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ABSTRACT This paper presents the hardware design of fast and low-cost denoising filters suitable to
be exploited in the enabling technologies for Industry 5.0. A novel approximate computing strategy is
introduced to reduce the computational complexity of the image denoising operation and to complywith real-
time requirements. Firstly, it is demonstrated that the novel approximate approach can be helpfully exploited
in the design of reconfigurable denoising filters able to reach image qualities as close as possible to the
precise software counterparts. The reconfigurability leads to hardware architectures run-time adaptable to
different levels of noise, whereas the adopted approximation strategy limits hardware resources and energy
requirements. Quality tests, performed at various image and kernel sizes, and noise standard deviations,
demonstrate that the approximate denoising approach presented here reaches PSNR and SSIM comparable
with the precise denoise filtering. In comparison with state-of-the-art FPGA-based competitors, the novel
filters reduce the resources requirements by up to 70%, achieve frame rates up to 35 times higher, and
dissipate more than 45% lower power. When implemented within the XC7Z7020 FPGA device, a 5×5 filter
designed as proposed here denoises 512 × 512 grayscale images using only 1689 LUTs, 2635 Flip-Flops
and 32 DSPs. Moreover, it processes up to 926.8 frames per second, consumes just 63mW@ 244MHz and,
with a noise standard deviation equal to 10, it achieves an average PSNR of ∼33dB with an average SSIM
of ∼0.86.

INDEX TERMS Approximate computing, bilateral filtering, FPGA-based designs, image denoising.

I. INTRODUCTION
The next incoming industrial evolution, Industry 5.0, has
the main objective of guaranteeing sustainable and effi-
cient manufacturing solutions by leveraging the collabora-
tion between human experts and intelligent machines [1].
As deeply discussed in [1] and [2], in order to achieve this
result, proper enabling technologies are required, such as
Artificial Intelligence (AI), Edge Computing (EC), Virtual
Reality (VR), Internet of Everything (IoE), Collaborative
Robots (Cobots), and many others. These technologies can
certainly benefit from fast and reliable computer vision and
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digital image processing techniques [2], which are suitable to
favor the human-machine interaction; to increase the manu-
facturing efficiency; to monitor the manufacturing processes
constantly; and finally, to make accurate decisions in real-
time.

Unfortunately, as it is well known, image sensors and
acquisition electronics circuits make digital images inher-
ently noisy [3] introducing a noise level often not known
a priori. In these cases, noise statistic can be estimated from
either a single image or multiple acquired images [4], [5],
[6]. Therefore, conceiving methods able to remove or at least
reduce the noise effects from acquired images and, at the
same time, suitable to adapt this capability to different noise
levels is crucial for computer vision and image processing
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techniques in order to obtain the most reliable elaboration
results.

Considering that the noise must be removed/reduced
without compromising the information captured from the
observed scene, total variational regularization (TVR) [7], [8]
and bilateral filtering [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19] are among the most popular denoising
approaches. The TVR methods have the ability of removing
noise with edges preservation, but also with the introduc-
tion of artifacts (e.g. blocky, staircasing, etc.). The adaptive
models presented in [7] and [8] improve such a behavior
by exploiting either eigenanalysis of the structure tensor [7]
or a balancing parameter to prioritize noise removal or arti-
facts elimination [8]. Conversely, bilateral filtering owes the
ability of reducing noise while preserving the fundamental
information to its significantly complex nonlinear weighted
averaging operations performed in both spatial and inten-
sity domains. These operations demand high computational
resources, lead to quite low speed performances and cause
significant power dissipation. Most of the above-mentioned
technologies (e.g. EC and IoE) are being exploited within
energy- and resources-constrained environments, in which
also achieving high computational speeds is mandatory [1],
[2]. Taking these considerations into account, several approx-
imation strategies have been recently proposed [15], [16],
[17], [18], [19] to reduce the computational complexity of
bilateral filtering. Although these approaches allow achieving
interesting trade-offs in terms of image quality and hardware
characteristics, most of them [15], [16], [17], [19] are not
suitable to adapt themselves at runtime to different noise
levels.

