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ABSTRACT In this paper, a novel approach to classify the signals of power quality (PQ) disturbance
is proposed based on segmented and modified S-transform (SMST), deep convolutional neural network
(DCNN), and multiclass support vector machine (MSVM). The idea of frequency segmentation with
different adjustable parameters was used in the Gaussian window function. The accurate time-frequency
localization and efficient feature extraction of different PQ disturbances then could be achieved. Firstly, the
SMST was used to analyze the PQ disturbance signals and obtained two-dimensional (2D) contour maps with
high time-frequency resolution. Then, the DCNN was employed to automatically extract features from the
2D contour maps. Finally, the MSVM classifier was developed for the classification of single and complex
signals of PQ disturbance. In order to demonstrate the effectiveness and robustness of the proposed model,
eight single and thirteen complex waveforms of PQ disturbances were considered without noise and with
different noise level, respectively. Extensive simulations were performed and compared to other existing
methods. The simulation results show that the proposed method has better performance than several state-
of-the-art algorithms in classifying PQ disturbances under different noise level.

INDEX TERMS Power quality disturbance, classification, segmented and modified S-transform, deep
convolutional neural network, multiclass support vector machine.

I. INTRODUCTION

In recent years, with the development of the smart grid,
power systems have more and more nonlinear loads, such
as electronic converters, transfer switches, adjustable speed
drives, etc. In addition, the distributed generation power using
renewable energy like wind and photovoltaic has also great
influence on the signals of power grids. Thus, power quality
(PQ) has been recognized as one of most crucial issue in
modern power systems. The extensive use of various types
of aforementioned devices creates unprecedented challenges
in the functioning of the reliable and stable operation of the
power system, resulting many PQ disturbance events [1], [2].
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These PQ disturbances have negative impact on the power
systems and may lead to maloperation or even failure of
sophisticated electronic devices. Therefore, it is necessary to
accurately detect and classify to avoid disturbance pollution
and improve power supply quality [3].

Particularly, under the noisy environment, it struggles to
accurately classify the signals of PQ disturbances, especially
for the complex signals. In the past few decades, many
researchers have explored the problem of classification of
PQ disturbances. Generally, these methods mainly include
two steps: feature extraction and classification [4]. In the first
step, the features of PQ disturbances can be extracted by using
the signal processing techniques. It is very important for this
stage to enhance the recognition among these disturbances
and then be beneficial to the implementation of classification.
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In the next step, the classifiers are fed with the features of PQ
disturbance signals that can be effectively identified.

For feature extraction from the signals of PQ disturbance,
multiple approaches have been used to analyze the distur-
bances and obtain good results. The main techniques for fea-
ture extraction include short time Fourier transform (STFT)
[5], [6], wavelet transform (WT) [7], [8], S-transform (ST)
[9], [10] and Hilbert-Huang Transform (HHT) [11], all of
which have been widely reported in the literatures for time-
frequency analysis of PQ disturbance signals. However, the
STFT is insufficient for the analysis of the non-stationary
signal due to its fixed window size. The WT has addressed
the limitations of STFT by adjusting the size and shape of
Gaussian window (GW). Although the WT is superior in
performance compared to the STFT, it is still challenge to
select the appropriate fundamental signal and its performance
degrades in noisy environment [12]. To overcome the draw-
backs of STFT and WT, the ST was proposed by Stockwell
[9]. Moreover, the ST is a combination of STFT and WT,
which can be considered as the STFT with a variable window
width or the WT with a corrected phase. Hence, the ST has
become one of the most widely used method for detecting the
signals of PQ disturbance. However, the ST is constrained by
Heisenberg’s uncertainty principle [13] which states that the
optimal resolutions for time and frequency cannot be obtained
simultaneously [14].

