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ABSTRACT Scenario vehicles are an important part of the dynamic environment utilized in autonomous-
driving simulations. They are required to meet the demands of traffic-scenario diversity and form a larger
coverage scale in the road network. However, the current motion planning of scenario vehicles either adheres
to the classical microscopic traffic-flowmodel or follows a predefined path; thus, interacting with the vehicle
under test in a dynamic bidirectional fashion is difficult. This study researches a motion-planning method
for a broader category of unmanned vehicles and proposes a motion-planning method for scenario vehicles
based on Pontryagin’s minimal principle, used in optimal control theory and the closed-form solution of
the minimum snap method. The study reclassifies actions received from the behavior layer according to the
boundary conditions and final times and derives an analytical solution for each of them. The analytical
solution is then experimentally verified. The proposed method not only accomplishes efficient motion
planning but also exhibits variant driving styles, which provides a practical solution for the motion planning
of scenario vehicles in simulations.

INDEX TERMS Motion planning, vehicle dynamics, simulation, control systems, vehicular and wireless
technologies.

I. INTRODUCTION
Scenario vehicles are an important part of the dynamic envi-
ronment in autonomous-driving simulations. Scenario vehi-
cles need to perform dynamic interaction tasks with the
vehicle under test with high confidence in a bidirectional
manner and have to exhibit the differences between different
individuals; these are a recently emerging demand and are
becoming increasingly important [1], [2]. Making the behav-
ior of scenario vehicles more realistic and similar to that of a
real human driver is an open challenge for traffic simulations.

Previous research has proposed a scenario vehicle deci-
sion model for the virtual simulation of autonomous driv-
ing, which simulates the mental demand process of a real
driver [3]. However, the behavior and actions decided by
the model were only slightly improved by an algorithm used
for autonomous driving. The motion planning used for the
scenario vehicle is still immature: it is either missing and
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still adheres to the classical microscopic traffic-flow model
that passively sets the current motion state in real time, or it
follows a few limited paths that are predefined before the
simulation and cannot form an effective interaction.

However, the biggest difference between the motion plan-
ning of an autonomous-driving vehicle and that of scenario
vehicles is that the latter is more time-critical. The motion
planning of an autonomous-driving vehicle only needs to
determine an optimal trajectory within 100 ms. However,
applying the same motion-planning method to hundreds or
thousands of scenario vehicles in the test environment causes
the computation workload to increase exponentially. With
current hardware conditions, which are barely sufficient for
self-driving motion planning, such a wide range of computa-
tions is almost impossible to achieve.

To the best of the author’s knowledge, this paper is the
first to identify the abovementioned challenges and propose
corresponding solutions. It reclassifies the actions determined
by the behavioral layer into four different solutions accord-
ing to different computational requirements and proposes
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a motion-planning algorithm for dynamic scenario vehicles
based on Pontryagin’s minimum principle and the minimum
snap closed-form solution method. The algorithm improves
planning efficiency by calculating the analytical solution of
the motion curve, which directly avoids the need for numer-
ical iterative solving or taking turns to judge many sampling
points. Additionally, it allows the setting of multiple prefer-
ences and forming a variant driving style to meet the needs of
diverse traffic scenarios. It is worth noting that the motion
planning proposed in this study is not only applicable to
the previously proposed decision model [3] but can also be
used in other motion-planning methods for autonomous driv-
ing, where behavioral planning serves as a basic framework
level.

The code of the model was written entirely in C# to be able
to associate with the decision model, and its performance was
tested and verified using Unity 2020.3.

The remainder of this article is organized as follows.
In Section II, after finding that no suitable solution is
currently available, research of recent years on motion plan-
ning from the perspective of unmanned vehicles is sum-
marized. Section III presents the relevant theories required
for this study, which are Pontryagin’s minimum principle
and minimum snap closed-form solution. In Section IV, the
motion-planning method is presented in detail. Section V
presents the outcomes of several actions conducted based on
the proposedmethod and the diversity and performance of the
proposed algorithm. Finally, the last section summarizes the
full text and presents legacy issues.

II. RELATED WORK
Classical microscopic traffic-flow models are typically used
in virtual testing to deliver a dynamic and interactive envi-
ronment to an autonomous vehicle under test [3]. How-
ever, Ni showed that traffic-flow simulation is limited
in four aspects: consistency, flexibility, forward-looking
capability, and multidimensional scalability [4]. Thus,
deploying a microscopic traffic simulation directly in an
autonomous-driving test may lead to biased evaluation
results [1]. Some studies have attempted to improve the
microscopic traffic-flow model, such as that by Sharath and
Velaga, which developed a two-dimensional motion model
using the intelligent driver model (IDM) [5]; a study by
Mullakkal-Babu et al. described the lateral motion and inter-
action between vehicles by introducing a bicycle-dynamics
model [6]. However, these changes are still centered on the
IDM car-following model, which is not fundamentally dif-
ferent from the traditional microscopic traffic-flow approach.
For the motion planning of moving objects, there are many
relatively mature approaches in research related to unmanned
vehicles. Although there are some similarities between sce-
nario vehicles and autonomous vehicles, the scope of this
study is not limited to the subcategory of autonomous vehi-
cles but is focused on the larger category of unmanned
vehicles.