This paper presents an innovative approximation strategy
for the hardware implementation of fast low-cost denoising
filters suitable to be adopted in the enabling technologies for
Industry 5.0. The novel approach denoises a digital image by
processing each pixel through approximate spatial domain
and intensity range kernels, whose coefficients are approx-
imated to unsigned integer values. While the spatial coef-
ficients are approximated depending on the kernel size, the
range coefficients are computed by means of a new simple
piecewise approximation function, purposely introduced to
simplify the nonlinear weighted averaging operations con-
ventionally performed on the pixel intensity. The denoising
capability of the proposed approach is analyzed in terms of
Peak Signal to Noise Ratio (PSNR) and Structural Similarity
(SSIM) [20], [21] referring to image sizes ranging from 256×
256 to 1024×1024, kernel sizes varying from 3×3 to 21×21,
and zero-mean Gaussian noise with standard deviations rang-
ing between 5 and 60. The proposed approach clearly exhibits
its graceful behavior limiting the relative error of PSNR and
SSIM, introduced in comparison with theMATLAB software
bilateral filtering, to−4% and−14%, respectively, which are
up to 12% and 24% better than [15] and [16], while remaining
comparable with [17] and [19].

For purposes of comparison with state-of-the-art competi-
tors [15], [16], [17], [18], [19] also in terms of implementa-

tion results, several FPGA-based denoising filters designed
as proposed here were characterized in terms of utilized
Look-Up-Tables (LUTs), Flip-Flops (FFs), Block of RAMs
(BRAMs), and Digital Signal Processors (DSPs), speed per-
formances and power consumption, using both the Xilinx
Virtex-5 and Zynq-7000 devices families. At a parity of used
technology, image and kernel sizes, the proposed designs
exhibit speed performances ×4.36, ×35.9, and ×4.05 times
higher than [15], [16], and [17], respectively. Moreover,
a power dissipation ×1.85 lower than [19] is achieved at
comparable speed performances and resources requirements.
As a further advantage, in comparison with [15], [16], and
[17], the designs employing the novel approximation strategy
save up to ∼70% of utilized LUTs, thus better complying
with the requirements of the referred applications.

In comparison with previously published papers, the main
contributions of this work are:

1. it presents an innovative approach that reduces the com-
putational complexity of denoising filters by approxi-
mating spatial domain and intensity range coefficients
to unsigned integers;

2. hardware architectures based on the proposed approach
adapt themselves to different noise levels varying at
run-time;

3. the novel approximation strategy is extensively char-
acterized in terms of denoising capability and hard-
ware performances, at different operating conditions
kernel/image sizes and noise standard deviations: accu-
racy metrics are evaluated on the entire Miscella-
neous USC-SIPI dataset [22] and FPGA-based designs,
implemented using the Virtex-5 and the Zynq-7000
devices families, are characterized in terms of resources
requirements, speed performances and power con-
sumption.

The rest of the paper is organized as follows. Section II
provides a brief background and overviews the state-of-
the art. The novel approximation strategy is introduced
in Section III. Hardware implementations are detailed in
Section IV, whereas accuracy and comparison results are
presented in Section V. Finally, conclusions are drawn in
Section VI.

II. BACKGROUND AND RELATED WORKS
Bilateral filtering is an efficient local method widely used to
process digital images on the basis of both geometric and
intensity distances between neighboring pixels [9]. Due to
the usage of spatial domain and intensity range kernels, such
filters have the ability of reducing noise from an n×m digital
image Imwhile preserving fundamental information, in a way
that is tuned to human perception [9]. With Im(x,y) being
the generic pixel at the coordinate (x,y) within the image
to be processed, a bilateral filter averages nearby pixels as
shown in (1), where:Om(x,y) is the output pixel;� is the k×k
filter window centered in Im(x,y); (i,j) is the coordinate of the
neighboring pixels in �; and, finally, Ws(i,j) and Wr(i,j) are
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the spatial domain and the intensity range coefficients defined
in (2).