It has been observed that different versions of modified ST
(MST) [15], [16], [17] were proposed to improve the adapt-
ability of GW and maintain the optimal time-frequency reso-
lutions. In [15] and [17], two and four adjustable parameters
were introduced to control the modified GW and achieved
promising results for the detection of single PQ distur-
bances. But the aforementioned versions of MST only used an
improved GW in the entire frequency band, which means it is
hard to accurately detect and analyze the complex PQ distur-
bances, and simultaneously obtain the time-frequency resolu-
tion. In [16], the frequency spectra of PQ disturbance signals
were divided into two parts and used different parameters in
each frequency band to achieve double resolutions. However,
it is challenging to enhance the adaptability of the GW by
using only one parameter and the selection of frequency sep-
arator is insufficient to consider all kinds of PQ disturbances,
which may lead to poor performance for the detection of PQ
disturbances. Therefore, it is urgent to find effective methods
to enhance the accuracy of the time-frequency resolution of
PQ disturbance signals.

Therefore, a new algorithm called segmented and mod-
ified S-transform (SMST) [18] is proposed and improved
to overcome the disadvantages of the models mentioned
above. The SMST divides the frequency spectrum of PQ
disturbance signals into three bands i.e., low-, medium-, and
high- frequency bands. Then three adjustable parameters are
introduced to optimize the GW functions in each frequency
band, respectively. In this way, the GWs can be adaptively
adjusted through the frequency of PQ disturbance signals in
each frequency band, which achieve higher time-frequency
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resolution and deliver a good performance for the detection
of PQ disturbances

In the PQ classification stage, choosing an appropriate
classifier is the most important part of the disturbance classi-
fication. In recent decades, many advanced classifiers have
been designed to process the extracted features. The most
widely used classifiers mainly include: artificial neural net-
work (ANN) [19], [20], support vector machine (SVM) [16],
[21] and decision tree (DT) [22]. The ANN is a significant
classification method and has been widely used because of its
simple structure and automatic learning capability. However,
the ANN suffers from slow performance and local minima
convergence problems. In this case, the SVM is further pro-
posed to improve the ANN performance. However, the SVM
is constrained by choosing proper kernel function and reg-
ularization parameter that limits data mapping capabilities.
The DT-based classifiers are also broadly used in power
systems, which are easy to implement and rely on specific
rules. However, the performance of DT can be affected by
uncorrelated feature set because it works by seeking the
correlations among date samples. In recent research, most
features extracted from PQ disturbances are handcrafted with
different numbers and types [23], [24], [25], and the accuracy
of the classifier is heavily relied on the selection of features.
However, the selection of features lacks of uniform criteria
and may lead to information loss due to manual factors, which
may reduce the accuracy of classification of PQ disturbances.

Recently, deep learning methods such as probabilistic neu-
ral network and convolutional neural network were proposed
to automatically extract features of PQ disturbances and used
to classify the PQ disturbances [26], [27]. It has proven that
the deep learning methods had excellent performance for
feature extraction in the face of noisy environment. However,
the performance of their classifiers usually needs a lot of
training samples and is easy to appear convergence stagna-
tion. In addition, the classical classifier such as the SVM or
its improved version, has stronger generalization ability and
fast computation speed, performing better than the classifiers
of deep learning methods for multi-classification problems.
In terms of this, the combination of deep learning methods
and traditional classifiers has drawn more and more attention
all over the world.

In this study, deep learning and classical machine learn-
ing methods will be combined to automatically extract in-
depth features and obtain a higher classification accuracy of
PQ disturbance signals under different noisy levels. There-
fore, a novel approach based on the segmented and modi-
fied S-transform (SMST), deep convolutional neural network
(DCNN), and multiclass support vector machine (MSVM) for
the recognition of PQ disturbances is proposed. The SMST
is employed to preprocess and analyze the PQ disturbance
signals and transfer 1D signals into 2D time-frequency image
data set. Then, these 2D time-frequency images are consid-
ered as the input of the DCNN, which can automatically
extract and learn the features of PQ disturbances. Finally, the
MSVM can be used to classify the PQ disturbance signals to
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obtain high classification accuracy due to its better ability of
classifying multi-classification events.