Some early studies [7] utilized optimizationmethods; how-
ever, it was not until Mellinger and Kumar used the minimum
snap method to generate the trajectory of a quadrotor [8]
that the core of unmanned-vehicle motion planning gradu-
ally changed from a path-planning problem that utilizes a
graph search to an optimization-based trajectory-planning
problem [9]. As in the studies by Chen et al. [10] and
Lim et al. [11], trajectory planning is generally modeled as
a quadratic planning problem; that is, the objective function
is (convex) quadratic, and the constraint function is affine.
Gao and Shen turned this into a quadratically constrained
quadratic program because they restricted the positions in the
trajectory to a spherically safe region [12]. Qian et al. [13]
argued that for logical constraints, such as traffic rules and
obstacles, classical methods are not applicable, and they pro-
posed the use of a mixed-integer quadratic planning method.
In other studies [10], [14], [15], [16], the entire problem had
to be built as a nonlinear optimization problem, owing to the
introduction of complex dynamical models and environmen-
tal constraints.

Regardless of the type of optimization problem, the first
step in motion planning is to describe the surrounding envi-
ronment. The main approaches that are used to model the
environment are driving/flying corridors, artificial potential
fields, and S-T diagrams. A study by the Technical University
of Munich used driving corridors to derive a suitable set
of constraint equations for collision avoidance. When com-
bined with existing continuous optimization-based motion-
planning methods, trajectories can be efficiently planned in
arbitrary traffic situations [17]. They also combined driv-
ing corridors with a sampling-based motion planner that
uses reachability analysis to determine collision-free drivable
areas for the subject vehicle. It can continuously adjust its
sampling interval according to the rapidly changing environ-
ment in the traffic scene, thereby significantly reducing the
number of samples and computation time required for plan-
ning [18]. A study by the Hong Kong University of Science
and Technology proposed a method for the online trajectory
generation of quadrotor aircraft in unknown environments.
They directly used point-cloud maps to identify collision-
free flight corridors, which ensured the smoothness and safety
of the generated trajectories [12]. The study also utilized an
efficient octree data structure to generate online flight corri-
dors that covered each other in free space, which bound the
trajectories completely for safety and satisfied higher-order
dynamics constraints [10].

Khatib proposed the artificial potential-field method in
1986 [19]. This method formed a virtual artificial potential
field by combining the repulsive field of an obstacle and
attractive field of the target location, and it then determined
a collision-free optimal path by searching for the descend-
ing direction of the potential function. Zheng et al. intro-
duced potential-field functions to evaluate the collision risk
of candidate paths. They applied a new method based on
the Frenet coordinate system that overcame the limitation of
being restricted to static and straight roads and included more
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complex driving scenarios, such as curved roads [14]. Heidari
and Saska proposed a method for unmanned aerial vehicle
(UAV) obstacle avoidance based on an improved artificial
potential field. This method overcame the local-minima prob-
lem and determined practical trajectories for robot path plan-
ning. The experimental results clearly demonstrated the effec-
tiveness of the proposed method for multirotor systems [20].

The S-T diagram method was an important approach to
motion planning, which was proposed by Kant and Zucker.
They decomposed the trajectory-planning problem into the
route- and velocity-planning problems. The latter was pro-
jected in a route-time space, where time was explicitly used
as the dimension of variation. Thus, the changed velocity-
planning problem was reduced to a graph-search problem
in this space [21]. This approach was also used in the
Apollo Project. The path-velocity approach may not be opti-
mal owing to the emergence of dynamic obstacles. How-
ever, because the path and velocity were decoupled, this
approach achieved greater flexibility in both path and velocity
optimizations [22]. They further optimized this method in
2019 by generating a closed-form driving guide line via a
differentiable curve, which was used as an input to output
dynamically feasible jerk- and time-optimal trajectories. The
improved method is particularly useful for curved roads that
require frequent acceleration and deceleration to accommo-
date the centripetal acceleration limit [23]. Li et al. generated
candidate longitudinal trajectories in the S-T space using an
improved hybrid A-star algorithm in the operation sequence.
They then used a searchmethod to generate lateral trajectories
simultaneously in the safety corridor. The method was vali-
dated in two cases: static and dynamic avoidance of objects
in one direction and lane borrowing considering two-way
conditions [24].

Another challenge in motion planning is to find a solu-
tion. Although numerical computation is a common solution
method in trajectory generation [12], [13], [14], [16], [17],
it can directly incorporate the objective cost function and
constraints into the trajectory generation. However, trajectory
generation for configuration spaces with high degrees of free-
dom is inefficient and easily falls into local minima; there-
fore, this method is generally suitable for low-dimensional
configuration spaces. Discretization methods [18], [25], [26],
[27], [28], [29], such as state lattices, typically cannot meet
the demand when driving situations suddenly become more
hazardous. In addition, considering the execution efficiency
of the computer, the granularity of discretization cannot be
too high; otherwise, it may not be possible to discover narrow
passages quickly enough to generate feasible motions in a
critical situation. For particle-swarm optimization [30], [31],
[32], it is unlikely that a random search algorithm that may
take tens of seconds can achieve fast real-time trajectory
solutions.

This article also adopts the optimal control method. How-
ever, to quickly find the solution, the constraints imposed by
the dynamics and the environment are simplified as much as
possible.