Om (x, y) =

∑
(i,j)∈� Im(i, j)×Ws(i, j)×Wr(i, j)∑

(i,j)∈�Ws(i, j)×Wr(i, j)
(1)

Ws (i, j) = exp

(
−
ED (i, j)2

2× σ s2

)
(2a)

Wr (i, j) = exp

(
−
1I (i, j)2

2× σ r2

)
(2b)

It can be seen that Ws(i,j) and Wr(i,j) exponentially
depend, respectively, on the Euclidean Distance ED (i, j) =√
(x − i)2 + (y− j)2 between the pixel positions (x,y) and

(i,j), the intensity difference 1I (i, j) = |Im (x, y)− Im (i, j)|
and the parameters σ s and σ r that are typically set on the
basis of the kernel size and the noise standard deviation,
σnoise, to ensure that ED (i, j) ≤ 3× σ s and σ r = 3× σnoise
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19].

The above definitions clearly show the computational com-
plexity of bilateral filtering and motivate the recent attempts
of introducing efficient approximation strategies [15], [16],
[17], [18], [19] to make fast low-cost hardware implementa-
tions approachable. The method proposed in [15] considers
that, with the spatial domain kernelWs being symmetric and
separable, the pixels within� can be sorted into groups to be
processed by the range filter in parallel, thus allowing high
speed performances to be achieved. However, such a solution
leads to resources requirements and computational delays
building up rapidly with the kernel size. As shown in [16],
this effect can be mitigated by approximating the range coef-
ficients through the Taylor expansion. Conversely, the tech-
nique presented in [17] conjugates an innovative position-
oriented grouping logic with a resource sharing strategy that
allows processing the sorted groups of pixels in parallel with
a limited resources utilization.

A completely different solution is presented in [18] that
replaces the conventional range kernel with a model able to
adjust the range coefficients accordingly to the noise esti-
mated at the pixels within �. In order to reduce both the
computational complexity and the resources requirement as
much as possible, the noise-aware kernel obtained in this
way is approximated to a binary filter. As an alternative, the
efficient piecewise approximation function recently proposed
in [19] pre-calculates the exponential functions shown in (2)
and selects several approximate fitting points as the kernel
coefficients.

For all the above-described approximation strategies, effi-
cient hardware designs are available [15], [16], [17], [18],
[19]. They avoid the time expensive computations of the
exponential functions, by exploiting LUTs that locally store
the approximated values of pre-calculated coefficients. Obvi-
ously, the way the latter are approximated leads to a different
denoising capability.

TABLE 1. Adopted σs at various kernel sizes.

FIGURE 1. Sample approximate spatial range kernels at the size: (a)
5× 5; (b) 7× 7; (c) 11× 11.

III. THE PROPOSED APPROXIMATION TECHNIQUE
The novel method here presented approximates both the spa-
tial domain and the intensity range kernels coefficients to
unsigned integers. In the following, the 7-bit word-length is
referred to. However, higher bit-widths can be easily intro-
duced if a better quality of filtered images is desired.

A. APPROXIMATING THE SPATIAL DOMAIN KERNEL
In order to compute the possible values of the coefficient
Ws(i,j) as given in (2a) for several kernel sizes k×k, the
parameter σ s is set to satisfy the condition ED (i, j) ≤ 3×σ s
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19].
Table 1 summarizes the minimum values of σ s satisfying
the above condition and those adopted here for kernel sizes
ranging between 3 × 3 and 21 × 21. The exact values of
the spatial kernel coefficients related to these kernel sizes
have been scaled by 64. This scaling factor has been chosen
to approximate each coefficient Ws(i,j) to a 7-bit unsigned
integer, thus limiting the loss of information introduced by the
approximation and significantly reducing the computational
complexity. From Figure 1, that illustrates samples of approx-
imate kernels, it can be seen that the spatial coefficients are
approximated only by integer values ranging between 0 and
64 and having at most three asserted bits in their binary
representation.

Plots depicted in Figure 2 graphically show how well
the adopted approximation fits the real exponential scaled
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FIGURE 2. Approximated spatial range kernel coefficients at various
kernel sizes, compared to the exact exponential functions.

FIGURE 3. Approximation adopted for the intensity range kernel
coefficients.

functions at all the referred kernel sizes. To improve the read-
ability of Figure 2, the x-axis range is limited to ED2

= 50.

B. APPROXIMATING THE INTENSITY RANGE KERNEL
Intensity kernel coefficients Wr(i,j) depend on the intensity
difference 1I(i,j), that, in the case of 8-bit pixels, ranges
between 0 and 255, and the parameter σ r , set on the basis of
the noise standard deviation σnoise [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19].