The main contributions of this paper are listed as follows:

1) To improve time-frequency resolution of signal process-
ing, the SMST method was proposed to analyze the signals of
PQ disturbance. Integrating the idea of frequency segmenta-
tion with different adjustable parameters of GW width, the
GWs can be adaptively adjusted through the frequency of
signals in each frequency band. Then, the SMST can improve
time-frequency resolution and achieve a higher accuracy of
detection.

2) To enhance the capability of classification, the improved
DCNN combined with MSVM was used to classify the single
and complex signals of PQ disturbances. The DCNN has been
established for automatically learning the features from 2D
time-frequency images and avoided the manual feature selec-
tion. Furthermore, the MSVM has been used to replace the
softmax of DCNN to achieve a higher classification accuracy.

3) Extensively comparative experiments were conducted
to verify the proposed framework. The experimental results
show that the proposed model is efficient in classifying
PQ disturbances with better accuracy, even under noisy
conditions.

The remaining part of this article is organized as follows.
Section II introduces the proposed SMST. Section III dis-
cusses the classification method based on the DCNN and
MSVM. In Section IV, the framework of the PQ disturbances
classification is presented. The simulation and classification
results are discussed in Section V. Finally, Section VI con-
cludes the paper.

Il. SEGMENTED AND MODIFIED S-TRANSFORM

In this section, a novel technique based on the segmented
idea of frequency band is introduced to detect the signals
of PQ disturbance. The basic theory of the traditional ST
is presented firstly and the structure of SMST is further
elaborated. Finally, the SMST is used to analyze the complex
signal of PQ disturbance to verify its superior performance.

A. S-TRANSFORM

In recent years, although the variants of the traditional ST
have been widely used in detecting the signals of PQ dis-
turbance, it is still necessary to introduce the principle of
the traditional ST. The original ST of a signal x(¢) could be
denoted as [9]

S, f) = /Oo x()g(t — T, fe”# (1)

o _22
gt.f) = Jl%e 3 @

where f is the signal frequency, T gives the position of wavelet
and g(t — 7, f) is the Gaussian window function with a width
of l/[f].

It is quite apparent that the Gaussian window width is only
determined by frequency in the traditional ST, which means
the resolution of ST varies with the frequency. Therefore, it is
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difficult for the traditional ST to satisfy the requirements of
high resolution in both high- and low-frequency bands.

B. PROPOSED SMST

In order to overcome the drawbacks of the ST, the SMST
has been proposed to improve time-frequency resolution of
signal processing. Three adjustable parameters, i.e., m, n, p
in Eq. (3), are introduced to the window function. According
to the time-frequency characteristics of PQ disturbances, the
parameters m, n, and p can be adaptively selected to adjust
the window width. Then, the width of window function can
be expressed as

1
~mf+pl

where m, n, and p are three adjustable parameters.

However, the signals of PQ disturbance are usually mixed
in the power systems. That is to say, it is hard to achieve high
resolution in both high- and low-frequency bands. In terms
of this case, the frequency component is divided into three
parts and different parameters (m, n, p) are introduced in
these three bands. According to the frequency characteristics
of PQ disturbance [28], the separator lines (f = 100 Hz for
low-frequency band and f = 700 Hz for high-frequency
band) are used in the middle to divide the entire frequency
range. Therefore, the frequency spectrum can be divided
into low-frequency band (1 Hz <f < 100 Hz), medium-
frequency band (100 Hz < f < 700 Hz) and high-frequency
band (f > 700 Hz), respectively. In this way, the Gaussian
windows at three different frequency bands can be used to
analyze PQ disturbances separately to obtain higher time-
frequency resolution and detection accuracy, laying a solid
foundation for the subsequent classification work.

According to the theories mentioned above, the SMST of
a signal x(¢) can be defined as [18]

o(f) 3)

Ssmsr(t,f)
/ a2 el L
—00 A/ 27T

if 1 <f < 100Hz
et pal e
. x(t) N e e @)
- —00 T
if 100 Hz < f < 700Hz
00 n3 —(t =12 |m3f"3 +p; |2 )
—00 27'[

if f > 700Hz

where (m1, ny, p1), (ma, na, p2) and (m3, n3, p3) correspond
to the adjustable parameters of the window width in the low-,
medium-, and high-frequency bands, respectively.