III. BACKGROUND
A. OPTIMAL CONTROL
Optimal control is an important branch of dynamic system-
optimization theory. It focuses on choosing a permissible
control according to the established mathematical model of
the controlled object in the time or frequency domain so that
the controlled object operates according to predetermined
requirements, and the given performance measure reaches its
optimal value [33], [34].

Several varieties of optimal control problems exist based
on the performance measure, time domain (continuous or dis-
crete), existence of various types of constraints, and variables
that can be freely chosen [35]. The optimal control problem
first requires the determination of the state equation of the
system under control:

x (t) = a (x (t) ,u (t) , t) , (1)

where x is an n× 1 state vector, u is an m× 1 control vector,
and a (·) is an n×1 dimensional continuous vector function
that is continuously differentiable for x (t) and t:

x (t) ,


x1 (t)
·

·

·

xn (t)

 x (t) ,



d
dt
x1 (t)

·

·

·

d
dt
xn (t)


u , (t)


u1 (t)
·

·

·

um (t)

 .
(2)

J is the performance measure; h (·) and g (·) are continuously
differentiable scalar functions; h

(
x
(
tf
)
, tf
)
is the terminal

cost function, and
∫ tf
t0
g (x (t) ,u (t) , t) dt is the integral cost

function.

J (u) = h
(
x
(
tf
)
, tf
)
+

∫ tf

t0
g (x (t) ,u (t) , t) dt (3)

The Hamiltonian function is constructed as follows:

H (x (t) ,u (t) ,λ (t) , t) , g (x (t) ,u (t) , t)

+λT (t) [a (x (t) ,u (t) , t)]′,

(4)

where the Lagrangian multiplier λ is the covariance vector.
The necessary conditions for obtaining the optimal solution
are as follows:

x∗ (t) =
∂H
∂λ

(x∗ (t) ,u∗ (t) , λ∗ (t) , t)

λ∗ (t) = −
∂H
∂x

(
x∗ (t) ,u∗ (t) ,λ∗ (t) , t

)
0 =

∂H
∂u

(
x∗ (t) ,u∗ (t) ,λ∗ (t) , t

)


for t ∈

[
t0, tf

]
,

(5)

and

0 =
[
∂h
∂x

(
x∗
(
tf
)
, tf
)
− λ∗

(
tf
)]T

δxf
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+

[
H
(
x∗
(
tf
)
,u∗

(
tf
)
,λ∗

(
tf
)
, tf
)

+
∂h
∂t

(
x∗
(
tf
)
, tf
)]
δtf . (6)

Different boundary conditions will simplify (6) accordingly.

B. PONTRYAGIN’S MINIMUM PRINCIPLE
If � is the set of all feasible control domains, Pontryagin’s
minimal principle indicates that the optimal control u∗ must
satisfy

H
(
x∗ (t) ,u∗ (t) ,λ∗ (t) , t

)
≤ H

(
x∗ (t) ,u (t) ,λ∗ (t) , t

)
.

(7)

It provides necessary but insufficient conditions for the opti-
mal solution. If

∂H
∂u

(
x∗ (t) ,u∗ (t) ,λ∗ (t) , t

)
= 0, (8)

and
∂2H
∂u2

(
x∗ (t) ,u∗ (t) ,λ∗ (t) , t

)
is positive definite, then it is sufficient to guarantee that u∗ (t)
causesH to become a local minimum. If the Hamiltonian can
be expressed in the form

H (x (t) ,u (t) ,λ (t) , t)

= f (x (t) ,λ (t) , t)+ [c (x (t)) ,λ (t) , t)]T u (t)

+
1
2
uT (t)R (t)u (t) , (9)

where c is an m × 1 array that does not contain any terms
containing u (t); satisfying (8) and ∂2H

∂u2 > 0 are necessary
and sufficient for u∗ (t) to causeH to be the global minimum.

C. MINIMUM JERK CLOSED-FORM SOLUTION
For each segmented trajectory i, if its performance measure
can be expressed as the squared integral of polynomial Pi,
it can also be expressed as follows:

Ji =
∫ Ti

0
Pi (t)2dt = pTi Q (Ti)pi, (10)

where Ti denotes the time of the segment i, pi denotes the
vector consisting of the coefficients to be determined for
polynomial Pi, and matrix Q (Ti) is a positive definite sym-
metric matrix. From the boundary conditions,

Aipi = di,Ai =

[
A0
AT

]
i
,di =

[
d0
dT

]
i
, (11)

where di is a vector comprising the derivative values of the
ith segment’s start d0 and final dT points. A mapping matrix
between a polynomial’s coefficients and endpoint derivatives
is used to set the constraints on the ith segment of a trajectory.
By combining the performance measures and constraints of
each segment, the following is obtained:

J =

 p1
...

pM


T Q1 (T1)

. . .

QM (TM )


 p1

...

pM

 (12)

A

 p1
...

pM

 =
 d1

...

dM

 . (13)

By substituting the constraints into the original cost function,
the following is obtained:

J =

 d1
...

dM


T A1 . . .

AM


−T Q1 (T1)

. . .

QM (TM )



×

A1 . . .

AM


−1 d1

...

dM

 . (14)

These variables are rearranged so that the free/unspecified
derivatives (dP) are grouped with the fixed/specified deriva-
tives (dF ). This reordering is performed using permutation
matrix C , which comprises ones and zeros. Now,

J =
[
dF
dP

]T [RFF RFP
RPF RPP

] [
dF
dP

]
, (15)

where

R = CA−TQA−1CT .