Again, the exponential function (2b) is scaled by 64 and
the 7-bit unsigned integer representation is adopted. Fig-
ure 3 reports the simple new rules adopted to approximate
Wr(i,j) to its 7-bit version AWr(i,j). In this case, only values
having at most four asserted bits in their binary representation
are used.

The behavior of the proposed approximation strategy has
been analyzed over a relatively wide σnoise range (i.e. 5-
75). Figure 4 collects few samples obtained through this
investigation. From such experiments, it has been observed
that the chosen rules guarantee both a good accuracy and a
limited computational complexity in all the examined cases.
Moreover, Figure 4 shows the effects of the proposed approxi-
mation in comparison with the exact exponential functions at
various values of σr = 3 × σnoise. It can be seen that the
intensity difference leading to a certain approximate range
coefficient AWr(i,j) varies with σ r . As an example, when σ r

FIGURE 4. Proposed approximation of range kernel coefficient Wr(i,j) at:
(a) σ r=15; (b) σ r=60; (c) σ r=90 and (d) σ r=180.

FIGURE 5. Piecewise functions obtained with the proposed
approximation at: (a) σ r=15; (b) σ r=60; (c) σ r=90 and (d) σ r=180.

= 180, AWr(i,j) is set to 64 for1I(i,j) ranging between 0 and
45. Conversely, with σ r = 60, the same approximate range
coefficient is associated to intensity differences varying from
0 to 15.

Figure 5 reports some of the piecewise functions here
adopted for different values of σ r . It can be seen that, in con-
trast to existing approximation strategies [15], [17], [19],
which find at design time a predefined number of optimal
fitting points of the range kernel coefficients at a fixed σ r ,
in the proposed approach also the number of exploited fit-
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FIGURE 6. Top-level architecture of the proposed design.

ting values changes with σ r . It is worth pointing out that
this behavior is functional to realize a hardware architecture
able to run-time adapt the filtering operations to different
noise levels. In order to explain how this is possible, let’s
suppose that the optimal fitting points complying with the
approximation rules of Figure 3 have been found for the
predefined σ rfix. By introducing the scale factor scσ , such
that σ r = σ rfix

scσ
, equation (2b) can be rewritten as (3),

with sc1I (i, j) = scσ × 1I (i, j) being the scaled intensity
distance.

Wr (i, j) = exp

(
−
sc1I (i, j)2

2× σ rfix2

)
(3)

It is then clear that the approximate AWr(i,j) related to σ r
can be computed using the optimal fitting points precomputed
for σ rfix by simply scaling the intensity difference 1I (i, j)
by scσ . As an example, let’s assume that σ rfix = 60 and
σ r = 180, that is scσ = 1/3. In this case, an intensity
value 1I (i, j) = 48 would be scaled to sc1I (i, j) =
16 that, through the piecewise function of Figure 5(b), leads
to AWr (i, j) = 60, which is the same approximate range
kernel coefficient provided in Figure 5(d) for 1I (i, j) = 48.
Analogously, with σ rfix = 60, σ r = 15 and scσ = 4,
1I (i, j) = 48 would be scaled to sc1I (i, j) = 192 that,
as ruled in Figure 5(b), leads to AWr (i, j) = 0, which is
the same approximate coefficient provided in Figure 5(a) for
1I (i, j) = 48. It is worth noting that, in order to guarantee a
fair use of the scaled intensity distance, σ rfix must be chosen
so that the corresponding piecewise function employs all the
fitting points between 0 and 64. As an example, this means
that choosing σ rfix = 180, as shown in Figure 5(d), would
lead to an inefficient solution.

IV. THE NOVEL HARDWARE ARCHITECTURE
Figure 6 depicts the top-level schematic of the basic hard-
ware architecture purposely designed to exploit the above
described approximation strategy at a predefined σ r . It uses
three main modules: i) the BUFFER receives the n×m input
image in the raster scan order and exploits k−1 FIFOs, each
m-k deep, and k×k registers to properly arrange the filter win-
dow� centered at the pixel Im(x,y); ii) the COMPUTATION
module processes � through k×k−1 Processing Elements

FIGURE 7. Module MACs & Divider.

FIGURE 8. Reconfigurable PEs.