C. SIGNAL ANALYSIS USING SMST

To evaluate the efficiency of the SMST to detect PQ distur-
bances, the comparisons between the SMST and the variants
of ST have been carried out as shown in Figure 1. A complex
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FIGURE 1. Time-frequency analyzing results for complex disturbance. (a) Original signal. (b) Standard

ST. (c) MST. (d) Proposed SMST.

signal of PQ disturbance, which has a voltage sag with har-
monics, is used as the test signal. The signal can be defined
as

11

x(t) = Zak sin(k27ft) - {1 — a[u(t — t1) — u(t — )]}
3
+ sin(2nuft)  (5)

The waveform of original signal is displayed in Fig. 1(a).
One can see that the voltage sag starts at 0.065 s and ends
at 0.14 s. Moreover, the input signal contains the third, fifth,
seventh, and 11th harmonics, with corresponding magnitude
0.15,0.3,0.35, and 0.25 p.u., respectively. Figs. 1(b)-(d) show
the results of detection of the complex signal based on the ST,
MST [17] and SMST, respectively. As shown in Fig. 1(b),
the ST are unable to accurately localize each frequency
component of the harmonics and its time resolution at the
fundamental frequency was relatively low under voltage sag
condition, which gives poor performance for the complex PQ
disturbance. The MST provides better frequency localization
compared to the results of Figs. 1(c) and 1(b). However,
it gives poor time resolution and then is unable to accurately
detect the start and end times of voltage sag. In Fig. 1(d),
it is clear that the signal of voltage sag with harmonics can
be accurately detected by using the proposed SMST. In other
words, the proposed SMST gives better time-frequency local-
ization and provides great time-frequency resolutions.

Hence, by selecting optimal parameters in each frequency
band, the SMST can provide a higher accuracy for analysis of
PQ disturbance signals, especially for the complex signals,
which demonstrates a solid foundation for the subsequent
classification of the signals of PQ disturbance.

Ill. PROPOSED CLASSIFIERS

Deep convolutional neural network (DCNN)), as a deep learn-
ing method, has been a strong candidate for pattern recogni-
tion and image classification [29], [30]. In recent years, the
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DCNN has been used to process various types of data, such
as three-dimensional (3D) data, pictures, and 1D signals [31].
In this paper, the DCNN is proposed for automatic feature
extraction and the MSVM is used to classify of PQ distur-
bance signals.

A. ALEXNET

The AlexNet [32] is a novel learning method and achieves
high classification accuracy, which is trained on 1000 classes
of images and 1.2 million images from the ImageNet. The
AlexNet is a large network structure that has 60 million
parameters and 650,000 neurons. In general, the network
contains 8 layers including five convolutional layers and
three fully connected layers. The output of the last fully-
connected layers is connected with a 1000-way softmax clas-
sifier. To prevent the neural network over-fitting in the fully
connected layers, the dropout method is used. The rectified
linear units (ReL.Us) are applied to every convolutional and
fully-connected layers for activation and faster learning. The
size of first convolutional layer is 11 x 11 and the size of the
second convolution layer is decreased to 5 x 5, after which
the size of rest layers is 3 x 3. Figure 2 shows the structure
of the AlexNet.

B. MULTICLASS SUPPORT VECTOR MACHINES

Support vector machine, put forward by Cortes and Vap-
nik [33], has been widely used for classification of PQ
disturbances [16]. It was originally developed for binary
classification, which is not suitable for classification for
twenty-one types of PQ disturbances. Therefore, it is nec-
essary to use multiclass SVMs for the classification of PQ
disturbances. Various methods have been proposed to extend
SVM for multiclass classification. In [34], a comparative
experiment has been conducted and showed that one-against-
one and directed acyclic graph SVM (DAGSVM) methods
are more appropriate for classifying multiple PQ disturbance
signals.
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In this paper, the features extracted from the training sam-
ples as predictor variables are used and one-again-one support
vector machines are fitted to replace the softmax classifier.
Then, the MSVM can be used to classify the test samples
to improve the training efficiency and high classification
accuracy.