Differentiating J and equating it to zero yields the vector of
optimal values for the free derivatives in terms of the fixed
derivatives and cost matrix:

d∗P = −R
−1
PPR

T
FPdF . (16)

Individual evaluations of the appropriate constraint equations
projecting derivatives back into the space of coefficients can
now be utilized to recover the polynomials [36].

IV. MOTION PLANNING
The study assumed that the behavior layer of the scenario
vehicle determines the three main types of behaviors B:
changing speed

(
BchangeSpeed

)
, changing lane

(
BchangeLane

)
,

and keeping idle (Bidle). Each behavior contains sev-
eral actions, similar to that in [3]. Among these, the
BchangeSpeed set includes five actions: maintaining safe head-
way (bcsheadway), emergent deceleration (bcsemergent ), slowing
down and stopping (bcsstop), complying with the speed limit
(bcslimit ), and giving way to others (bcsmorality). The BchangeLane
set includes four actions, that is, changing lanes to the target
lane (bcldestination), changing lanes to the faster lane (b

cl
excitement ),

changing lanes to a random adjacent lane (bclrandom), and abort-
ing changing lanes (bclabort ). TheBidle set includes two actions:
maintaining the current state (bcnnormal) and alerting the front
vehicle and maintaining bcnalert .

B = BchangeSpeed ,BchangeLane,Bidle
BchangeSpeed = bcsheadway, b

cs
emergent , b

cs
stop, b

cs
limit , b

cs
morality

BchangeLane = bcldestination, b
cl
excitement , b

cl
random, b

cl
abort

Bidle = bcnnormal, b
cn
alert . (17)
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The motion of the scenario vehicle was simplified to a
mass-point model, and the longitudinal and lateral motions
were computed independently. However, this does not mean
that the non-holonomic constraints on the vehicle are com-
pletely ignored. First, the trajectory of the main motion is
planned, and then, restrictions are imposed on the concomi-
tant motion in the other direction, ensuring the feasibility of
the motion. For two types of behaviors,

(
BchangeSpeed

)
and

(Bidle), the main motion is longitudinal motion, which is
along the reference line, and the concomitant motion is lateral
motion, which is perpendicular to the reference line. For the(
BchangeLane

)
behavior, the main motion is perpendicular to

the reference line, and the accompanying motion is along the
reference line.

A. MAIN MOTION
The final boundary states and times of the main motions of
the 11 actions are listed in Table 1.

TABLE 1. Final conditions.

The trajectory planning for end-time free actions is solved
using Pontryagin’s minimal principle, and the trajectory plan-
ning for time-fixed actions is calculated using closed-form
solution methods. In addition, the trajectory planning for
actions with constrained final states can be transformed into
an end-fixed trajectory-planning problem, which is explained
in more detail in the corresponding action classification.

1) FINAL STATE FIXED AND FINAL TIME FREE
a: bcl

destination,b
cl
excitement ,b

cl
random

bcldestination changes the vehicle’s lane to the adjacent manda-
tory target lane, bclexcitement changes the vehicle’s lane to a
faster lane, and bclrandom changes the lane to a random adjacent
lane. The three actions differ only in the lane into which the
vehicle changes; however, the actual motion process is the
same. The equation of state for the main motion of the three

actions is given by: 
ẋ = v
v̇ = a
ȧ = u,

(18)

where x, v, and a denote displacement, velocity, and acceler-
ation, respectively. Input u is the third-order differentiation of
the displacement, that is, jerk. The initial state is given in (19),
and x0, v0, and a0 are the position, velocity, and acceleration
at time t = 0, respectively:

x (0)− x0 = 0
v (0)− v0 = 0
a (0)− a0 = 0.

(19)

The final state is given by (20), where xf , vf , andaf are
the position, velocity, and acceleration at time t = tf ,
respectively. 

x
(
tf
)
− xf = 0

v
(
tf
)
− vf = 0

a
(
tf
)
− af = 0.

(20)

The performance measure is as follows:

J = Ktf +
1
2

∫ tf

0
u2dt, (21)

where K denotes the preference for different actions, which
is described in Section IV.A.5. The Hamiltonian function is
constructed as follows:

H =
1
2
u2 + λ1v+ λ2a+ λ3u. (22)

According to (5), 
λ̇1 = −

∂H
∂x
= 0

λ̇2 = −
∂H
∂v
= −λ1

λ̇3 = −
∂H
∂a
= −λ2

⇒


λ1 = c1
λ2 = −c1t + c2
λ3 =

c1
2
t2 − c2t + c3,

(23)

where c1, c2, and c3 are the constants to be determined.
According to Pontryagin’s minimal principle,

∂H
∂u
= 0 ⇒ u∗ = −

c1
2
t2 + c2t − c3. (24)

Equation (24) clearly satisfies (9), and ∂2H
∂u2 = 1 > 0;

therefore, u∗ is the global minimum.

a∗ = −
c1
6
t3 +

c2
2
t2 − c3t + c4

v∗ = −
c1
24
t4 +

c2
6
t3 −

c3
2
t2 + c4t + c5

x∗ = −
c1
120

t5 +
c2
24
t4 −

c3
6
t3 +

c4
2
t2 + c5t + c6, (25)

VOLUME 11, 2023 2039



Y. Li: Motion Planning for Dynamic Scenario Vehicles in Autonomous-Driving Simulations

where c4, c5, and c6 are the constants to be determined.
According to boundary conditions (19) and (20),

c1 =
60
(
a0 − af

)
t2f + 360

(
v0 + vf

)
tf + 720

(
x0 − xf

)
t5f

c2 =

(
36a0−24af

)
t2f +

(
192v0+168vf

)
tf +360

(
x0−xf

)
t4f

c3 =

(
9a0 − 3af

)
t2f +

(
36v0 + 24vf

)
tf + 60

(
x0 − xf

)
t3f

c4 = a0
c5 = v0
c6 = x0.