(PEs) that implement the approximation rules described in
the previous Section to furnish the range kernel AWr; iii) the
MACs& Divider block receives �, AWr, the pre-computed
approximate spatial domain kernel AWs and performs the
Multiply Accumulations (MACs) and division operations
required to implement (1).

As depicted in the inset of Figure 6, the generic PE com-
putes the absolute difference between the neighboring pixel
Im(i,j) in� and its central pixel Im(x,y). The1I (i, j) obtained
in this way is then used as the address of the LUT-based
memory that stores the possible 7-bit pre-computed values of
AWr(i,j). The k×k−1 approximate range kernel coefficients,
computed in parallel by as many PEs, are then inputted to the
MACs& Divider module.

Figure 7 shows that the latter uses k×k−1 Multiplica-
tion Blocks (MBs), each computing the products Pr(i,j) and
coeff(i,j). It is worth pointing out that, with k = 5, AWs(i,j)
is a power of two constant precomputed at design time.
Therefore, the coeff(i,j) can be simply computed by left shifts.
Furthermore, it must be noted that, since both AWs(x,y) and
AWr(x,y) are always equal to 64, coeff(x,y) is constant and
Pr(x,y) is computed by simply left shifting Im(x,y) by 12 bit
positions. The k×k products Pr and coeff are then accumu-
lated through appropriate Adder Trees that furnish the numer-
ator N and denominator D of (1). Finally, by implementing
the non-restoring division algorithm [23], the Divider com-
putes the filtered pixel Om(x,y).

In order to introduce the ability of adapting the denoising
filter operations to run-time varying values of σ r , the recon-
figurable structure illustrated in Figure 8 has been purposely
designed for the PEs utilized to approximate the intensity
range kernel. First of all, the scale factor scσ , such that σ r =
σ rfix
scσ

, was introduced. Just as an example, it is assumed that
it can vary from 0.25 to 3.75 (i.e. σ r can range between
4× σ rfix and 4

15 × σ rfix). To keep the hardware complexity
limited, as a proof of concept, scσ has been quantized to 4-bit
fixed-point values, which, as summarized in Figure 9, can be
processed as 4-bit unsigned integers. Consequently, equation
(3) has been rewritten as (4) to introduce the integer scale
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FIGURE 9. Possible representations of scσ .

factor scσ i.

Wr (i, j) = exp

(
−
scσ ×1I (i, j)2

2× σ rfix2

)

= exp

(
−

scσ i
4 ×1I (i, j)

2

2× σ rfix2

)

= exp

− scσ i ×
∣∣∣ Im(x,y)4 −

Im(i,j)
4

∣∣∣2
2× σ rfix2

 (4)

It is easy to understand that, with Im(i,j) and Im(x,y)
being 8-bit pixels, the absolute difference

∣∣∣ Im(x,y)4 −
Im(i,j)

4

∣∣∣
is a 6-bit unsigned number and, consequently, the product
Prod = scσ i×

∣∣∣ Im(x,y)4 −
Im(i,j)

4

∣∣∣ is a 10-bit unsigned number.
However, since it represents the intensity difference 1I (i, j)
related to a certain σ r , values greater than 255 are saturated.
As illustrated in Figure 8, this condition is simplymanaged by
OR-ing the two most significant bits of Prod. The subsequent
multiplexer then selects either the saturation value 255 or the
8-bit sub-word Prod(7:0) as the address of the LUT-based
memory that stores the possible 7-bit pre-computed values
of AWr(i,j) related to the predefined σ rfix.

V. EXPERIMENTAL RESULTS
A. QUALITY RESULTS
Quality tests on the proposed architecture have been per-
formed using the Miscellaneous USC-SIPI dataset [22] that
collects benchmark images with sizes ranging from 256 ×
256 to 1024× 1024. As in related works, the original images
were corrupted with additive zero-mean Gaussian noise with
standard deviations σnoise ranging between 5 and 60. Then,
denoising filters, with kernel sizes varying from 3×3 to 21×
21, have been applied. For the novel approach, the variable

TABLE 2. Average PSNR and SSIM.

noise levels have been managed referring to σ rfix = 60.
Observing the behavior at different kernel sizes is interesting,
since establishing which is the best one to adopt is not trivial
for any denoising technique, including the accurate software
denoising filters provided by MATLAB and here referenced
as the touchstone.

