
value associated to each arc (i, j) ∈ A set equal to max

t∈[0,T ]
τij,

for each (i, j) ∈ A. Table 3 and Table 4 report results for
all three heuristics: column headings are self explanatory.
Results associated to the PL-HTSP highlight that the com-
putation of the approximation τ3 provides a remarkable
increase of both the solution quality and the computing time
w.r.t. the baseline heuristic HTSP. It is by leveraging the
machine learning that theMLPL-HTSP heuristic obtains both
solution quality improvement and a reduction (by an order of
magnitude) of the computing time w.r.t. the PL-HTSP heuris-
tic. Moreover it is observed that the MLPL-HTSP heuristic
provides remarkable improvements in terms of both worst
case and best case, i.e. the maximum and minimum values of
DEV in Table 3. As far as the computing time is concerned,
Table 4 shows that MLPL-HTSP represents a good tradeoff
between the baseline algorithm and the PL-HTSP. Indeed,
the maximum computing time of MLPL-HTSP is remarkably
lower than the minimum time of PL-HTSP, whilst the mini-
mum computing time of MLPL-HTSP is only few seconds
above the maximum time of HTSP. It is worth noting that the
upper bounding procedure consistently outperforms the ML
heuristic proposed in [25], by providing an average saving on
route duration equal to 49 minutes for the London instances
and 30 minutes for the Paris instances.

The provided results clearly show which high quality per-
formance are achieved by the MLPL-HTSP algorithm for
instances that correspond to realistic travel time functions.

VII. CONCLUSION
Themain contribution of this paper is an algorithm that learns
from past data to solve the TDTSP in an efficient and effective
manner. Computational results on two European cities show
that the average gap with the best-known solutions is only
0.001% and the average computation time is 15 seconds. Fur-
thermore, new best solutions have been produced for several
test instances. This is achieved by solving a time-invariant
Asymmetric TSP, where the arc (constant) costs are properly
defined by the combined use of an LP-based approach and a
mix of unsupervised and supervised ML techniques. In par-
ticular, a feedforward ANN has been trained on past instances
solved to (near-)optimality, and its ETA predictions have been
exploited. Future research could investigate the definition
of new features for the neural network as well as exploit
the use of deep learning methods [31]. Another noteworthy
research goal concerns the study of a more efficient algorithm
for (approximately) minimizing the fitting deviation between
the travel time function τ and its approximation τ3. Finally,
future attempts could be aimed at the adaptation of the ideas
introduced in this paper to other routing problems.
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