(26)

The final position is fixed; hence, δxf = 0. Moreover, the
final time is free; thus, δtf 6= 0. Therefore, according to (6),
the following is obtained:

H
(
x∗
(
tf
)
,u∗

(
tf
)
,λ∗

(
tf
)
, tf
)
+
∂h
∂t

(
x∗
(
tf
)
, tf
)
= 0;

(27)

that is,
1
2
u∗2

(
tf
)
+ λ1v∗

(
tf
)
+ λ1a∗

(
tf
)
+ λ2u∗

(
tf
)
= −K . (28)

In the Frenet coordinate system, there should be no motion
in the lateral direction before and after the lane change;
therefore, the velocity and acceleration should be zero. Let
the lateral displacement at the initial moment be zero.

x0 = 0
v0 = 0
a0 = 0
vf = 0
af = 0.

(29)

Substituting (25) , (26), and (29) into (28), the following is
obtained:

−1.80×103
x2f
t6f
= −K . (30)

Three valid digits are retained, and time tf is solved as
follows:

tf = ±3.49
1
6

√
x2f
K
,

−1.74
1
6

√
x2f
K
± i3.02

1
6

√
x2f
K

1.74
1
6

√
x2f
K
± i3.02

1
6

√
x2f
K
.

Time can only be a positive real number; therefore,

tf = 3.49
1
6

√
x2f
K
. (31)

By substituting tf and the assumptions in (29) back into (26),
the constants to be determined and target trajectory can be
obtained.

b: bcs
stop,b

cl
abort

bcsstop is used when the scenario vehicle approaches an
unsignalized intersection and needs to stop at the stop line.
The action bclabort is used to abandon the current lane-change
behavior and return the vehicle to the original driving lane
when a hazard is encountered. These two actions are similar
to the previous case; however, the initial speed is nonzero.

x0 = 0
vf = 0
af = 0,

(32)

By substituting (25) , (26), and (32) into (28), the following
is obtained:

−
4.5a20
t2f
−
72a0v0
t3f
+
180a0xf −288v20

t4f
+
1440v0xf

t5f
−
1800x2f
t6f

=−K . (33)

After simplification, the following is obtained:(
a0t2f +8v0tf −20xf −mt

3
f

) (
a0t2f +8v0tf −20xf +mt

3
f

)
= 0,

(34)

where

m =

√
2K
3

.

Then, (34) is solved for time tf :

tf = εi1 + εi2, ωεi1 + ω2εi2, ω
2εi1 + ωεi2, i = 1, 2.

(35)

where

εi1 =
3

√
−
qi
2
+

√(qi
2

)2
+

(pi
3

)3
,

εi2 =
3

√
−
qi
2
−

√(qi
2

)2
+

(pi
3

)3
,

pi =
3aic− b2

3a2i
,

qi =
27a2i d − 9aibc+ 2b3

27a3i
,

ω = −
1
2
+

√
3
2
j,

a1 = m,

a2 = −m,

b = a0,

c = 8v0,

d = −20xf .
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From the six complex solutions of (35), the smallest real
number greater than zero is selected as the solution to the
problem, and tf and the assumptions in (32) are substituted
back into (26) to obtain the constants to be determined. The
target trajectory is then obtained.

2) FINAL STATE CONSTRAINED AND FINAL TIME FREE
The main motions of both actions in this category are along
the direction of the road reference line. In a critical situation,
action bcsemergent allows the scenario vehicle to stop as soon
as possible. When the scenario vehicle needs to accelerate
or decelerate, action bcslimit can increase or decrease its speed.
It can be observed that the speed and acceleration of the final
state are fixed, whereas the displacement is unrestricted and
can be treated as a final state-constrained, time-free optimal
control problem. However, if the unconstrained displacement
is ignored, this problem becomes a final state-fixed, time-free
optimal control problem again. The expression for displace-
ment with respect to time can be obtained by integrating over
the velocity trajectory. Unlike the previous two categories, the
equation of state for the main motion is{

v̇ = a
ȧ = u.

(36)

The boundary conditions are
v (0)− v0 = 0
a (0)− a0 = 0
v
(
tf
)
− vf = 0

a
(
tf
)
− af = 0.