Table 2 summarizes some of the average PSNR and
SSIM reached with respect to the original noiseless images
by applying the novel approach and the accurate software
denoising filters provided by MATLAB. To highlight the
denoising capability of the proposed filters, the average qual-
ity metrics of the noisy images are also reported. From
Table 2, it can be seen that, when σnoise=5 (i.e. σ r=15) and
the kernel size is 5 × 5 (i.e. σ s=1), the proposed approach
improves the PSNR of noisy images by 2.88dB. With σnoise
equal to 20 and 30, when the 7 × 7 kernel size (i.e. σ s=2)
is adopted, such an improvement increases to 7.19dB and
8.29dB, respectively. Table 2 clearly shows that the denoising
effects of the newfilters are very close to, and sometime better
than, those given by the MATLAB counterparts.

Figure 10 provides a compact overview in terms of relative
errors introduced with respect to the accurate software MAT-
LABfilters, as a function of σnoise and k . The negative relative
errors for the PSNR and the SSIM bounded to −4% and
−14%, respectively, clearly demonstrate the graceful behav-
ior of the proposed approach. It is also worth noting that,
in several cases, the new filters introduce positive relative
errors, which means that they perform even better than the
accurate counterpart.

The above results also show that, as expected, the most
convenient kernel size has to be chosen in relation to the
specific application, that is to the expected σnoise range. As an
example, if the latter is between 5 and 30, the 11× 11 kernel
size seems to be the best choice, since it performs even
better than its accurate counterpart. Conversely, the 3 × 3
kernel appears as the most favorable size when σnoise ≥ 40 is
expected. However, in practical scenarios, the optimal kernel
size choice must also consider available resources and power
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TABLE 3. Implementation results and comparison with state-of-the-art counterparts.

FIGURE 10. Relative error on the average: (a) PSNR; (b) SSIM.

budget. This aspect will be discussed more in detail in the
next sub-Section.

For purposes of comparison with existing approaches
designed to work at fixed σ r , quality tests have been done
also on the reduced data set used in [15] and [17], including
the ten test images Barbara, Boat, Bridge, Couple, Goldhill,
Lake, Lena, Lighthouse, Peppers and Plane. Results plotted
in Figure 11 demonstrate that the new σ r-adaptive approxi-
mation strategy does not introduce any quality penalty with
respect to [17] and systematically overcomes [15].

Finally, Figure 12 reports sample images corrupted with
several additive noise levels and allows comparing the images

FIGURE 11. Average quality metrics on ten tests images: (a) PSNR; (b)
SSIM.

filtered using the MATLAB accurate routine with those
obtained by the proposed approach. Denoising effects are
more evident in Figures 13, 14 and 15 that illustrate some
zoomed in details of the benchmark images.

B. IMPLEMENTATION RESULTS
For a fair comparison with hardware designs characterized
at fixed values of σ r , the architecture above shown in Fig-
ure 6 has been implemented to denoise digital images with
5 × 5 kernels at σ s = 1. Several versions of the proposed
filters have been customized to work on predefined values of
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FIGURE 12. Sample images: (a) corrupted with σnoise = 15; (b) filtered by MATLAB routine with σ r = 45; (c) filtered applying the new approach with
σ rfix = 60 and σ r = 45; (d) corrupted with σnoise = 30; (e) filtered by MATLAB routine with σ r = 90; (f) filtered applying the new approach with
σ rfix = 60 and σ r = 90; (g) corrupted with σnoise = 75; (h) filtered by MATLAB routine with σ r = 225; (i) filtered applying the new approach with
σ rfix = 60 and σ r = 225.

FIGURE 13. Details of sample images: (a) corrupted with σnoise = 15; (b) filtered by MATLAB routine with σ r = 45;
(c) filtered applying the new approach with σ rfix = 60 and σ r = 45; (d) original noise-free.

σ r . Then, the run-time reconfigurable design has been carried
out using σ rfix = 60. In the following, such designs are
named NewFix and NewRec, respectively.
All the circuits have been implemented using the Xilinx

Zynq-7000 device family and the Vivado 2019.2 Software
Development Tool. Just for purpose of comparison with pre-
vious designs [15], [16], [17], [19], the proposed architecture
has also been synthesized on the obsolete Virtex-5 hardware
platform by using the ISE 14.7 Design Suite on a Virtual
Machine Oracle VM.