IV. PROPOSED METHODLOGY

Based on the SMST and DCNN-MSVM models mentioned
above, this section proposes a framework for PQ disturbance
classification. Its schematic diagram is depicted in Fig. 3.
The framework can be divided into two parts, which can be
described in detail as follows.

1) Time-frequency analysis: The PQ disturbance sig-
nals are processed by the SMST. Then, 2D time-frequency
matrix can be obtained from signals, the row information of
which represents the frequency information and the column
information for the time information. Finally, twenty-one
kinds of 2D contour of PQ disturbance signals according
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to the formulae of Table 1 can be achieved by using the
SMST. These time-frequency contour maps are in the size
of 224 x 224 as input to the improved AlexNet. In addition,
all samples are divided into 8400 cases for the training model
and 2100 for the test set.

2) Automatic classification of PQ disturbance: The 2D
contour maps of PQ disturbance achieved from the SMST can
be considered as the input of the DCNN. Then, the DCNN
is used to extract features from 2D contour maps and these
features are fed into the MSVM to train the classifier. The
output of MSVM determines which class of the PQ distur-
bances belongs to. Finally, the PQ disturbance signals can be
classified by the hybrid DCNN-MSVM model.

V. EXPERIMENTS AND EVALUTIONS

A. DATASET

In order to verify the effectiveness of the proposed algo-
rithm, twenty-one different PQ disturbance signals are syn-
thetically generated using MATLAB 2020 according to the
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FIGURE 4. 2D contour maps of twenty-one kinds of PQ disturbances according to the formulae of Table 1.

IEEE standard 159-2019 and the disturbance models of [35].
PQ disturbances usually include harmonics, voltage swell,
voltage sag, flicker, interruption, impulsive transient and
oscillatory transient. These seven typical PQ disturbances are
summarized as shown in Table 1 (C2-C8). More specifically,
multiple PQ disturbances can be generated when two or more
PQ disturbances occur at the same time. To better simulate the
disturbance signals and make all disturbances closer to the
real dataset in actual power grid, nine double disturbances
(C9-C17) and four triple disturbances (C18-C21) are gen-
erated in this study. Table 1 shows these PQ disturbance
categories, labels and equations. 500 cases of each class with
unique parameters such as starting time, magnitude, ending
time and frequency are allowed to change randomly, which
make the testing of SMST more reliable since none of these
parameters is fixed in practical power systems. Furthermore,
all samples are divided into 8400 cases for the training model
and 2100 for the test set randomly. The fundamental fre-
quency of the signals is 50 Hz and the sampling frequency
of 3.2 kHz is considered in this paper.

B. PERFORMANCE UNDER DIFFERENT NOISY LEVEL

To validate the effect of the proposed algorithm under differ-
ent noisy level, different noisy conditions are also included
and verified, as shown in Tables 2 and 3. From Table 2,
it can be observed that the classification accuracy of the
DCNN-MSVM classifier is higher than DCNN based clas-
sifier in each noisy condition when using the same time-
frequency analysis method. For example, 88.62% and 93.1%
classification rates have been achieved using the ST-DCNN
and the ST-DCNN-MSVM in 20 dB, respectively, which
demonstrates that the proposed DCNN-MSVM based clas-
sifier enhances the capability of classification and improves
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the classification accuracy compared to the DCNN based
model. In addition, the SMST is able to capture and display
the features more effectively than the ST, which contributes
to the higher classification accuracy compared with the ST.
Obviously, the classification accuracy based on the SMST
significantly increases compared to ST with the same clas-
sifier even under a low noisy condition.