(37)

The performance measure is the same as that of (21). The
Hamiltonian function is constructed as follows:

H =
1
2
u2 + λ1a+ λ2u. (38)

According to (5), the covariance equation is
λ̇1 = −

∂H
∂v
= 0

λ̇2 = −
∂H
∂a
= −λ1

⇒

{
λ1 = c1
λ2 = −c1t + c2,

(39)

where c1and c2 are the constants to be determined.
According to Pontryagin’s minimal principle,

∂H
∂u
= 0 ⇒ u∗ + λ2 = 0

u∗ = −λ2. (40)

Equation (40) clearly satisfies the form of (9) and ∂2H
∂u2 =

1 > 0; therefore, u∗ is the global minimum. Substituting (39)
into (40) yields the following:

u∗ = c1t − c2; (41)

therefore,

a∗ =
c1
2
t2 − c2t + c3

v∗ =
c1
6
t3 −

c2
2
t2 + c3t + c4, (42)

where c3 and c4 are the constants to be determined.
Substituting (42) into (37) yields the following:

c1 =
6
(
a0 + af

)
tf + 12

(
v0 − vf

)
t3f

c2 =

(
4a0 + 2af

)
tf + 6

(
v0 − vf

)
t2f

c3 = a0
c4 = v0.

(43)

According to (27),

1
2
u2
(
tf
)
+ λ1a

(
tf
)
+ λ2u

(
tf
)
= −K . (44)

Equations (42) and (43) are substituted into (44), and let
af = 0; this gives

18
(
v0 − vf

)2
t4f

+
12a0

(
v0 − vf

)
t3f

+
2a20
t2f
= K . (45)

Then, time tf is solved:

tf =
a0 ±

√
a20 + 12γ1v

2γ
,
−a0 ±

√
a20 − 12γ1v

2γ
, (46)

where

1v = v0 − vf , γ =

√
K
2
.

By substituting tf and the assumption that af = 0 back
into (43), the constants c1, c2, c3, and c4 and the change in
velocity can be obtained. The trajectory of the main motion
can be obtained by integrating the velocity polynomial.

3) FINAL STATE FIXED AND FINAL TIME FIXED
Both bcsmorality and b

cs
headway are used to maintain the scenario

vehicle at a particular distance from the vehicle in front of it.
Assume that the displacement of the main motion satisfies a
fifth-order polynomial function:

x (t) = p1t5 + p2t4 + p3t3 + p4t2 + p5t + p6. (47)

Because the final state and time are both determined, the
known conditions in (48) can easily be substituted into (47)
for the solution: 

x (0) = x0
ẋ (0) = v0
ẍ (0) = a0
x
(
tf
)
= xf

ẋ
(
tf
)
= vf

ẍ
(
tf
)
= af .

(48)
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The polynomial coefficients p can be obtained by solving the
following matrix:

p =A−1d, (49)

where

A =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 2 0 0
t5f t4f t3f t2f tf 1
5t4f 4t3f 3t2f 2tf 1 0
20t3f 12t2f 6tf 2 0 0


,

p =


p1
p2
p3
p4
p5
p6

 , d =


x0
v0
a0
xf
vf
af

 .

4) FINAL STATE CONSTRAINED AND FINAL TIME FIXED
The tasks of both bcnmaitain and b

cn
alert are to maintain the speed

constant for a particular period of time. Setting the final time
to a fixed value takes into account the execution mechanism
of the upper layer to prevent subsequent determinations from
being performed. Similar to the previous scenario, the veloci-
ties and accelerations of the initial and final states are known.
The change in velocity with respect to time is assumed to
satisfy a cubic polynomial relationship as follows:

v (t) = p1t3 + p2t2 + p3t + p4. (50)

The boundary conditions are known:
v (0) = v0
v̇ (0) = a0
v
(
tf
)
= vf

v̇
(
tf
)
= af .

(51)

The polynomial coefficients p can be obtained by solving the
following matrix:

Ap = d, (52)

where

A =


0 0 0 1
0 0 1 0
t3f t2f tf 1
3t2f 2tf 1 0

 , p =


p1
p2
p3
p4

 , d =

v0
a0
vf
af

 .
5) ACTION PREFERENCE K
When the main motion is to change lanes, that is, Bchangelane,

K =
2.25× 104

T 6
CL

, (53)

where TCL denotes the duration of lane change, which can be
considered as TCL ∼ N

(
3.6, 1.82

)
[37].

When the main motion is to change the vehicle speed,
BchangeSpeed , K indicates the preference for longitudinal
acceleration or deceleration:

K = αe−β , (54)

where α denotes the acceleration or braking performance
of the vehicle, and β indicates the driver’s preference for
comfort. β ∈ [0, 1]; therefore, the closer the value is to 0, the
more uncomfortable the motion, but the faster the action is
executed. The closer the value is to 1, the more comfortable
the driver prefers to drive, and the action is executed for a
relatively long time.

α =


1.39× 104

t4ap
, vf ≥ v0

8.08× 106

d4bp
, vf < v0.

(55)

tap denotes the time required for a 0−100 km/h acceleration,
and dbp denotes the braking distance from 50 to 0 km/h.

B. CONCOMITANT MOTION
The concomitant motions of the BchangeSpeed behavior
are solved in the same manner as the morality and
keeping-distance actions in the main motion by directly sub-
stituting the initial and final states into (51), which is not
discussed further here. The trajectory planning of the con-
comitant motion with a lane change as the main motion is
described below.

Let themaximumvelocity generated by themainmotion be
vmain_max , and the velocity of the concomitant motion at this
time be vsub, which corresponds to time tmain, tmain ∈

(
t0, tf

)
.