Table 3 summarizes implementation results achieved in
terms of: quality performances, hardware resources utiliza-
tion, as the amount of occupied LUTs, FFs, BRAMs, and
DSPs; speed performances, evaluated in terms of maximum
running frequency, number of filtered pixels outputted per
clock cycle (ppcc), number of frame and Mega pixels pro-
cessed per second (fps and Mps); power consumption, ana-
lyzed using the interchange format files (SAIF) extracted
from post-implementation simulations performed on test

images. It can be seen that, at a parity of σ r , images and
kernels sizes, the NewFix designs occupy up to 70% and
12% less LUTs and FFs than their direct competitors. It is
also worth observing that those new implementations with an
increased amount of occupied LUTs and/or FFs significantly
reduces the utilized BRAMs, and vice versa.

In terms of speed performances, the NewFix implementa-
tions reach frame rates significantly better than their coun-
terparts and exhibit pixels rates ×4.4, ×35 and ×4.1 times
higher than [15], [16], and [17], respectively. In comparison
with [19], the new design is ∼12.6% slower, but, on the
other hand, it saves more than 45% of the consumed power.
Such an advantage is obtained without significantly affect-
ing the PSNR/SSIM metrics that are less than 0.3% lower.
Table 3 confirms the nice behavior of the NewFix designs in
terms of quality performances also in comparison with [15],
[16], and [17].

As expected, due to the more complex architecture of the
employed PEs, the NewRec designs utilize more hardware
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FIGURE 14. Details of sample images: (a) corrupted with σnoise = 30; (b) filtered by MATLAB routine with σ r = 90;
(c) filtered applying the new approach with σ rfix = 60 and σ r = 90; (d) original noise-free.

FIGURE 15. Details of sample images: (a) corrupted with σnoise = 75; (b) filtered by MATLAB routine with σ r = 225;
(c) filtered applying the new approach with σ rfix = 60 and σ r = 225; (d) original noise-free.

resources than the NewFix implementations and achieve
somewhat slower computational speeds. This is the more
than reasonable price to pay for obtaining the capability of
run-time adapting the denoising filtering to variable noise
levels. It is worth underlining that most of the referred com-
petitors does not have this property. This means that, in the
presence of variable noise levels such designs cannot guaran-
tee the same quality performances reported in Table 3. As an
alternative, the used device could be reconfigured to upload
the properly customized design complying with a different
value of σ r . However, the not negligible reconfiguration time
[24] makes this solution unsuitable to fast adapt the filtering
capability to run-time varying noise levels. Conversely, the
new approach makes the proposed designs able to run-time
adapt them-selves to various noise levels without compromis-
ing either the quality performances or the overall computa-
tional speeds.

As concluding remarks, it is worth noting that the amount
of hardware resources occupied by the above analyzed

design, based on the 5× 5 kernel, is 1.76× and 4.16× lower
than those required by the implementations adopting 7 ×
7 and 11 × 11 kernels, respectively. Moreover, it guarantees
an average PSNR higher than 30dB on the entire reference
dataset [22], with σnoise ranging between 5 and 30. For these
reasons, such configuration could represent the best tradeoff
for a wide range of practical applications.

VI. CONCLUSION
This paper presented an innovative approximation strategy
for the hardware implementation of fast low-cost denoising
filters based on a new simple piecewise function. In com-
parison with the accurate software filters, the accuracy loss
introduced by the novel approach in terms of PSNR and SSIM
is bounded to just 4% and 14%, respectively. In addition
to many positive aspects, the proposed system also inherits
the limitations of the bilateral filter approach, such as the
tendency to remove most of the texture and fine details, or the
creation of flat intensity regions and new contours.
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Hardware architectures designed as proposed here are able
to support different noise levels varying at run-time and over-
come state-of-the-art counterparts in terms of both accuracy
metrics and hardware characteristics. At a parity of the target
FPGA devices, images and kernel sizes, as well as noise
levels, the new filters exhibited pixels rates up to ×35 times
higher than competitors with power saving up to more than
45%.
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