Table 3 shows the detailed performance of each PQ dis-
turbances under different noisy level. One can find that the
overall classification accuracy of PQ disturbances is all above
98.5% under different noisy conditions. As is clear from
Table 3, the classification accuracy significantly increases
even at a low noisy level. For instance, the accuracy of
single disturbances (C1-C8) is higher than that of complex
disturbances (C9-C21), which demonstrates that the single
PQ disturbance signals are easy to be classified. Meanwhile,
the average percentage of classification of the complex events
increases to 98.85% even with the noisy level of 20 dB.
The high accuracy of the classification for PQ disturbances
obviously indicates that the proposed SMST-DCNN-MSVM
has higher capabilities to classify PQ disturbances, especially
for complex disturbances. The results also show that the
proposed model is more suitable for detecting and classifying
the PQ disturbance signals under the noisy environment, even
with high noisy level.

C. PERFORMANCE COMPARISON

To further evaluate the performance of the proposed method,
it is compared with these recently proposed state-of-the-
art methods and the comparative results are shown in
Table 4 under the high noisy interferences. One can see
that these methods have achieved great accuracy, but the
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TABLE 1. List of PQ disturbances.

PQ disturbance class Label Modeling Equations
Normal Cl x(t) = Asin(wt)
Swell c2 x(t) = A{l+ a(u(t—t)—u(t—t,))} sin(or)
Sag c3 x(t) = A{l-a(u(t—t,)—u(t—t,))} sin(wr)
Interruption G x(@) = A{l-a(u(t—t)—u(t—t,))} sin(wr)
Harmonic Cs x(t) = A{a, sin(@rt) + a, sin(3wt) + a; sin(5wt) + a, sin(7ot) + a,, sin(1 1wr)}
Oscillatory transient Cé6 x(t) = A{sin(a)t)+0{e’ﬂ(”") [u(t—tl)—u(t—tz)]sin(a)nt)}
Impulsive transient C7 x(1) = A{sin(wt) + a[u(t —t)—ult _tz)]}
Flicker G x(t) = A[1+asin(Bax)]sin(wr)
Harmonic with swell Cc9
x(t)=A4 {sm(a}t) + Za sm(ka)t)}{l +a(u(t—t)-u(t—1,))}
Harmonic with sag C10 11
x(f) = A{sm((ut) +Y sin(ka)t)}{l —a(u(t—t)—u(t—t,))}
3
Harmonic with Cl11 11
interruption x(t)=A {sm(a)t) +> sin(ka)t)}{l —o(u(t—t)—u(t—t,))}
3
Flicker with harmonic C12
x(t)=4 {sm(a)t) + Z o, s1n(ka)t)} [1+ arsin(Saox)]
Flicker with sag C13 x(t) = A[1+ ¢ sin(Ban) | {1 -, (u(t —1,) —u(t —1,))}
Flicker with swell Cl4 x(t) = A1+ ¢ sin(Bar) | {1+ o, (u(t — 1) —u(t —t,))}
Flicker with C15 — : _ ) _
nterruption x(1) = A[1+ e sin(fa) {1 — e, (u(t — 1) —u(t —1,))}
Oscillatory transient — C16 - y(4) = gr,e ™™ [u(t —1,) —u(t - t,)|sin(@,t) + A{1- o, (u(t —t,) —u(t — 1,))} sin(er)
with sag
Oscillatory transient— CIT x(0) = aqe™ ™™ [u(t = 1)) ~u(t = 1) ]sin(@, ) + A{1+ &, (u(t = 1,) ~u(t = 1,))} sin(ar)
W1 W
Harmonics with C18 11
oscillatory transient x(t) =) o, sin(kar)+ A{1— o, (u(t — 1)) —u(t —t,)) }sin(@r) + a,e™” ™ [u(t = 1,) —u(t —1,)]sin(w,1)
with sag 3
Harmonics with C19 11
oscillatory transient x(t) = Y oy sin(kar) + A{1+ oy (u(t —1,) —u(t —t,))}sin(@r) + ape ™ [u(t — 1) —u(t —t,)|sin(@,)
with swell 3
Harmonics with flicker C20 11
with sag x(t) =Y e sin(ker)+ A{1—oq (u(t —1,) —u(t - t,))} sin(@r)+[1+ @, sin(Ser)|
3
Harmonics with flicker C21

with swell

x(t) = lzlak sin(kar)+ A{1+ o4 (u(t —1,) —u(t —t,))} sin(@r)+[1 + &, sin( Beox) |
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TABLE 2. Performance under different noise level.