Assuming that the maximum lateral acceleration should not
exceed alat_max , it follows that

V 2

R
< alat_max , (56)

where

V =
√
v2main_max + v

2
sub. (57)

V denotes the combined longitudinal and lateral velocities,
and R denotes the turning radius at this point. Let vsub_limit
be the maximum value that vsub can obtain. Substituting (57)
into (56) gives

v2sub_limit = alat_maxR− v2main_max ,

v2sub < v2sub_limit (58)

and

vsub (tmain) =

{
vsub_limit , vsub_limit≤vsub (t0)
vsub (t0) , vsub_limit > vsub (t0) ,

(59)

where vsub (t) denotes the velocity of the concomitant motion
at time t . Because tmain is definitely between t0 and tf ,
the concomitant motion is divided into two parts. Using
the initial condition t0 and [x0, v0, a0], final condition tf
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and [xf , vf , af ], and velocity vsub (tmain) at tmain, the posi-
tion xsub (tmain) and acceleration asub (tmain) at tmain can be
calculated using the closed-form solution method, and the
trajectory of the concomitant motion can then be obtained.
Assume that both concomitant motions satisfy the following
fourth-degree polynomial relationship:

xi (t) = pi1t4 + pi2t3 + pi3t2 + pi4t + pi5, i = 1, 2. (60)

Then, the corresponding polynomials of velocity, accelera-
tion, and jerk are as follows:

vi (t) = 4pi1t3 + 3pi2t2 + 2pi3t + pi4
ai (t) = 12pi1t2 + 6pi2t + 2pi3
ji (t) = 24pi1t + 6pi2, (61)

where ji denotes the jerk of the ith segment of the concomitant
motion. For easier notation, let

t1 , tmain
t2 , tf − tmain
xm , xsub (tmain)

vm , vsub (tmain)

am , asub (tmain) .

Using (12) ,

J =
[
p1
p2

]T [Q (t1)
Q (t2)

] [
p1
p2

]
, (62)

where

p1 =


p11
p12
p13
p14

 , p2 =


p21
p22
p23
p24

 ,

Q (t) =


192t3 72t2 0 0
72t2 36t 0 0
0 0 0 0
0 0 0 0

 .
Using (13) , [

A (t1)
A (t2)

] [
p1
p2

]
=

[
d1
d2

]
, (63)

where

A (t) =


0 0 0 1
0 0 2 0
4t3 3t2 2t 1
12t2 6t 2 0

 , d1 =

v0
a0
vm
am

 , d2 =

vm
am
vf
af

 .
For (15) , the fixed and free derivatives are as follows:

dF =


v0
a0
vm
vf
af

 , dP =
[
am
]
, (64)

and the reordering matrix CT is:

CT
=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


. (65)

Equation (16) was applied to determine am. By substituting
the equation into (13), the polynomial coefficients of the
accompanying motion can be derived.

V. SIMULATION
The computer used for the simulation was a MacBook Pro
(16-inch, 2019) with an 8-core Intel i9 CPU and 32 GB
2667 MHz DDR4 memory. The simulation was run on
Unity (2020.3.23f1, Unity Technologies, USA). The motion-
planning program was written entirely in C#, and the matrix
operations used Math.NET, which is an open-source scien-
tific computing library. All seven types of motion were veri-
fied on an OpenDrive-formatted map at Site− 1 and Site− 2,
as shown in Fig. 1. Site−1 is a multilane road segment, which
is used to test actions in which the primary motion is lateral.
Site− 2 is a more curved road segment, which is used to test
actions in which the primary motion is longitudinal.

FIGURE 1. The map for testing. Site − 1 is a multilane road segment,
which is used to test actions in which the primary motion is lateral.
Site − 2 is a more curved road segment, which is used to test actions in
which the primary motion is longitudinal.

A. ACTIONS
1) LANE
Assume that the vehicle changes from lane 3 to lane 4 with
an initial longitudinal speed of 8 m/s, lane-change preference
K = 1.44, lane width of 3.5 m, and arc of 1.429× 10−3. The
lateral movement is shown in Fig. 2 a and b. From t = 0 s,
the vehicle slowly accelerates and then gradually decelerates
until t = 4.986 s, when the speed returns to 0 m/s, and the
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FIGURE 2. State change during lane-changing actions. (a) represents the
lateral position over time; (b) represents the lateral velocity over time;
(c) represents the longitudinal position over time; (d) represents the
longitudinal velocity over time; and (e) shows the change of acceleration
in Frenet space.

lateral position is shifted by 3.5 m accordingly. As shown in
Fig. 2 c and d, the initial speed in the direction of the reference
line remained at 8 m/s without any change. Fig. 2 e shows the
position and acceleration changes of the vehicle in the Frenet
space.

2) ABORT
Suppose that the vehicle aborts the lane change and reenters
the centerline of lane 3 after performing the previous action
at 1 s, that is, the action of changing from lane 3 to lane 4.
The initial lateral velocity and acceleration at this point are
ḋ = 0.541 m/s and = 0.811 m/s2, respectively; the other
conditions and parameters are as in the previous case. The
state change in the lateral direction is shown in Fig. 3 a and b.
After continuing to move outward for some time, the vehicle
starts tomove inward until it returns to the centerline of lane 3.
As shown in Fig. 3 c and d, the vehicle speed along the lane
reference line remains unchanged at 8 m/s. Fig. 3 e shows
the position of the vehicle in Frenet space and the change in
acceleration.