Method Classification accuracy, %

0dB 20dB 30dB 40 dB
ST+DCNN 97.1 88.62 94.3 972
SMST+DCNN 99.1 98.43 98.95 99
ST+DCNN-MSVM 98.76 93.1 97.38 98.1
SMST+DCNN-MSVM 99.7 98.86 99.52 99.6

TABLE 3. Detailed performance of the proposed method.

Label Classification accuracy, %
0dB 20 dB 30dB 40 dB

Cl 100 100 100 100
C2 100 99 100 100
C3 100 99 100 100
C4 100 100 100 100
C5 100 100 100 100
C6 100 100 100 100
Cc7 100 100 100 100
C8 100 93 99 100
Average accuracy 100 98.5 99.88 100
c9 100 99 100 99
C10 100 100 100 100
Cl1 99 100 99 97
C12 100 100 100 100
C13 99 95 98 98
Cl14 98 98 98 100
C15 100 100 100 100
Cl6 100 100 100 100
C17 100 99 99 99
C18 100 100 100 100
C19 100 100 100 100
C20 99 98 99 100
C21 99 96 98 98
Average accuracy 99.54 98.85 99.3 99.3
Overall accuracy 99.7 98.86 99.52 99.6

categories of these PQ disturbance signals are relatively fewer
than our proposed model.

For example, in [16] and [38], both the DRST and
DAG-SVMS method and HT and slip-SVDNSA method
obtained the classification accuracy of 97.77% and 98.45%
respectively. Although these classification accuracies were
appreciable, only nine and eleven types of PQ disturbance
signals were designed for verification. In [37], a new method
based on adaptive wavelet threshold denoising and deep

VOLUME 11, 2023

TABLE 4. Comparison of different classification methods.

Method Num. of Noise Accuracy (%)
PQD (dB)

SAE [36] 16 20 923
DBN-+ELM[37] 21 20 95.8
DRST+DAG-SVM [16] 9 20 97.71
MGST+DT[23] 14 30 95.25
VMD+DT [25] 14 30 96.73
TQWT+MSVM [8] 14 20 96.42

HT+ slip-SVDNSA([38] 11 20 98.45
SMST+DCNN-MSVM 21 20 98.86

belief network fused with extreme learning machine was
proposed to classify twenty-one types of PQ disturbance
signals including eleven complex PQ disturbances. However,
the classification accuracy is not relatively high compared
to other methods. Moreover, the algorithms in [8], [23], and
[25] failed to consider more types of complex PQ distur-
bances, especially for complex PQ disturbances containing
three or more single disturbances. Therefore, the comparative
results show that the proposed method performs better and
achieves higher classification accuracy than these bench-
marking methods.

VI. CONCLUSION
In this paper, a hybrid approach based on the combination
of SMST and DCNN-MSVM for classification of single and
combined PQ disturbances was proposed. In the SMST, a new
window function is proposed with the idea of frequency seg-
mentation and adjustable parameters, which achieves better
time-frequency resolution and provides a higher extracting
accuracy for PQ disturbances. This lays a solid foundation
for the subsequent classification of PQ disturbance signals.
Thereafter, a 2D feature matrix is extracted from the PQ
disturbance signals and the corresponding 2D contour maps
can be obtained by using the SMST. Then, the DCNN is
proposed for automatically extracting and learning the fea-
tures through the image data that contains time-frequency
features of PQ disturbances. Finally, the MSVM classifier
is developed for the classification of PQ disturbances. Sim-
ulation results showed that the proposed method effectively
classified eight single and thirteen complex PQ disturbance
signals under different noisy environment. Meanwhile, the
proposed method has been compared with other state-of-the-
art algorithms, and the classification results demonstrated that
the proposed algorithm had higher classification accuracy and
stronger anti-noise.

Considering that the selection of three parameters in the
SMST is manually determined, our future work will focus on
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the adaptive optimization of three parameters in the SMST to
achieve better time-frequency resolution and improve classi-
fication accuracy.
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