FIGURE 3. State change during bcl
abor action. (a) represents the lateral

position over time; (b) represents the lateral velocity over time;
(c) represents the longitudinal position over time; (d) represents the
longitudinal velocity over time; (e) shows the change of acceleration in
Frenet space.

3) STOP
The vehicle gradually decelerates from = 10 m/s to stop
30 m ahead. The braking performance α = 62.0 and comfort
preference β = 1. As shown in Fig. 4 a and b, the speed

gradually decreases from 10 m/s to zero after 4.65 s. Fig. 4 c
illustrates the position and acceleration changes of the vehicle
in the Frenet space.

FIGURE 4. State change during a normal decelerating action bcs
stop.

(a) represents the longitudinal position over time; (b) represents the
longitudinal velocity over time; (c) shows the change of acceleration in
Frenet space.

4) EMERGENT
The vehicle decelerates to zero immediately from = 10 m/s
with a braking performance α = 62.0 and comfort preference
β = 0. Compared with bcsstop, this maneuver reduces the speed
to zero in only 2.32 s, and the braking distance is significantly
shorter. Fig. 5 a and b illustrate the variations of position
and velocity over time, respectively. Fig. 5 c illustrates the
position and acceleration changes of the vehicle in the Frenet
space.

FIGURE 5. State change during an emergent decelerating action
bcs

emergent . (a) represents the longitudinal position over time;
(b) represents the longitudinal velocity over time; (c) shows the change of
acceleration in Frenet space.

5) LIMIT
The vehicle accelerates from zero to 10 m/s with an acceler-
ation performance α = 1.39 and comfort preference β = 0.
As shown in Fig. 6 a and b, the entire motion time lasts
for 6.00 s. As shown in Fig. 6 c, the acceleration gradually
decreases during this process.

6) HEADWAY
Suppose the vehicle reaches 22 m ahead after 2 s and must
increase its speed to 10 m/s. As shown in Fig. 7 a and b, the
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FIGURE 6. State change during a gentle accelerating action bcs
limit .

(a) represents the longitudinal position over time; (b) represents the
longitudinal velocity over time; (c) shows the change of acceleration in
Frenet space.

FIGURE 7. State change during action bcs
headway . (a) represents the

longitudinal position over time; (b) represents the longitudinal velocity
over time; (c) shows the change of acceleration in Frenet space.

speed increases and approaches the target position quickly,
and it then decelerates to 10 m/s. Fig. 7 c illustrates the
position and acceleration changes of the vehicle in the Frenet
space.

7) MAINTAIN
The speed of the vehicle is maintained at a constant value
of 10 m/s. As shown in Fig. 8 a, position increases linearly.
Accordingly, the speed remains constant, as shown in Fig. 8 b.
Fig. 8 c illustrates the position and acceleration changes of the
vehicle in the Frenet space.

FIGURE 8. State change during action bcn
normal or bcn

alert . (a) represents the
longitudinal position over time; (b) represents the longitudinal velocity
over time; (c) shows the change of acceleration in Frenet space.

B. DIVERSITY
Assuming that the car accelerates from zero to 10 m/s, the
action bcslimit can exhibit a wide range of variations through
changes in acceleration performance and comfort, as shown
in Fig. 9.

FIGURE 9. Assuming that the car accelerates from zero to 10 m/s, four
different accelerating performances and six different comforts can
produce different profiles of speed variation.

C. EFFICIENCY
Finally, the execution efficiencies of the seven actions were
tested. Each action was executed 10 000 times per round for
a total of five rounds, and the average execution time of each
action is shown in the last column of Table 2.

TABLE 2. Calculation time of each action.

D. ANALYSIS
It can be seen first from the separate tests in Section V.A
that the motion-planning method proposed in this paper
can accomplish the trajectory planning of each action quite
well. Although only one action diversity is demonstrated
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in Section V.B, all other actions can also show different
behavioral preferences. Finally, a test of execution efficiency
was performed in Section V.C. The planning time of all the
actions is in the level of hundreds or even tens of microsec-
onds. The longest planning time of action bclabort was used
to conduct the parallel test, and at most, 75 objects were
guaranteed to run at 24 frames/s in real time under the
current test conditions. Compared with the motion planning
of autonomous driving, in particular, the execution efficiency
is improved approximately a thousand times, although both
of them employ quadratic planning.

VI. CONCLUSION
Scenario vehicles in autonomous-driving virtual tests lack
dynamic and effective interactions with the tested target.
Therefore, this study proposes a motion-planning method
for dynamic scenario vehicles based on optimal control.
Compared with the scenario vehicles generated by the tra-
ditional microscopic traffic flow-based method, this method
produces more dynamic motion flexibility. Compared with
the current motion planning for autonomous driving, this
method offers faster computational efficiency. However, the
proposed method may still be improved, particularly the
behavior BchangeLane, for which the main motion is lateral
motion. Maintaining the speed of the combined motions
at a constant value is difficult because the motions both
along and perpendicular to the road reference line are decou-
pled and planned separately. Moreover, the final state of
the lateral direction is determined based on the lane infor-
mation of the current position, whereas the lane width
may change during the movement. In addition, the num-
ber of individuals that can be simulated simultaneously is
still limited, and further improvements are required. Future
research may require modifications to the longitudinal-lateral
decoupling approach to better match the realistic operating
habits of drivers. In addition, the efficiency improvement
may require a more advanced framework structure in code
writing.
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